ASoBO: Attentive Beamformer Selection for Distant Speaker Diarization in Meetings - Laboratoire Informatique de l'Université du Maine
Communication Dans Un Congrès Année : 2024

ASoBO: Attentive Beamformer Selection for Distant Speaker Diarization in Meetings

ASoBO: sélection auto-attentive de filtres spatiaux pour la segmentation et le regroupement en locuteurs

Résumé

Speaker Diarization (SD) aims at grouping speech segments that belong to the same speaker. This task is required in many speech-processing applications, such as rich meeting transcription. In this context, distant microphone arrays usually capture the audio signal. Beamforming, i.e., spatial filtering, is a common practice to process multi-microphone audio data. However, it often requires an explicit localization of the active source to steer the filter. This paper proposes a self-attention-based algorithm to select the output of a bank of fixed spatial filters. This method serves as a feature extractor for joint Voice Activity (VAD) and Overlapped Speech Detection (OSD). The speaker diarization is then inferred from the detected segments. The approach shows convincing distant VAD, OSD, and SD performance, e.g. 14.5% DER on the AISHELL-4 dataset. The analysis of the self-attention weights demonstrates their explainability, as they correlate with the speaker's angular locations.
Fichier principal
Vignette du fichier
2024_asobo_interspeech-1.pdf (431.82 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04602289 , version 1 (05-06-2024)

Identifiants

  • HAL Id : hal-04602289 , version 1

Citer

Théo Mariotte, Anthony Larcher, Silvio Montrésor, Jean-Hugh Thomas. ASoBO: Attentive Beamformer Selection for Distant Speaker Diarization in Meetings. Interspeech, International Speech Communication Association (ISCA), Sep 2024, Kos / Greece, Greece. ⟨hal-04602289⟩
71 Consultations
42 Téléchargements

Partager

More