The 2024 phononic crystals roadmap
Résumé
Abstract Over the past 3 decades, phononic crystals experienced revolutionary development for understanding and utilizing mechanical waves by exploring interaction between mechanical waves and structures. With the significant advances in manufacture technologies from nanoscale to macroscale, phononic crystals attract researchers from diverse disciplines to study abundant directions such as bandgaps, dispersion engineering, novel modes, reconfigurable control, efficient design algorithms and so on. The aim of this roadmap is to present the current state of the art, an overview of properties, functions and applications of phononic crystals, opinions on the challenges and opportunities. The various perspectives cover wide topics on basic property, homogenization, machine learning assisted design, topological, non-Hermitian, nonreciprocal, nanoscale, chiral, nonlocal, active, spatiotemporal, hyperuniform properties of phononic crystals, and applications in underwater acoustics, seismic wave protection, vibration and noise control, thermal transport, sensing, acoustic tweezers, written by over 40 renown experts. It is also intended to guide researchers, funding agencies and industry in identifying new prospects for phononic crystals in the upcoming years.
Domaines
Physique [physics]Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|