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ABSTRACT:
The beamwidth is a primary directivity metric for the design of a constant directivity horn. To date,

investigations on this property have predominantly been restricted to the half-space radiation or idealized geom-

etries. This paper examines the beamwidth behavior of an axisymmetric horn mounted in a finite cylindrical

enclosure by proposing an elegant multimodal solution to the far-field directivity pattern. The variation of

beamwidth is examined for the frequency, dimensions of the enclosure, and shape of the horn. At low frequen-

cies, a fitted model is proposed to precisely depict the intrinsic beam narrowing governed by the enclosure dif-

fraction. The asymptotic behavior of the beamwidth is explored as the flange width increases. In the high-

frequency range, the horn profile is a determinant of the directivity characteristics. We report the possibility of

extending the bandwidth of a constant directivity horn by leveraging the enclosure diffraction effects. The pro-

posed analytical method is highly accurate and much faster than the finite element method for wideband analy-

sis. It allows for an arbitrary velocity distribution at the mouth of the horn and incorporates idealized flange

configurations such as an infinite baffle, a zero-thickness closed baffle, and an infinitely long enclosure as limit

cases. VC 2024 Acoustical Society of America. https://doi.org/10.1121/10.0025389

(Received 2 November 2023; revised 10 February 2024; accepted 5 March 2024; published online 28 March 2024)

[Editor: Andi Petculescu] Pages: 2270–2279

I. INTRODUCTION

This paper investigates the far-field radiation character-

istics of an acoustic horn mounted in a finite cylindrical

enclosure using a computationally efficient and accurate

multimodal method. Emphasis is put on the dependence of

the beamwidth characteristics on the dimensions of the

enclosure and the shape of the horn. The beamwidth, also

known as the coverage angle, represents an angular region

in which the far-field power is primarily distributed.

Achieving a frequency-invariant beamwidth is greatly

desired for sound reinforcement and home audio systems

because it would provide consistent tonal balance for the lis-

tening area that the beamwidth encompasses.1 The far-field

directivity of a few idealized radiators have been well estab-

lished, e.g., infinitely flanged vibrators,2,3 zero-thickness

vibrating disks,4,5 and semi-infinite open-ended waveguides

with zero wall thickness.6–8 However, the literature on the

directivity of finite horn radiators is sparse, despite their

practical importance.

One possible cause of this research gap is the numerical

challenge posed by fully numerical or hybrid methods, e.g.,

finite element method (FEM),9 boundary element method,10

and coupled FEM-analytical method.11 Since they do not

make use of the intrinsic multimodal structure of guided

waves, the computational burden becomes substantial when

dealing with a large number of frequencies and geometric

parameters. In contrast, the multimodal admittance method

by integrating the matrix Riccati equation12–15 offers

improved efficiency and accuracy for calculating in-duct

sound propagation. Concerning the far-field radiation, the

state of the art has been restricted largely to the half-space

radiation; for instance, the analysis of beamwidth16 and the

multimodal-based shape optimization.17 To address some of

the limitations, Kolbrek and Svensson18 proposed a hybrid

method that combines the multimodal method with an edge-

diffraction model to predict the far-field response of a horn

terminated in a finite flange. Their work highlights the sig-

nificant influence of edge diffraction on directivity.

However, the integration of two distinct techniques brings

complexity and additional computational cost, especially

when allowing for higher-order diffraction. The omission of

diffraction by boundaries other than the front flange would

also lead to a decrease in accuracy.

The first aim of the paper is to overcome the above

numerical difficulties. An analytical solution is proposed to

calculate the directivity pattern of a finite horn radiator over

a wide frequency range, which builds upon a previous

work19 initially developed for modeling the radiation imped-

ance. The method is extended herein to determine the far-

field directivity with minimal additional computational cost.

Section II presents the method with a numerical validation.a)Email: hao.dong@univ-lemans.fr
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The sound fields on the enclosure surface, used to formulate

the directivity function, are solved by placing the enclosure in

a larger waveguide with a perfectly matched layer (PML) on

its wall. The resulting algebraic formulation is computationally

efficient and suitable for an arbitrary velocity distribution at

the mouth of the horn. The propagation inside the horn is

solved using the improved multimodal admittance method

(IMAM),14,15 which is known to have improved accuracy for

the internal sound field. Importantly, we report for the first

time that this advantage is inherited in the far-field calculation.

In addition, we show that a few idealized radiators can be con-

veniently treated as limit cases of the general configuration.

The second objective of this study is to explore the beam-

width characteristics. Understanding the beam narrowing

behavior at low frequencies and the enclosure diffraction

effects are of essential importance for the optimal design of a

constant directivity horn.16,17 In Sec. III, we investigate the

beamwidth as a function of frequency, which can be character-

ized into three regions. We report on how the beamwidth is

affected by the flange width, enclosure length, and shape of

the horn, and propose a fitted model for predicting its low-

frequency behavior. Additionally, we report the potential for

decreasing the lower control limit of a constant directivity

horn with a finite enclosure.

II. MULTIMODAL FORMULATION
OF THE DIRECTIVITY FUNCTION

A. Radiation problem

Consider an axisymmetric horn mounted in a cylindri-

cal enclosure with acoustically rigid walls Sh; S0nSm, Sa,

and SL [see Fig. 1(a)]. A source at the throat (input end) of

the horn emits a sound wave which, after being transmitted

through the horn, radiates into free space with certain direc-

tivity. For the sake of simplicity, we assume a planar piston

source, so that the problem is axisymmetric, although more

general configurations could also be described with the pro-

posed formulation (see the supplementary material).

The beamwidth is defined in the polar plot of the directivity

pattern as the included angle between two points at which the

magnitude drops by 50% (�6 dB) from the biggest lobe.16 Due

to symmetry, we consider herein the beamwidth as half of the

included angle, i.e., hb 2 ½0; p�, as exemplified by Fig. 1(b).

The directivity pattern is generally obtained from the

Kirchhoff–Helmholtz integral equation, which expresses the

sound pressure at any point exterior to a surface enclosing

the sound sources: in the far field (the radial distance

R!1), the pressure is essentially the product of a radial

factor eikR=R (the time dependence is e�ixt) and an angular

factor termed as the directivity function:20

DðhÞ ¼ � ik

4p
�

S
e�ikef �x0 ½vðx0Þ þ pðx0Þef � � n dS0; (1)

with k ¼ x=c the wavenumber, c the speed of sound, and x0

a point on the enclosing surface S, with outward directed

normal n. The unit vector ef gives the direction of the obser-

vation point ðR; h;/Þ. Note that, due to the axisymmetry of

the problem, the directivity function is independent of azi-

muth angle /. Also, the fields v and p are made dimension-

less by c and q0c2, respectively, with q0 the density of air,

and the spatial dimensions, including the wavelength

k ¼ 2p=k, are normalized by the radius of the mouth [the

circular opening, see Fig. 1(a)].

Upon choosing the surface S as that of the enclosure, and

since the normal velocity v � n vanishes on the acoustically

rigid surfaces S0nSm, Sa, and SL, the directivity function [Eq.

(1)] can be decomposed as D ¼ Dm þ D0 þ Da þ DL, with

DmðhÞ ¼ �
ik

4p

ð ð
Sm

e�ikef �x0vzðx0Þ dS0; (2a)

D0ðhÞ ¼ �
ik

4p

ð ð
S0

e�ikef �x0pðx0Þef � ez dS0; (2b)

DaðhÞ ¼ �
ik

4p

ð ð
Sa

e�ikef �x0pðx0Þef � n dS0; (2c)

DLðhÞ ¼ �
ik

4p

ð ð
SL

e�ikef �x0pðx0Þef � ð�ezÞ dS0: (2d)

Using the integral representations of the Bessel functions of

the first kind21

J0ðxÞ ¼
1

2p

ð2p

0

e�ix cosð/0�/Þ d/0; (3a)

J1ðxÞ ¼
i

2p

ð2p

0

e�ix cosð/0�/Þ cosð/0 � /Þ d/0; (3b)

this gives

FIG. 1. (Color online) (a) Schematic diagram of a horn mounted in a cylin-

drical enclosure with radius a and length L. (b) Illustration of the definition

of beamwidth.
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DmðhÞ ¼ �
ik

2

ð1

0

vzðr0; 0ÞJ0ðkr0 sin hÞr0dr0; (4a)

D0ðhÞ ¼ �
ik cos h

2

ða

0

pðr0; 0ÞJ0ðkr0 sin hÞr0dr0; (4b)

DaðhÞ ¼�
ka sinh

2
J1ðka sinhÞ

ð0

�L

pða;z0Þe�ikz0 coshdz0; (4c)

DLðhÞ ¼
ik cos h

2
eikL cos h

ða

0

pðr0;�LÞJ0ðkr0 sin hÞr0dr0: (4d)

The following step consists now of expressing each of

these four contributions to DðhÞ as functions of the velocity

field at the mouth, vzðr0; 0Þ; r0 2 ½0; 1�. To do this, we use a

multimodal formulation of the exterior field.

B. Multimodal formulation

Given the solutions unðr0Þ ¼
ffiffiffi
2
p

J0ðcnr0Þ=J0ðcnÞ of the

Neumann Laplacian eigenproblem in the unit disk, let u be

the vector of the components of vzðr0; 0Þ in the orthonormal

basis fung.22 Then, Eq. (4a) can be written

DmðhÞ ¼ �
ik

2
!Tu; (5)

where

!nðhÞ �
ð1

0

unðr0ÞJ0ðkr0 sin hÞr0dr0: (6)

Regarding Eqs. (4b)–(4d), in order to relate the pressure

fields pðr0; 0Þ; pða; z0Þ, and pðr0;�LÞ to vzðr0; 0Þ, or equiva-

lently to u, we consider the enclosure as itself embedded in

an infinite waveguide with an annular PML on its wall (see

Fig. 2). It is then possible to derive algebraic solutions for

the exterior field.19 The pressure field pðr0; z0 � 0Þ is devel-

oped on the basis of eigenfunctions uBnðr0Þ ¼ b�1unðr0=bÞ,
with b the radius of the “PML” waveguide:

pðr0; z0 � 0Þ ¼ uT
Bðr0Þpþðz0Þ; (7)

so that Eq. (4b) becomes

D0ðhÞ ¼ �
ik cos h

2
jTpþð0Þ; (8)

where

jnðhÞ �
ða

0

uBnðr0ÞJ0ðkr0 sin hÞr0dr0: (9)

Now, pþð0Þ in Eq. (8) can be related to u by writing the con-

tinuity of the pressure and velocity field in the plane z¼ 0

(see the supplementary material); it translates into a linear

relation pþð0Þ ¼ H0u; hence

D0ðhÞ ¼ �
ik cos h

2
jTH0u: (10)

In the same way, writing

pðr0; z0 � �LÞ ¼ uT
Bðr0Þp�ðz0Þ (11)

leads to

DLðhÞ ¼
ik cos h

2
eikL cos hjTp�ð�LÞ: (12)

By writing the continuity of the pressure and velocity fields

in the plane z ¼ �L and the propagation in the annular

region ½�L; 0�, we can relate p�ð�LÞ to u: p�ð�LÞ ¼ HLu

(see the supplementary material). Finally, based on the

modal solution of the pressure field in the annular region

½�L; 0�, we can write

DaðhÞ ¼ �
ka sin h

2
J1ðka sin hÞuT

CðaÞHau; (13)

where the components uCnðr0Þ of the column vector uC are

the Neumann eigenmodes in an annulus with radii a and b
(see the supplementary material). It follows that the directiv-

ity function reads DðhÞ ¼ fTðhÞu, where fðhÞ is algebrai-

cally known. The velocity u is computed from the piston at

the throat using the multimodal admittance method.15

Solutions for the following extreme geometries can be

deduced from the general formulation.

1. Infinite baffle (e5‘)

For a radiator mounted in an infinite rigid baffle, the

directivity function is derived from the Rayleigh integral

formula:2

DðhÞ ¼ 2DmðhÞ ¼ �ik!Tu; (14)

where the factor of 2 arises from the Green’s function that

satisfies the Neumann boundary condition on the baffle.

2. Finite closed baffle (L 5 0, one-side radiator)

Mellow and K€arkk€ainen4 described an analytical

expression of the directivity of an oscillating rigid disk in a

finite closed circular baffle, also known as a one-side pistonFIG. 2. (Color online) Configuration of the “PML” waveguide.
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radiator. In our method, setting L¼ 0 provides an alternative

solution, while allowing for an arbitrary velocity distribu-

tion. Since the sidewall Sa disappears, the directivity func-

tion only has contributions from S0 and SL.

3. Infinitely long enclosure (L5‘)

The configuration becomes a semi-infinite waveguide

with arbitrary wall thickness (including e¼ 0) as consid-

ered in previous work.19 Since the bottom surface SL disap-

pears, the directivity function only has contributions from

S0 and Sa. Given that there are no reflected waves in the

annular region z � 0, setting the reflection matrix RL to

zero yields the solution. Note that in the limit case of zero

wall thickness, rigorous expressions for the modal directiv-

ity functions can be derived using the Wiener–Hopf

technique.23,24

C. Numerical computation and validation

For the computation, a compact PML with thickness d ¼
b� a is employed, filling the entire annular region. The num-

bers of modes in the annular and circular regions of the

“PML” waveguide are chosen according to their transversal

dimensions: NC=NB ¼ d=b. The transverse eigen-solutions for

the “PML” waveguide (see the supplementary material) are

computed once with a sufficiently large number of modes and

stored. Subsequently, calculating the modal directivity func-

tions for any frequency and direction involves simple algebraic

operations, thereby highly efficient.

The accuracy of the method is first validated against

FEM for two horn-loaded enclosures depicted in Fig. 3

(expressions for the horn profile are provided in the supple-

mentary material). The IMAM is used to solve the internal

field of the horn, with its advantages elaborated upon later

FIG. 3. (Color online) Directivity pat-

terns computed with the multimodal

method in comparison with FEM for

(a) an exponential horn (a¼ 1) and (b)

a wave-shaped exponential horn

(a¼ 3). L¼ 2.5, d¼ 1, NB ¼ 200, the

number of modes within the horn

NA ¼ 20. From top to bottom:

k ¼ 0:5; 1; 2; 4. The insets show the

back lobes zoomed by five times.
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in this section. The directivity patterns are compared for var-

ious frequencies. The maximum absolute error is typically

between 10�4 and 10�3, showing excellent accuracy of the

multimodal method. Meanwhile, its computational effi-

ciency notably surpasses the FEM.

The method is also compared against the analytical solution

for a one-side radiator.4 Figure 4 shows excellent agreement

between these two solutions for the geometries and frequencies

reported in Ref. 4, Figs. 16 and 17. Good agreement is also

observed for a large flange at a low frequency, e.g.,

e ¼ a� 1 ¼ 20, k¼ 0.05. Note that in the analytical method,

the series expansion of the pressure field on the radiator surface

is determined by solving an algebraic equation. However, the

condition number increases rapidly with the matrix order, espe-

cially for large values of ka. Consequently, the use of multiple

precision computing is inevitable to obtain an accurate solution

at high frequencies. In contrast, the accuracy of the present

method is barely degraded as ka increases, facilitating analysis

for a broad range of geometries and frequencies.

A supplementary mode is only used for solving the propaga-

tion within the horn, which is orthogonal to the standard basis of

rigid waveguide modes.15 A known advantage of IMAM is the

enhanced accuracy in the field solution within the horn.14 Here,

we demonstrate that the far-field solution inherits this improve-

ment due to the precise velocity field at the mouth. The percent-

age relative error of the directivity function is calculated with

respect to the number of modes in the horn (NA) for comparing

the standard and improved bases: �ðh; NAÞ ¼ jðD� DrefÞ=Dref j
�100%, where Dref is a reference solution calculated using the

corresponding basis. In the computation, we fix NB ¼ 200 and

NA;ref ¼ NC ¼ NB=b. Figures 5(a) and 5(b) illustrate the mean

and standard deviation of the error in h for the two geometries in

Fig. 3. Discrepancies of the errors in different directions are

insignificant for both methods. However, for a given NA, the

mean error of the improved method is lower than that of the stan-

dard method by over 1 order of magnitude. The accuracy

achieved by the improved method with several modes surpasses

the standard method with tens of modes.

III. ANALYSIS OF BEAMWIDTH

A. Beamwidth in three frequency regions

The section explores the influence of the enclosure

dimensions and shape of the horn on the beamwidth

FIG. 4. (Color online) Comparison of

the directivity patterns for a one-side

radiator between the multimodal

method (d¼ 1, NB ¼ 200) and the ana-

lytical method proposed by Mellow

and K€arkk€ainen (Ref. 4) (plotted in dB

for the sake of comparison, normalized

with respect to 0	). (a) a¼ 2. (b)

k ¼ p=2.

FIG. 5. (Color online) Convergence

analysis of the directivity function

with standard and improved bases for

the geometries shown in Fig. 3: (a)

exponential horn, k¼ 1. (b) wave-

shaped horn, k¼ 4. d¼ 1.
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characteristics. First, we focus on an infinitely long enclo-

sure (L ¼ 1) to highlight the influence of the lateral dimen-

sion, i.e., the flange width e ¼ a� 1. Several classical

shapes are considered with throat radius at ¼ 0:1 and length

of the horn Lh ¼ ln 10. An exponential horn in this dimen-

sion has a cutoff wavenumber of kc ¼ 1, according to the

Webster’s equation.25 The numbers of modes used to com-

pute the beamwidth are NA ¼ 20 and NB ¼ 200.

At low frequencies, as shown by the shaded area in

Fig. 6(a), for a given flange width, the beamwidth (as well

as the directivity pattern) is asymptotically independent of

the horn profile and can be simply represented by that of a

vibrating piston placed at the mouth; in other words, by the

first-order (piston) modal directivity function f0ðhÞ. These

phenomena are valid for other values of e labeled in Fig.

6(b) as well as finite-length enclosures, indicating that in the

long-wavelength limit, directivity is dominated by enclosure

diffraction.

Nevertheless, the consistency of beamwidth for various

horn shapes does not imply a consistent and near-planar

velocity distribution at the mouth. Figure 7 illustrates that

the wavefront at the mouth has curvature and varies with the

horn profile. The exemplified frequency is lower than

the cutoff frequency at the mouth, i.e., k < c1 
 3:83. The

non-planar wave components at the mouth are evanescent

and thus cannot efficiently radiate to the far field,8 mani-

fested in the low amplitude of their corresponding modal

directivity functions, jfnðhÞj � jf0ðhÞj; 8n � 1. The mouth

wavefront is mainly set by the horn wall angle and hard-

wall boundary condition. The catenoidal horn exhibits a

more curved wavefront than the parabolic horn. Despite the

distinct wavefronts, the beamwidths for the catenoidal and

parabolic profiles are close and differ from that of the piston

by only 1.8% and 0.6%, respectively.

At high frequencies, as shown by the shaded area in

Fig. 6(b), for a given horn profile, the beamwidth is nearly

independent of the flange width. This behavior is also

observed for other profiles labeled in Fig. 6(a), indicating

that in the high-frequency limit, the directivity is largely

determined by the in-duct propagation and not influenced by

the diffraction. Figure 6(a) also shows that the beamwidth of

the parabolic profile is close to that of the piston, implying

high axial directivity.26 In the mid-frequency range, both the

diffraction and propagation affect the beamwidth. These

observations suggest a characterization of the beamwidth

into three regions: the (external) diffraction control region,

the (in-duct) propagation control region, and the interplay

region.

B. Low-frequency model

The diffraction control region is virtually characterized

by the first-order (piston) modal directivity function f0ðhÞ
[see Fig. 8(a)]. All curves show a monotonic decrease in the

low-frequency range following a beamwidth plateau of hb ¼
p (for a finite value of e) or hb ¼ p=2 (for e ¼ 1). To exam-

ine this beam narrowing phenomenon, we start with a limit

FIG. 6. (Color online) Beamwidth of a horn-loaded enclosure (L ¼ 1)

showcasing various horn profiles and flange widths. (a) Flange width of

e¼ 2. The insets show the profiles. (b) Exponential horn. The diffraction

and propagation control regions are designated by colored background.

FIG. 7. (Color online) Sound pressure

field ReðpÞ with contour lines for two

enclosures with (a) catenoidal and (b)

parabolic horn profiles computed with

the multimodal method. The throat

velocity vz¼ 1, k¼ 1, e¼ 0.2, L¼ 2.5.

A wider “PML” waveguide with b¼ 4.4

and d¼ 2 is used in this example.
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case of e ¼ 1, for which the directivity function has an ana-

lytical expression [see Eq. (6) and the supplementary

material]:

f0ðhÞ ¼ �ik

ffiffiffi
2
p

J1ðk sin hÞ
k sin h

; (15)

thus giving the beamwidth:

hb ¼ arcsin
kt;1

k

� �
; k � kt;1; (16)

where kt;1 
 2:2 is a turning wavenumber given by the root

of equation J1ðxÞ=x ¼ 1=4, above which hb monotonically

decreases from p=2, and the radiation exhibits distinct

directivity.

The beamwidth for a finite value of e exhibits a similar

but steeper reduction above its turning frequency. To have a

better understanding, Fig. 8(b) exemplifies how the directiv-

ity pattern varies near the turning frequency (for e¼ 1). As

frequency increases, the beamwidth hb remains as p until

the directivity pattern first intersects the –6 dB circle at the

turning wavenumber kt. Moreover, their intersection is tan-

gential at a turning angle ht < p, that is, the hb suddenly

drops from p to ht, forming a discontinuity.

The dependence of both turning parameters on the

flange width e is shown in Fig. 9(a) (open circles). The turn-

ing angle is almost independent of e (dashed line),

ht 
 132	, and the turning wavenumber kt can be accurately

fitted by a rational curve (dashed line):

ktðeÞ ¼
1

1þ ae
ktð0Þ; (17)

where ktð0Þ 
 1:2142 and a 
 0:8794. Based on these

parameters, we further develop an empirical model for the

monotonic decrease in the beamwidth. It takes form of an

inverse sine function as Eq. (16) and is modified by an addi-

tional fitted exponent b:

hb ¼ arcsin
kt

k

� �b
" #

� 2ht

p
; k > kt: (18)

The first octave band above kt is used for the fitting. Figure

9(b) shows the validity of the fitted model as well as the

exponent b as a function of e. The results show that the low-

frequency dropping rate of the beamwidth slows down as

the flange becomes larger.

C. Edge diffraction and asymptotic behavior

For a large flange, the beamwidth can exhibit noticeable

fluctuations above the monotonic range [see Fig. 8(a)],

FIG. 8. (Color online) (a) Beamwidth of the piston mode for various flange

widths. (b) Directivity patterns for e¼ 1 as frequency increases. kt 
 0:65

is the turning wavenumber.
FIG. 9. (Color online) (a) Dependence of the turning parameters ðkt; htÞ on

e. (b) Empirical model for the beamwidth within the monotonic range. The

triangle markers show the turning points. The inset shows the dependence

of the fitted exponent on e.
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which is primarily due to the edge diffraction. Figure 10(a)

illustrates how they are associated with the variation of the

directivity pattern. The initial monotonic narrowing of the

beam ends with a rapid broadening of its mainlobe. Upon

reaching the first beamwidth maximum, the energy distribu-

tion within 30	 is almost uniform. Subsequently, the main-

lobe direction deviates from 0	, leaving an on-axis dip in the

directivity pattern, accompanied by the narrowing of the

beamwidth until the axial mainlobe is restored. The beam-

width curve exhibits non-smoothness at the critical frequen-

cies at which the mainlobe direction shifts because the

reference direction for defining the beamwidth jumps here.

As the flange width e increases, the oscillation in beam-

width covers lower frequencies, as shown in Fig. 8(a). An

intriguing question is how it eventually converges to a

straight line as e!1. Figure 10(b) displays the beamwidth

curve for e¼ 20, showing a periodic occurrence of the “M”-

shaped pattern observed in Fig. 10(a), the plateau for e ¼ 1
serving as its upper bound. Note also that Eq. (17) remains

effective for e¼ 20. The numerically calculated turning

parameters ðht; ktÞ ¼ ð132:7	; 0:06333Þ agree well with the

predicted values with an error of less than 5%.

D. Finite-length enclosures

The influence of the enclosure length L on the beam-

width is examined in Fig. 11. For a finite value of L, the

back-and-forth reflection along the sidewall Sa and the dif-

fraction by bottom surface SL bring only minor fluctuations

around the beamwidth of L ¼ 1. In terms of the turning

parameters, compared to L ¼ 1, the angle ht becomes

smaller, whereas the wavenumber kt does not monotonically

vary with L.

E. Interplay and propagation control regions

As frequency increases to the interplay and propagation

control regions, the shape of the horn can be designed to

achieve near-constant directivity, e.g., using empirical for-

mulas16 or shape optimization.17 The low-frequency mono-

tonic decrease in the beamwidth sets a lower limit to the

control frequency band. For the half-space radiation, the

lower frequency limit can be evaluated by equating the

beamwidth expression [Eq. (16)] with the target beamwidth

value.16 For horns with a finite flange, this frequency is

likely smaller than the half-space case.

This section reports the possibility of extending the con-

trol bandwidth by exploiting the diffraction effects. We start

with a conical horn, which provides a near-constant cover-

age angle at high frequencies. For instance, a 120	 cone

exhibits a controlled beamwidth of hb 
 60	 as shown in

Fig. 12(a). When the horn is mounted in an infinite baffle,

the lower control frequency is around k¼ 3. By employing

FIG. 10. (Color online) (a) Beamwidth of the piston mode at the mouth for

e¼ 2 and directivity patterns at a few representative frequencies. (b)

Beamwidth for e¼ 20 compared to e ¼ 1. The beamwidth could occasion-

ally have multiple values, one may select a continuous branch (solid line) to

avoid a dip (dashed line) (see the supplementary material for further

elucidation).

FIG. 11. (Color online) Beamwidth of a piston mounted in a finite-length

enclosure. Solid lines: L ¼ 1; dotted lines: (a) L¼ 10, (b) L¼ 2.5, (c)

L¼ 0.5, (d) L¼ 0. The numbers designate the values of e.
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an enclosure with a flange width of e¼ 1 and length of

L¼ 0.6, the lower control limit is decreased by an octave.

Note that the conical horn has some remarkable draw-

backs that stem from a sudden change of wavefront at the

mouth.16 One of them is the so-called midrange narrowing

shown in Fig. 12(a). A measure to mitigate this defect is to

increase the flaring rate near the mouth, equivalently shad-

ing the mouth velocity distribution in the mouth plane. One

empirical approach to modifying the conical shape is to add

a term in its expression, r ¼ a0 þ a1zþ anzn, known as a bi-

radial design.27 The procedure to determine these coeffi-

cients is detailed in the supplementary material. Figure

12(b) shows that the midrange narrowing is largely attenu-

ated for both cases, while the lower control frequency of the

finite enclosure remains at k 
 1:6.

IV. CONCLUDING REMARKS

A closed-form solution of modal directivity functions

for a circular vibrator on a finite cylinder is presented and

combined with the IMAM to analyze the far-field radiation

of a horn-loaded enclosure. For a given flange width, the

transverse eigenvalue problem for each “PML” waveguide

is solved once for all frequencies and enclosure lengths. The

modal directivity function can then be calculated algebrai-

cally. The use of an improved modal basis increases the

accuracy of the far-field solution.

At low frequencies, the directivity is governed by the pis-

ton mode and greatly affected by the diffraction effects. For an

infinitely long enclosure, the beamwidth jumps from p toward

an angle that is almost independent of the flange width, fol-

lowed by a modified inverse-sine-law reduction for about 1

octave. Above this monotonic frequency range, edge diffrac-

tion brings “M”-shaped fluctuations in the beamwidth curve,

and in this way, the beamwidth asymptotically approaches the

p=2 plateau for an infinite baffle as the flange enlarges. The

diffraction effect brought by a finite enclosure length is rela-

tively minor. In the mid- to high-frequency range, where the

shape of the horn affects directivity, a preliminary parametric

study on classical shapes shows that a parabolic horn exhibits

a beamwidth close to a vibrating piston at the mouth over a

wide frequency range. The use of a moderate flange could

extend the bandwidth of directivity control.

The near-field directivity could be interesting in some

applications. To compute it, one may employ a large “PML”

waveguide to encompass the observation surface and use the

obtained modal solution (see Fig. 7). The near-field directivity

function can also be derived from the Kirchhoff–Helmholtz

integral20 in a similar way, whereas a closed-form solution is

no longer readily available.

The present paper primarily aims to provide valuable

insights for the theoretical understanding of radiation of a

horn-loaded enclosure through the efficient computation

tool, though more general geometries could be modeled

with similar procedures, e.g., an axisymmetric enclosure of

which the outer profile radius varies along the length.28 In

addition, the present modal solutions are also well-suited to

the mathematical framework in the authors’ previous work

on the theory of maximum directivity.26 It would be interest-

ing to study how the diffraction by a finite enclosure affects

the directional beam. Future work could also consider the

geometric optimization for the directivity control.

SUPPLEMENTARY MATERIAL

See the supplementary material for further details on

the modeling of the external sound field, formulation of the

non-axisymmetric directivity function, expressions of the

horn shapes, and elucidation for occasional dips in the

beamwidth.
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