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Channel-Combination Algorithms for Robust
Distant Voice Activity and Overlapped Speech

Detection
Théo Mariotte, Anthony Larcher, Silvio Montrésor, Jean-Hugh Thomas

Abstract—Voice Activity Detection (VAD) and Overlapped
Speech Detection (OSD) are key pre-processing tasks for speaker
diarization. In the meeting context, it is often easier to capture
speech with a distant device. This consideration however leads to
severe performance degradation. We study a unified supervised
learning framework to solve distant multi-microphone joint
VAD and OSD (VAD+OSD). This paper investigates various
multi-channel VAD+OSD front-ends that weight and combine
incoming channels. We propose three algorithms based on the
Self-Attention Channel Combinator (SACC), previously pro-
posed in the literature. Experiments conducted on the AMI
meeting corpus exhibit that channel combination approaches
bring significant VAD+OSD improvements in the distant speech
scenario. Specifically, we explore the use of learned complex
combination weights and demonstrate the benefits of such an
approach in terms of explainability. Channel combination-based
VAD+OSD systems are evaluated on the final back-end task, i.e.
speaker diarization, and show significant improvements. Finally,
since multi-channel systems are trained given a fixed array
configuration, they may fail in generalizing to other array set-
ups, e.g. mismatched number of microphones. A channel-number
invariant loss is proposed to learn a unique feature representation
regardless of the number of available microphones. The evalu-
ation conducted on mismatched array configurations highlights
the robustness of this training strategy.

Index Terms—speaker diarization, distant speech, microphone
array, voice activity detection, overlapped speech detection,
channel-number agnostic

I. INTRODUCTION

SPEAKER diarization answers the question Who spoke and
when? from an audio stream. Although much research

has been conducted on speaker diarization, it remains a chal-
lenging automatic speech processing task as proven by the
numerous organized challenges [1, 2]. Most diarization sys-
tems rely on pipeline architectures based on the segmentation
of the audio signal and the clustering of these segments to
group them by speaker [3]. In the segmentation process, Voice
Activity Detection (VAD) and Overlapped Speech Detection
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(OSD) are two essential sub-tasks. VAD consists in detecting
speech segments from non-speech (e.g. silence, background
noise...) in an audio stream. In most approaches, this task is
the first segmentation step in the pipeline [3, 4]. Overlapping
speech appears when several speakers are simultaneously
active. These events cause severe performance degradation in
speaker diarization [5]. OSD consists of detecting segments
that contain at least two simultaneous active speakers. Then,
speakers can be assigned to the overlap segments either with
a heuristic approach [6, 7] or by using the posterior matrix in
case of Variational Bayes (VB) clustering [7, 8]. OSD leads to
significative improvements in speaker diarization [5, 7], which
makes this task essential for speaker diarization.

VAD and OSD can be processed separately in the diarization
pipeline. They can also be extended to speaker counting [9],
which detects the number of active speakers in an audio
segment. This paper tackles joint VAD and OSD (VAD+OSD).
It consists of the detection of non-speech (Nspk = 0), speech
(Nspk = 1) and overlapping speech (Nspk ≥ 2) segments with
a single model. Nspk is the number of active speakers.

In the multi-speaker context, such as meetings, it is often
easier to record speech signals using a single distant device
instead of asking each participant to carry an individual mi-
crophone. Although a distant device offers practical benefits,
the captured speech signal is more likely to be corrupted by
background noise and reverberation [10]. This degradation
tends to lower the performance of automatic speech processing
systems [11]. To tackle this issue, it is a common practice
to use multi-microphone devices such as microphone arrays.
These devices perform a spatial sampling that captures addi-
tional information about the spatial distribution of the sound-
field [12, 13]. The resulting signal is composed of multiple
channels. Some specific algorithms can be applied to take
advantage of this spatial information implicitly contained in
multi-channel signals [10, 14, 15].

Furthermore, the spatial distribution of the sound field is
tightly related to the activity of the speakers [16]. The use of
multi-channel audio signals, which contain such information,
might be beneficial to VAD and OSD. A few works have
been conducted towards robust distant VAD and OSD [17–20].
This paper investigates the use of several channel-combination
algorithms as joint VAD+OSD front-ends.

A. Related work
Early studies on VAD were based on the extraction of

features from the audio signal such as energy [21, 22], cross-
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correlation [23], zero-crossing rate [24] or linear predictive
coding [25]. Acoustic features have also been used to train
statistical models such as Hidden Markov Models (HMM) or
Gaussian Mixture Model (GMM) [26–29]. With the recent ad-
vances in supervised learning and deep neural networks, novel
approaches have emerged. Early architectures were based on
multi-layer perceptron (MLP) [30]. More advanced neural
models such as Convolutional Neural Networks (CNN) [31]
or Long Short Time Memory (LSTM) recurrent neural net-
works [32, 33] have then been proposed, drastically improving
the VAD performance compared to signal-based or statistical
approaches.

Similarly to VAD, early research on OSD mostly focuses on
HMM/GMM classifiers [34–36]. Some approaches show di-
arization improvement by detecting and removing overlapping
speech segments during the clustering step [34, 37]. Recent
OSD approaches are mostly based on deep neural networks.
LSTM neural networks were first applied to OSD in [38] and
have become widespread, improving the detection compared
to classical machine learning approaches [8, 37]. Alternatively,
some authors use convolutional neural networks [18, 39, 40],
such as the Temporal Convolutional Network (TCN) [18, 19].
In [8], Bullock et al. show promising diarization performance
improvement by detecting overlapping segments with learn-
able features and a LSTM-based system. The authors also
propose an algorithm to assign the overlapping speech seg-
ments to the appropriate speaker, thus improving diarization
performance. Most VAD and OSD have a similar architecture
and are formulated as binary frame classification tasks. A
few studies explore the joint training of both tasks [18, 40].
Specifically, Cornell et al. [19] show that both LSTM- and
TCN-based architectures are suitable for joint VAD+OSD and
speaker counting.

Research on VAD and OSD is mostly focused on close-
talk speech signals, i.e. when the speaker is close to the
microphone. However, these conditions are rarely met in the
meeting context since it is more convenient to capture the
scene with a single distant device than requiring speakers to
carry individual microphones. Few studies have been con-
ducted on distant multichannel VAD and OSD. In [18], the
authors propose a TCN-based architecture for distant speaker
counting. This work is extended in [19] by adding spatial
features extracted from multi-microphone signals. The authors
show a significative performance gain on both VAD and OSD
by using spatial features.

Multichannel speech processing concerns various speech
processing tasks such as speech recognition [41–43], speech
separation [44, 45], and speaker diarization and recognition
[43, 46]. The spatial information contained in these signals
is often exploited through spatial filtering – beamforming –
which consists of weighting and combining channels. Thus,
the output of the spatial filter is single-channel but steered
in a given angular direction. Early beamforming approaches
are mostly based on signal processing methods [14, 15, 47–49]
while latest algorithms exploit neural networks [41, 42, 50–52].
In [42], Gong et al. propose a straightforward way to compute
combination-weights based on a self-attention [53] module and
Short-Time Fourier Transform (STFT) magnitude features.

The performance of multi-microphone algorithms tends to
highly rely on the array geometry used during training. A
few studies have been conducted on array-agnostic or channel-
number-agnostic algorithms in the context of speech separa-
tion [46, 54]. Both approaches improve the robustness of the
system to array mismatch but require more model parameters
to train.

B. Contributions

Building on these previous works, this paper proposes
several channel-combination algorithms as joint VAD and
OSD (VAD+OSD) front-ends. These channel combination al-
gorithms are based on the Self Attention Channel Combinator
(SACC) [42]. The main motivation behind this work is to
include the phase information in the combination-weight esti-
mation process. A first extension is proposed by replacing the
STFT with a learnable analytic filter bank [55] in the original
SACC algorithm. In a second approach, following the work
conducted in [20], we explore two architectures in the complex
domain: EcSACC and IcSACC. The former processes the
STFT parts separately but doubles the number of parameters.
The latter uses a single self-attention module to process both
parts. These extensions show similar performance as state-of-
the-art approaches while being more explainable by design.
The explainability features offered by complex extensions
are demonstrated by the visualization of the beampattern.
This leads to a better understanding of the use of spatial
information in such systems. The impact of the proposed
segmentation algorithms is evaluated on the speaker diarization
task using the VBx system [56]. Results show that the pro-
posed extensions offer competitive performance considering
standard beamforming and SACC. Finally, systems trained on
multichannel data often suffer performance degradation in case
of a mismatch in the array geometry between training and
evaluation sets. We propose a channel-number invariant loss
to facilitate the model generalization under mismatched array
configuration. To the best of our knowledge, no similar training
procedure has yet been applied to VAD and OSD. The source
code will be made available in a large-scale diarization toolkit
to be published soon.

The paper is organized as follows. Section II formulates
the joint VAD+OSD task. Section III introduces the proposed
algorithms. The systems and baselines are described in Section
IV, followed by the experimental protocol detailed in Sec-
tion V. Section VI evaluates the VAD and OSD results while
speaker diarization results are described in Section VII. The
analysis of the spatial information used by complex systems
is conducted in Section VIII. Finally, the channel-number
invariant loss is introduced and evaluated in Section IX before
drawing conclusions and perspectives in Section X.

II. VOICE ACTIVITY AND OVERLAPPED SPEECH
DETECTION

This paper focuses on two speech segmentation sub-tasks,
namely Voice Activity Detection (VAD) and Overlapped
Speech Detection (OSD). The former aims to detect speech
segments in the signal, while the latter aims to find segments
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in which at least two speakers are simultaneously active. VAD
and OSD can be solved within the same framework, which is
detailed in the following sections.

A. General formulation

Let X = [X0, . . .Xt, . . .XT−1] ∈ RF×T be a sequence
of feature vectors where F is the number of features, T the
number of time frames and t the time frame index. This
sequence is extracted from the raw audio signal x ∈ RC×N ,
with C being the number of channels (i.e. microphones) and
N the number of samples. Feature extraction can be defined
as a function g : x → X, which maps the raw input
signal to a sequence of feature vectors X ∈ RF×T . The g
function might be handcrafted or trained end-to-end with the
sequence-modeling model described below. As proposed in
[4, 18], the sequence of features verifies T < N to reduce
the computational cost. Note that the g function depends on
the number of channels in the input signal x. The feature
extraction differs between the single-channel, C = 1, and the
multi-channel scenario, C > 1.

Let y = [y0, . . .yt, . . .yT−1] ∈ RT be a sequence of
aligned reference binary labels. VAD and OSD are solved by
optimizing the parameters θ̂ of a model f : X,θ → ŷ which
maps the feature sequence to a sequence of predicted labels
ŷ = [ŷ0, . . . ŷt, . . . ŷT−1] ∈ RT .

B. Labelling procedure

VAD and OSD are solved jointly following a 3-class classifi-
cation problem following [19, 40]. The neural model is trained
to predict a sequence ŷ from the raw input signal x based on
the manual annotations y.

To solve VAD and OSD tasks, the frame-level annotation
verifies yt ∈ {0, 1, 2}. yt = 0 refers to a non-speech frame
(Nspk = 0). yt = 1 indicates that the t-th frame contains
speech from a single active speaker (Nspk = 1). yt = 2
refers to a frame containing at least two simultaneously active
speakers (Nspk ≥ 2).

Since overlapping speech is a rare event, the classes are
unbalanced [57]. The class balance can be improved by
artificially generating additional overlapped data by combining
single-speaker utterances from other datasets [18, 39] or ran-
dom segments of the training data at training time [8]. Here,
we consider the second data augmentation strategy. Figure 1
summarizes the flowchart of the VAD+OSD model. The sys-
tem predicts 3 frame-level pseudo probabilities, namely non-
speech p(Nspk = 0|x), single active speaker p(Nspk = 1|x)

Sequence 
modeling

VAD + OSD

Raw waveform

Feature 
extraction

C
p(Nspk = 1|x)

p(Nspk = 0|x)

p(Nspk ≥ 2|x)

Fig. 1: Simplified sequence-to-sequence model architecture for
joint VAD+OSD. The feature extraction is different between
the single channel C = 1 and the multi-channel C > 1
scenario. The sequence modeling step remains unchanged
regardless the number of channels.

and multiple active speakers p(Nspk ≥ 2|x). VAD prediction
is the combination of the Nspk = 1 and the Nspk ≥ 2 outputs,
while OSD prediction is determined from the Nspk ≥ 2 output
only.

III. MULTI-CHANNEL FEATURE EXTRACTION

In the meeting context, capturing distant speech signals of-
fers practical benefits by preventing the participants from car-
rying individual microphones. Distant speech signals however,
tend to degrade the performance of automatic speech process-
ing systems [11]. We investigate several multi-channel front-
ends to tackle distant VAD and OSD. The proposed approaches
consist of weighting and combining the incoming channels
to generate an enhanced single-channel feature sequence. All
the implemented algorithms are inspired by the Self Attention
Channel Combinator (SACC) [42]. Figure 2 depicts the global
approach for multi-channel feature extraction. Specific weight
estimation algorithms are presented in the following sections.

Time-Frequency 
representation

Multichannel audio

Combination-weights
Channel Combination

Feature 
sequence

Weight 
calculation

Fig. 2: Channel combination procedure for multi-channel
feature extraction. The time-frequency representation and the
weight calculation algorithm depend on the algorithm consid-
ered (e.g. SACC).

A. Self Attention Channel Combinator

The Self-Attention Channel Combinator (SACC) [42] was
developed in the context of multi-channel speech recognition
as an alternative to neural network-based beamforming [50].
This approach consists of estimating time-varying weights,
referred to as combination weights, to weight and to combine
channels captured by a set of microphones. The weight estima-
tion is performed in the Short-Time Fourier Transform (STFT)
domain using a self-attention module [53]. The model is thus
supposed to focus attention on the microphones containing
relevant information for the back-end task.

Let Y ∈ CC×T×K be the multichannel STFT of the
input signal x, with K being the number of frequency
bins. The SACC algorithm computes combination-weights,
w ∈ RC×T×1, from the magnitude of the multichannel STFT
using self-attention [53]. Let q, k, and v be three linear
transformations, mapping the STFT log-magnitude log(∥Y∥)
to the query and the key Q,K ∈ RC×T×D, and the value
V ∈ RC×T×1. The combination weights are determined as
follows:
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w = softmax

(
softmax

(QKT

√
D

)
V

)
, (1)

with D being the output space dimension of the query Q
and the key K. Note that the transpose operator .T is applied
framewise. Each C × T matrix is transposed for each time
frame. The last softmax activation applies to the channel
dimension and constrains the weights to be within the interval
[0, 1]. Mean and Variance Normalization (MVN) is applied to
each frequency bin before feeding the self-attention module.
MVN reduces the data variation range to make combination-
weights learning easier. The combined time-frequency repre-
sentation Yatt ∈ R1×T×K is finally obtained as the weighted
sum of the different channels:

Yatt =

C∑
c=1

w ⊙ ∥Y∥, (2)

with ⊙ being the element-wise product. The combined STFT,
Yatt, is finally converted to the log-mel scale using F mel
scale filters to obtain the feature vector X ∈ RT×F . The
process of the SACC algorithm is presented in Figure 3(a).
This model is referred to as SACC+STFT .

B. Analytic SACC

In the original SACC implementation [42], the weights are
computed from the STFT magnitude. The phase information
contained in the STFT is lost at the beginning of the process.
This information might however be relevant for the weights
estimation process since it informs on the time delay be-
tween channels. Including the phase-related information may
improve the weight estimation procedure.

To implicitly include phase information during weight esti-
mation, we propose to replace the STFT with a learnable filter
bank. The input signal is decomposed into several frequency

bands with a time domain filter bank. Filters are implemented
as a set of mono-dimensional convolutional layers optimized
in an end-to-end manner with the back-end task, i.e. VAD and
OSD. Learning consistent filters from free convolutional layers
may however be difficult when dealing with high-order filters.
To counteract this limitation, learnable analytical filters have
been proposed in the context of speech separation [55].

Let h(n) ∈ RL be the impulse response of a real filter with
n being the sample index and L its length. The analytical
version of this filter can be computed through the Hilbert
transform H as follows:

hanalytic(n) = h(n) + jH{h(n)}, (3)

where j =
√
−1. In practice, the real and imaginary parts of

hanalytic(n) are concatenated before computing the combina-
tion weights.

In the analytical version of the SACC model, the STFT is
replaced by a set of analytical filters. The filter bank is shared
across channels to reduce the number of trainable parameters.
The output STFT-like representation is then forwarded through
the self-attention module as depicted in figure 3(b). This model
is referred to as SACC+A.

C. Complex SACC
Another approach to take the phase information into account

is to integrate the phase of the STFT in the combination-weight
estimation procedure. The combination weights thus belong
to the complex space, i.e. w ∈ CC×T×1. This approach was
proposed in [20] to learn combination weights that are closer
to the conventional beamforming techniques. Furthermore, this
formulation allows us to better interpret the weights learned
by the model as shown in section VIII.

This paper investigates two formulations to estimate the
complex combination weights. The first computes the magni-
tude and the phase of the weights separately using two distinct

Magnitude + MVN

Combination weights

Multichannel STFT

VKQ

Scaled 
dot prod.

Softmax

Softmax

(a)

Softmax Softmax

VKQ

Scaled 
dot prod.

Softmax

VKQ

Scaled 
dot prod.

Softmax

Weights magnitude Weights phase

Multichannel STFT Multichannel STFT

Cat

Weights phaseWeights magnitude

VKQ

Scaled 
dot prod.

Softmax

Softmax

(c) (d)

MVN

Combination weights

Multichannel 
analytic filter bank

VKQ

Scaled 
dot prod.

Softmax

Softmax

(b)

‖·‖ φ φ‖·‖

Fig. 3: Weight calculation procedures, with (b) to (d) being the proposed methods. (a) STFT-based SACC [42], (b) SACC
based on the analytic filter bank, (c) EcSACC, and (d) IcSACC. For complex systems (c) and (d), magnitude and phase (∥·∥-ϕ)
can be replaced by real and imaginary parts (R-I).
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self-attention modules applied to the magnitude (Mag) and the
phase (ϕ) of the STFT respectively. The second estimates the
complex weights using a single self-attention module applied
to the concatenation of the magnitude and the phase. These
approaches are respectively referred to as Explicit complex
SACC (EcSACC) and Implicit complex SACC (IcSACC).

1) Explicit cSACC: EcSACC consists of computing the
magnitude and the phase of the combination weights sepa-
rately. Each component of these weights is thus computed
explicitly. The system flowchart is presented in figure 3(c). Let
∥Y∥ and ∠Y be the magnitude and the phase of the multi-
channel STFT. The weights associated with each part of the
STFT are computed as follows:

wMag = SAMag (∥Y∥) , wϕ = SAϕ (∠Y) , (4)

where SAMag and SAϕ represent the self-attention modules
defined in equation (1) applied to the magnitude and the
phase respectively. The magnitude wMag and phase wϕ of
the weights are then applied to the associated parts of the
multichannel STFT:

Yatt = (wMag ⊙ ∥Y∥) ej(2πwϕ+∠Y). (5)

The phase weights verify wϕ ∈ [0, 1] with the softmax
normalization in Eq.(1). The 2π factor ensures that the phase
correction covers the entire unit circle. Note that there is no
weight sharing between the two self-attention modules to
enable the model to learn two distinct representations. The
same weight-estimation procedure can be applied to the real
(R) and the imaginary (I) parts of the STFT.

2) Implicit cSACC: EcSACC processes the magnitude and
the phase separately, which prevents the model from learning
a relationship between the two representations. Furthermore, it
requires learning two self-attention modules which doubles the
number of trainable parameters in the feature extraction. The
IcSACC formulation can learn cross-relationships between
each part of the STFT while keeping the same number of train-
able parameters as SACC. The IcSACC approach is presented
in figure 3(d). It consists of a single self-attention module that
estimates the combination weights from the concatenation of
the magnitude and the phase of the STFT:

w = SA (cat(∥Y∥,∠Y)) , (6)

where cat(·, ·) represents the concatenation operator. The two
STFT parts are concatenated over the channel dimension. The
resulting vector w contains the concatenation of the magnitude
and the phase of the weights. The channel combination is then
performed following equation (5).

IV. SYSTEMS AND BASELINES

This section describes the baseline systems along with the
hyperparameters used for each architecture.

A. Feature extraction configuration

SACC-based models are compared to two single-channel
baselines. The first is trained and evaluated on the close
talk data captured by AMI headset-mix while the second
is trained and evaluated on the first channel of Array 1
(single distant microphone). The close-talk baseline features
an upper-bound score, considering that distant performance
tends to be degraded [11]. A multi-channel baseline, based on
Minimum Variance Distortion-less (MVDR) beamforming, is
also considered. The following sections describe the feature
extraction procedure for each system. The length of the
feature vector has been optimized separately for each feature
extractor. Thus, the number of features F differs from one
system to another.

1) Single channel: The Mel Frequency Cepstral Coeffi-
cients (MFCC) are used as single-channel features. They have
been extensively used for VAD and OSD in the literature [4, 8].
In this study, 20 MFCC are extracted from the raw audio signal
using a 25ms window with a 10ms shift. The first ∆ and
second ∆∆ derivatives are also computed. The first coefficient
is removed resulting in a feature vector composed of F = 59
coefficients.

2) MVDR Beamformer: To compare SACC-based ap-
proaches to standard beamforming algorithms, the Mini-
mum Variance Distortion-less (MVDR) beamformer proposed
in [47] is also implemented. This method requires estimating
the noise covariance matrix. Since we are dealing with realistic
speech conditions, the clean speech of the source is unknown.
We use the Coherent-to-Diffuse Ratio (CDR) under diffuse
noise and unknown DOA conditions –see [58] Eq. (25)–
to estimate the time-frequency masks. The noise covariance
matrix is then estimated from the masked signal. Beamformer
weight estimation and channel combination are performed
in the STFT domain. Similarly to STFT-based SACC, the
resulting spectrogram is converted to the Mel scale using
F = 64 filters.

3) Self-Attention Channel Combinators: Several multi-
channel front-ends are considered in this study. The STFT-
based features – SACC, EcSACC, and IcSACC – are extracted
using 25ms windows with a 10ms shift. For each SACC
variant, the hidden size of the self-attention module is set
to D = 256. The output spectrograms of SACC+STFT ,
EcSACC, and IcSACC are converted to the Mel scale with
F = 64 filters. In the SACC+A model, features are extracted
with 32 analytic filters. The concatenation of the real and
imaginary parts of the filter’s output results in a vector of
F = 64 features. The kernel of the convolution layer is
designed to fit the STFT parameters with a window size of
25ms and a shift of 10ms.

B. Sequence modeling architecture

The sequence of features extracted from the raw audio
signal is processed by a sequence modeling network to predict
VAD+OSD labels. To better evaluate the impact of each
feature extractor on each task performance, two sequence
modeling architectures are considered. The first is based on
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Bidirectional Long Short-Term Memory (BLSTM) while the
second is a Temporal Convolutional Network (TCN). Archi-
tecture details are presented in the following sub-sections.

1) BLSTM: The former sequence modeling architecture
composed of two stacked BLSTM layers is composed of 256
cells similar to [4, 8]. The output sequence is post-processed
using a three-layer feed-forward network (FFN) with output
sizes L1 = 128, L2 = 128, and L3 = 2 respectively. The last
layer outputs the pseudo-probability of each class. FFN layers
are followed by a tanh activation function except for the last
one. A softmax activation is applied to the output logits to
compute the classification scores.

2) TCN: The Temporal Convolutional Network (TCN) has
been proposed as an alternative to BLSTM for VAD and
OSD [18]. This architecture is composed of causal con-
volutional layers with residual connections. The TCN uses
dilated convolutions to benefit from a large temporal context.
Our system features the same TCN architecture as [18]. A
layer normalization step is first applied, followed by a 1D-
convolution bottleneck layer which projects the sequence of
features from F dimensions to 64 dimensions. The bottleneck
output is then processed by 5 1-D convolution layers of 128
hidden channels, with exponentially increasing dilatation. This
block is repeated 3 times. A residual connexion is added at
the output of each block. Finally, a 1-D convolutional layer
projects the hidden sequence to the classification space (3
dimensions).

V. EXPERIMENTAL PROTOCOL

Our experiments aim to evaluate how each multi-channel
front end impacts VAD and OSD performance. This section
introduces the dataset and the evaluation protocol.

A. Dataset
Experiments are conducted on the AMI meeting corpus [59].

This dataset features about 100 hours of meetings recorded
under realistic conditions. Audio signals have been captured
using different devices. In this work, the signals recorded by
headset microphones, referred to as headset-mix, are consid-
ered as a close-talk reference. Multichannel signals acquired
by the 8-microphone array placed in the center of the table
referred to as Array 1, are used as distant speech material.
This device consists of a uniform circular array (UCA), with
r = 0.1m radius. Distant audio signals are also captured
by a 4-microphone array, referred to as Array 2. Both 8-
and 4-microphone arrays are considered to evaluate channel-
number invariant systems (section IX). This last device is
either circular or linear depending on the meeting session.

Framewise VAD+OSD labels are extracted from the speaker
diarization annotation provided in the AMI dataset. Overlap-
ping speech labels are obtained where two annotated segments
overlap. The data is divided into training, development, and
test sets based on the protocol proposed in [56], which
guarantees different speakers in each set. 10% of the training
set is reserved for validation to determine the best-performing
system. To reduce the computational cost, the label sequence
is sampled at 100Hz, while the audio signal has a 16kHz
sampling rate.

B. Training and evaluation procedure

VAD+OSD systems are trained on 2000 batches of 64
segments per epoch. Training segment duration is set to 2s.
These segments are randomly sampled in the AMI training
set. The training stops after five epochs if there is no im-
provement in the target validation metric (F1-score). Since
VAD+OSD is formulated as a 3-class classification problem,
cross-entropy LCE is used as a training objective. A channel-
number invariant loss Linv can also be added as detailed in
section IX. Model optimization is performed using the ADAM
optimizer [60] with a 10−3 learning rate. The validation is
conducted on batches of 64 segments from the validation set.
The best model is selected as the one obtaining the higher
F1-score on the validation set.

The evaluation is conducted on the development (Dev) and
evaluation (Eval) sets of the AMI meeting corpus. The infer-
ence is performed on a 2s sliding window with a 0.5s shift.
Predictions are averaged on the overlapped part of the sliding
windows. For each frame, the predicted class is determined
by finding the argmax among the pseudo-probabilities. The
detected segments are saved in the Rich Transcription Time
Marked (RTTM) format which allows the evaluation of VAD
and OSD with the reference segmentation. VAD is evaluated
using the false alarm rate (FA), the miss detection rate (Miss),
and the sum of these two metrics: the Segmentation Error Rate
(SER). OSD is evaluated using precision, recall, and F1-score.

VI. SEGMENTATION RESULTS

This section presents the VAD and OSD performance of
both BLSTM and TCN architectures with each front end.
Results are presented on the development and evaluation sets
of the AMI corpus.

A. BLSTM results

Table I presents the VAD and OSD performance of the
3-class BLSTM system. The close-talk model reaches an
OSD F1-score of 70.1% and 69.2% on Dev and Eval sets,
respectively. This model achieves a VAD SER of 6.66% and
5.94% on these two subsets. This score is the upper bound
baseline with the BLSTM sequence modeling. Single-channel
distant speech degrades the performance, with 64.0% and
62.5% OSD F1-score. VAD performance is also lower, e.g.
7.06% on the evaluation set. This shows how distant speech
conditions degrade the segmentation. The SDM acts as a
lower-bound reference.

Considering multichannel processing such as MVDR dras-
tically improves distant OSD with an F1-score of 66.9% on
the Eval. VAD also improves with a 6.55% evaluation SER.
The original SACC model shows better performance, with a
67.4% OSD F1-score and a 6.40% VAD SER on the evaluation
subset. It offers the best VAD and OSD performance on the
evaluation set with the BLSTM architecture.

Among the proposed models, the SACC+A degrades the de-
tection performance on both OSD (64.5% F1-score Eval) and
VAD (6.71% SER Eval) compared to SACC. The performance
however remains higher than the SDM scenario. IcSACC
shows similar OSD performance as A on the development
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TABLE I: VAD and OSD performance of the 3-class BLSTM segmentation model. The results are obtained on the AMI
development and evaluation sets. Bold values indicate the best systems, i.e. within the confidence interval of the best system
estimated at the file level. Pr: precision, Re: recall.

BLSTM
OSD VAD

Pr.%↑ Re.%↑ F1%↑ FA%↓ Miss%↓ SER%↓
Dev Eval Dev Eval Dev Eval Dev Eval Dev Eval Dev Eval

Close talk 64.8 72.8 76.4 66.0 70.1 69.2 5.35 3.85 1.32 1.79 6.66 5.64
SDM 59.5 63.0 69.3 61.9 64.0 62.5 4.13 3.70 2.54 3.39 6.68 7.06
MVDR 64.0 70.7 73.7 63.5 68.5 66.9 4.04 3.91 1.87 2.64 5.91 6.55
SACC+STFT 69.2 71.9 71.1 63.4 70.2 67.4 4.52 4.13 1.53 2.27 6.05 6.40
SACC+A 66.6 68.2 67.6 61.2 67.1 64.5 5.22 4.65 1.58 2.06 6.80 6.71
IcSACC Mag-ϕ 61.4 67.9 72.9 64.2 66.7 66.0 4.44 3.68 1.99 3.04 6.43 6.73
EcSACC Mag-ϕ 64.8 71.6 71.6 62.1 68.0 66.5 4.39 3.58 1.96 3.23 6.35 6.80

set (66.7%) but improves on the evaluation data with 66.0%.
The VAD performance of this system is slightly better than
the SDM with 6.73% on the evaluation set. The EcSACC
formulation shows similar OSD performance as MVDR, with
68.0% on Dev and 66.5% on Eval. The VAD scores remain
degraded with 6.80% on the evaluation set.

B. TCN results

Table III shows each front-end performance on VAD and
OSD by considering the TCN architecture. The close-talk
model offers a 74.0% F1-score on the evaluation set. Con-
sidering a TCN instead of a BLSTM improves OSD by an
absolute +4.8% on this subset. VAD SER also improves from
6.66% to 5.42% on the development set. The SDM system
degrades OSD (64.9% Eval F1-score) and VAD (6.81% Eval
SER) because of distant recording conditions.

MVDR offers remarkable OSD performance with 72.3%
and 69.6% F1-score on development and evaluation sets
respectively. This model also shows the best distant VAD
performance (6.32% Eval SER). The SACC model offers
similar OSD performance with 71.8% and 68.5% F1-score on
the two subsets but highlights a lack of robustness on VAD
with 6.73% on the evaluation set for the SER.

Like the BLSTM, SACC+A shows limited OSD capacities
with 64.6% F1-score on the evaluation set. However, the
VAD improves concerning the SDM and the original SACC
(6.58% Eval SER). IcSACC gets OSD performance close to
MVDR and SACC on the Dev set (71.5%). This model shows
limited generalization capacities, with a 67.6% F1-score on the
evaluation set. This degradation is mainly due to a drop in the
recall. The EcSACC model shows similar OSD performance
as SACC on both OSD (68.4% Eval F1-sore) and VAD (6.79%
SER Eval).

The original SACC and its complex extensions reach com-
petitive performance with the MVDR beamformer. The use
of self-attentive methods remains justified since they do not
require additional computations such as covariance matrix
estimation.

While these two models do not significantly improve OSD
compared to MVDR or SACC, they achieve similar per-
formance, mainly on OSD. EcSACC and IcSACC improve

speaker diarization under distant speech conditions and show
strong explainability features, as shown in the next sections.

C. Performance comparison

This section compares the VAD and OSD performance of
the three best TCN-based systems –SACC+STFT, IcSACC,
and EcSACC– with the best model from Cornell et al. [19]. It
consists of a VAD+OSD TCN model fed with log-scale Mel
spectrogram and Cosine and Sine encoded Interaural Phase
Difference (CSIPD) features. The systems are compared in
terms of Average Precision (AP) metric, as used in [19]. Table
II presents the results obtained on the evaluation set from
the AMI corpus. It shows that our systems improve the VAD
performance, as IcSACC and SACC+STFT reach 99.3% AP
where [19] reaches 98.7%. Our systems also improve the
OSD performance. Specifically, SACC+STFT shows the best
performance with 71.4% whereas the system from [19] reaches
60.4%.

Note that the AMI protocol has been ambiguous in the con-
text of speaker diarization, mostly due to the several versions
proposed in the original paper [59]. The work from Landini et
al. [56] proposes a new protocol for speaker diarization which
meets consensus in the community. As stated in section V,
we used this protocol in this work. However, Cornell et al.
[19] use a different protocol. Thus, the results are given for
information only, and are not directly comparable with ours.

TABLE II: VAD and OSD Average Precision (AP%↑) score
on the AMI Eval subset of the three best SACC-based models
compared with the best system from [19]. ∗ This score is
obtained with a different protocol for AMI partition. The
comparison has to be taken with care.

Task IcSACC EcSACC SACC+STFT Cornell et al. [19]

VAD 99.3 99.2 99.3 98.7∗
OSD 70.6 70.9 71.4 60.4∗
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VII. IMPACT OF THE SEGMENTATION ON SPEAKER
DIARIZATION

A. Protocol

The impact of each VAD+OSD model is evaluated on the
final back-end task, i.e. speaker diarization. A first diarization
is obtained using the VBx system [56]. This system uses a
ResNet101 x-vector extractor followed by a VB-HMM cluster-
ing algorithm. The VAD segments, predicted by our systems,
are used as an initial segmentation. X-vector clustering is
initialized with Hierarchical Agglomerative Clustering (HAC)
before performing VB clustering.

A second diarization is then obtained by assigning overlap-
ping speech segments. These segments are predicted by our
OSD system. The assignation is performed using the heuris-
tic approach from [6]. VBx speaker diarization and overlap
assignment are performed using the online code available1.

The VAD and OSD segmentations are obtained with the
TCN-based systems. The diarization is evaluated with the
Diarization Error Rate (DER) and the Jacquard Error Rate
(JER) following the NIST evaluation protocols [3]. The DER
is computed both with a 25ms collar (δc = 25) and without
(δc = 0).

B. Impact of the VAD+OSD on speaker diarization

Speaker diarization results are presented in table IV. The
Oracle performance is obtained using the reference VAD and
OSD labels. It represents the best score that can be expected
with our diarization system, i.e., with the same segmentation as
the annotation. For each system, the speaker diarization results
are presented with VAD only (VAD) and overlapping speech
assignment (VAD w/ OSD). Unless otherwise specified, we
present DER performance in the δc = 0 evaluation setup, and
the error between scores is relative.

The Oracle results show that the minimum DER that can be
expected is 22.47% with VAD only and 14.32% by considering
OSD. Assigning the overlapping speech segments improves
the diarization by +36.3%, demonstrating that OSD is required
for robust speaker diarization.

Among VAD+OSD systems, the SDM delivers the worst
diarization performance, with 27.45% DER with VAD only
and 25.01% with overlap assignments. The performance gain
due to OSD is reduced compared to Oracle with +8.9%
only. The OSD errors have a strong impact on the speaker
diarization performance.

Channel-combination front-ends have been shown to im-
prove both VAD and OSD and improve speaker diarization.
SACC+A offers the highest DER among these systems with
23.97%. MVDR shows a 26.80% and a 23.71% DER with and
without overlap assignment. It reaches one of the best JER
(30.87%), highlighting a better intra-speaker segmentation.
SACC+STFT achieves the lower DER with no collar in both
scenarios (VAD: 26.06%, VAD w/ OSD: 23.09%).

Among the complex extensions, IcSACC achieves the best
DER with a 25ms collar (15.87%). EcSACC offers the best

1https://github.com/BUTSpeechFIT/VBx/tree/v1.1 VoxConverse2020
accessed on October 21st, 2023

diarization performance, as it reaches a similar JER as MVDR
(30.90%) and a DER close to SACC+STFT (23.30%). This
model exhibits a +11.6% improvement between the VAD and
the VAD w/ OSD scenarios.

The results obtained with SACC+STFT and EcSACC also
outperform both models from [61]. In this paper, the authors
report a DER of 25.05% with a VBx-based system and 23.69%
with a spectral clustering-based method. For instance, the
EcSACC system improves diarization of +7.0% and +1.7%
respectively.

The experiments conducted on speaker diarization show that
the performance gain in VAD+OSD leads to a gain in terms of
DER and JER. Thus, using channel combination approaches
for VAD+OSD is also beneficial for the final task. Complex
models such as EcSACC and IcSACC achieve among the best
diarization performance.

While showing competitive performance with MVDR and
the original SACC, complex models offer new perspectives in
terms of explainability. The analysis of this system is presented
in the next section.

VIII. COMPLEX WEIGHTS ANALYSIS FOR EXPLAINABILITY

In Section III, we introduced two extensions of the Self-
Attention Channel Combinator to compute complex weights
from the STFT. This section proposes to apply a standard
spatial filter analysis tool – beampattern – to show the ex-
plainability capacities of such systems.

A. Beampattern as an analysis tool

Similarly to beamforming, the complex combination
weights allow the system to steer in a given angular direction.
Each complex SACC approach can be considered as a spatial
filter. The spatial response of such a filter can be visualized
using the beampattern [15]. This representation informs on
the system response to a plane wave impinging in a θ angular
direction, given an array geometry. Note that this representa-
tion can only be computed on complex combination weights.
Visualizing the magnitude of the beampattern for a set of
combination weights indicates the spatial direction in which
the self-attention module is focused. Considering a UCA and
a set of learned combination-weights wt, the narrow-band
beampattern can be computed as follows:

Bt[wt, ω̄, θ] =

C∑
c=1

wc,te
jω̄ cos(θ−ψc), (7)

where t is the frame index, c the microphone index, ψc the
angle of the c-th microphone in the array frame of reference,
and ω̄ = 2πrf/vs with f being the frequency of the impinging
plane wave, r the radius of UCA and vs the speed of sound.

The broadband beampattern can then be computed for a
given set of frequencies f = {f0, f1, · · · fsup}, where fsup <
C.vs
4πr is the maximum frequency to avoid spatial aliasing [15].

The broadband beampattern is computed as follows:

Bt[wt, θ] =
[
Bt[wt, ω̄0, θ], · · · ,Bt[wt, ω̄sup, θ]

]
. (8)
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TABLE III: VAD and OSD performance of the 3-class TCN segmentation model. The results are obtained on the AMI
development and evaluation sets. Bold values indicate the best systems, i.e. within the confidence interval of the best system
estimated at the file level. Pr: precision, Re: recall.

TCN
OSD VAD

Pr.%↑ Re.%↑ F1%↑ FA%↓ Miss%↓ SER%↓
Dev Eval Dev Eval Dev Eval Dev Eval Dev Eval Dev Eval

Close talk 69.9 76.9 78.8 71.3 73.8 74.0 3.23 2.58 2.18 2.82 5.42 5.41
SDM 70.6 72.7 67.6 58.7 69.0 64.9 6.08 5.27 1.14 1.54 7.22 6.81
MVDR 72.5 77.0 72.3 63.6 72.3 69.6 3.69 3.21 2.25 3.12 5.94 6.32
SACC+STFT 72.2 74.8 71.5 63.2 71.8 68.5 2.89 2.43 3.04 4.31 5.94 6.73
SACC+A 71.0 73.2 67.5 57.8 69.2 64.6 3.98 3.64 2.16 2.93 6.14 6.58
IcSACC Mag-ϕ 71.6 75.6 71.5 61.1 71.5 67.6 4.10 3.36 2.13 3.41 6.24 6.77
EcSACC Mag-ϕ 73.0 76.9 70.3 61.7 71.6 68.4 3.50 2.85 2.60 3.94 6.10 6.79

The EcSACC and IcSACC combination weights are time-
variant. The beampattern also varies as a function of time. The
time average beampattern can be computed to visualize the
average steering directions of the system on a given utterance:

B̄[wt, ω̄, θ] =
1

T

T−1∑
t=0

Bt[wt, ω̄, θ], (9)

with T being the total number of time frames. The following
sections demonstrate the visualization capacities provided by
the beampattern for the combination-weights analysis.

B. Time averaged beampattern vs. acoustic energy map

This section evaluates the steering directions of both Ec-
SACC and IcSACC on the AMI development set. Since
the speaker locations are unknown, the time-averaged
beampattern–Eq. (4)–is compared to the SRP-PHAT [14] en-
ergy map. A position corresponding to a maximum of energy

TABLE IV: Diarization performance of the VBx system with
each distant segmentation model. Results obtained on the AMI
evaluation set. δc: duration of the collar applied during the
evaluation in milliseconds.

Segmentation System DER%↓ JER%↓δc = 25 δc = 0

Raj et al. [61] VBx w/ OSD - 25.05 -
Spectral w/ OSD - 23.69 -

Oracle VAD 15.63 22.47 30.52
VAD w/ OSD 10.12 14.32 25.78

SDM VAD 19.38 27.45 33.82
VAD w/ OSD 17.67 25.01 32.20

MVDR VAD 18.19 26.80 32.77
VAD w/ OSD 16.00 23.71 30.87

SACC+STFT
VAD 18.21 26.06 32.83
VAD w/ OSD 16.26 23.09 31.13

SACC+A VAD 17.92 26.51 33.02
VAD w/ OSD 16.29 23.97 31.60

EcSACC VAD 18.52 26.35 32.54
VAD w/ OSD 16.40 23.30 30.90

IcSACC VAD 17.85 26.58 33.07
VAD w/ OSD 15.87 23.73 31.40

is thought to represent an active acoustic source. The SRP
energy map is compared to the time-averaged beampattern of
each complex SACC combination weight. For visualization
purposes, the time-averaged beampatterns are normalized be-
tween 0 and 1.

Figure 4 (a)-(d) presents the time-averaged beampatterns
of the IcSACC model on 1-second audio segments of the
IS1008a session from the AMI development set. It shows that
the main lobe of the beampattern is mostly steered towards
the maximum of the energy map. The main lobe also exhibits
significant shape variations. In some examples – figures 4(a)
and 4(c) – the steering directions are correlated with the source
position. When two sources are active (fig. 4(c)), the model
seems to steer towards the directions of both sources. This
model however fails to steer towards the source at 315◦ as
shown in figure 4(d).

Figure 4 (e)-(h) presents the time-averaged beampatterns
computed on the EcSACC combination weights with the same
segments. The beampatterns exhibit a similar structure as
IcSACC with a match between the energy maxima and the
main lobe. In both single- –figures 4(a) to (c)– and dual-
sources –figure 4(c)– scenarios, the beampattern correlates
with the energy maxima. On the last segment, the EcSACC
model better selects the 315◦ source direction as shown in
figure 4(h).

Finally, this section shows that the beampattern is an effi-
cient tool to better interpret the combination weights learned
by IcSACC and EcSACC. This representation highlights the
steering directions used by the self-attention modules with a
physical interpretation. The beampattern exhibits a dependence
between the combination weights and the source location.
Based on the AMI data, the model appears to mostly steer
toward the acoustic energy maxima. However, we lack an
established protocol to evaluate the steering direction of such
systems on a larger scale. This will be part of a future study.

IX. INVARIANCE TO THE NUMBER OF MICROPHONES

The previous sections have shown that multichannel front-
end algorithms can be beneficial for distant VAD and OSD.
However, these systems are trained with a fixed array con-
figuration available in the training data. Under real meeting
conditions, the number of available microphones may vary
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Fig. 4: Time-averaged beampatterns (white line) at frequency f = 750Hz computed on the IcSACC ((a)-(d)) and EcSACC
((e)-(h)) combination weights on 1-second segments from the AMI development set. The heatmap represents the SRP-PHAT
acoustic map computed on a 2m radius circular plane. The beampatterns are normalized between 0 and 1.

from one session to another. This section proposes a training
strategy to enforce the system to generate a unique feature map
regardless of the number of microphones provided as input.
The invariant training is evaluated on the AMI meeting corpus.
This dataset features audio signals captured by two types of
arrays located in different positions in the meeting room and
allows an evaluation in case of a mismatched array.

A. Channel-number invariant training

When a VAD+OSD system is trained with a given micro-
phone array configuration, the performance might be degraded
in case of an array mismatch in the testing conditions. The
mismatch can be the result of a change in the microphone
array geometry, or a set of microphones stopping to work. To
train a robust system regardless of the number of microphones,
the sequence of feature vectors can be enforced to be invariant
to the number of channels. Therefore, we propose an invariant
training loss to learn a unique representation of the input
signal regardless of the number of active microphones. The
VAD+OSD system is then trained to perform classification and
representation invariance in a multi-task formulation jointly.
As detailed in section II, VAD+OSD is formulated as a frame
classification task and is optimized using a cross-entropy
(CE) training objective LCE . An additional training objective,
referred to as invariant training loss Linv , is proposed to learn
a unique feature map. The channel-number invariant training
is illustrated in figure 5 and detailed below.

Let g : xC ,Θ → XC be a multi-channel neural feature
extractor which maps the raw input signal xC to a feature
map XC . C indicates the total number of microphones
available in the training data. The channel-number invariant
training determines a set of parameters Θ to extract a similar

feature vector regardless of the number of active channels.
The training procedure is defined as follows and illustrated in
figure 5. The input audio segment xC is duplicated P times.
Some channels are then randomly masked in the input and
the duplicated segments. The number of kept active channels
Cp is randomly sampled following a uniform distribution
Cp ∼ U{2,C}. The duplicated masked-segments are collected
in a set D = {xpCp

}Pp=1. For each segment in D, the feature
map Xp

Cp
can be computed by feeding the segment xpCp

to the
function g. We define a channel-number invariant loss, Linv
which forces the masked feature sequence Xp

Cp
to be as close

as the reference feature sequence XC . This loss minimizes
the distance between the reference feature map XC and each
masked representation Xp

Cp
given the following expression:

Linv =
1

P

P∑
p=1

∥XC −Xp
Cp

∥F
∥XC∥F · ∥Xp

Cp
∥F
, (10)

with ∥ · ∥F being the Frobenius norm. The training objective
defined in equation (10) aims at generating a unique repre-
sentation regardless of the number of active channels. The
segmentation model is then trained using the following dual
loss:

L = λLCE + (1− λ)Linv, (11)

where λ ∈ [0, 1] is a trade-off parameter between the two
training objectives.

B. Training and evaluation

The use of invariant training is investigated with our best-
performing VAD+OSD system which is the TCN architecture.
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Fig. 5: Flowchart of the channel-number invariant training
procedure. Only one duplicated segment is represented here
(P=1).

Four SACC algorithms are investigated as multi-channel front-
ends: SACC+STFT , SACC+A, IcSACC, and EcSACC.

The invariant system is trained with audio material from
Array 1 of the AMI meeting corpus. The invariant loss
Linv is computed by duplicating P = 2 times the current
training segment. The trade-off parameter between the two
loss functions is set to λ = 0.7 since it produces the best
OSD performance.

To evaluate the robustness of invariant models, a first
evaluation is conducted on signals recorded by the Array 1
by removing a fixed number of channels. The system is also
evaluated using a new array configuration, which the system
did not observe during training. This evaluation is conducted
on the data recorded by the Array 2 of the AMI corpus. It
consists of a 4-microphone uniform circular or linear array
depending on the session. This array is placed on one side
of the table, a little further from the participants than the
Array 1. Only OSD performance is presented since it is more
representative of the impact of the invariant training. The
performance on both arrays is presented in Table V.

C. Evaluation on the AMI Array 1

This subsection evaluates the impact of the invariant training
on VAD+OSD systems. The evaluation considers C = 8, C =
4, and C = 2 active channels in the AMI Array 1 evaluation
data. The first part of table V shows OSD performance for
each configuration.

In the C = 8 scenario, each kind of system offers the same
performance whether the invariant training is considered or
not. For example, SACC+STFT shows a 68.5% F1-score with
the original model and 68.4% with the invariant training. Only
the EcSACC system degrades by an absolute -1.3% in the
invariant training context.

In the C = 4 scenario, the performance of the original mod-
els degrades with the channel masking. The SACC+STFT
system degrades by -8.5% between the 8- and the 4-
microphone configurations. The IcSACC and EcSACC models
are strongly degraded. These systems are not able to detect

TABLE V: OSD F1-score (%) on the Array 1 and Array 2 data
of AMI evaluation subset. The Array 1 results are computed
for a varying number of active channels C. Four SACC-based
approaches are compared with TCN sequence modeling.

Array C Model STFT A32 IcSACC EcSACC

1

8 Original 68.5 64.6 67.6 68.4
/w Linv 68.4 65.2 67.2 67.1

4 Original 60.0 65.2 0.0 0.0
/w Linv 65.9 65.3 67.8 67.1

2 Original 51.7 65.3 0.0 0.0
/w Linv 64.2 65.6 67.2 66.7

2 4 Original 53.2 58.9 0.41 0.0
/w Linv 63.4 57.6 59.6 56.5

overlapping speech anymore. Only the SACC=A32 perfor-
mance remains stable. Considering invariant training limits the
degradation of the SACC+STFT model (65.9%). SACC+A32

retains its performance with the invariant training (65.3%). The
IcSACC and EcSACC show the best performance with 67.8%
and 67.1% respectively.

The observations in the C = 2 scenario are similar to
C = 4. The original SACC+STFT is degraded by absolute
-16.8%. This degradation is reduced with the invariant train-
ing (64.2%). SACC+A32 remains robust to channel dropout
(65.3%) while retaining performance with invariant training
(65.6%). The invariant training enables IcSACC and EcSACC
to detect overlapping speech. IcSACC offers the best perfor-
mance with 67.2%.

To better understand the loss of information of the original
system with missing microphones, Figure 6 displays the pre-
diction of the EcSACC system on a segment in the C = 8
and the C = 4 scenarios by considering invariant training
or not. It shows that the dynamic of the prediction is altered
by the loss of microphone pairs and becomes close to zero.
This illustrates the F1-score to be 0.0%. Meanwhile, invariant
training maintains good prediction in both scenarios.

D. Evaluation on the AMI Array 2

In the following experiment, each system is evaluated
on AMI array 2 data to assess the OSD performance on
actual mismatch array configuration. The OSD performance
is presented in the second part of table V. In an ideal
invariant system, the OSD performance remains consistent
from one array to another. The OSD results show that the
original models poorly perform under array mismatch. For
example, the SACC+STFT model reaches a 53.2% F1-score
while it gets 68.5% on Array 1 with all the channels. The
complex models are unable to detect overlapping speech. The
SACC+A32 system is also degraded (58.9%) considering the
Array 1 performance (64.6%).

Adding the invariant training drastically improves the ro-
bustness of most systems. The SACC+STFT features a
+10.2% absolute improvement considering the original model
with a 63.4% F1-score. Both IcSACC and IcSACC can detect
overlapping speech with 59.6% and 56.5% F1-score respec-
tively. Only the SACC+A32 system shows similar performance
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Fig. 6: OSD class prediction with the EcSACC model with
(Top) C = 8 microphones and (Bottom) C = 4 microphones.
(· · · ) target OSD label, (—) invariant system prediction, (- - -)
original system prediction.

with 57.6%. The experiments on Array 1 data show that this
model highlights some robustness to channel masking. This is
confirmed under mismatched array conditions.

In this section, we have proposed a new training procedure
to learn a similar feature sequence regardless of the number of
input microphones. The feature sequence invariance is learned
at the same time as classification in the multi-task learning
framework. This section shows that SACC-based VAD+OSD
performance tends to be degraded under array configuration
mismatch. To tackle this issue, a channel-number invariant
loss Linv is proposed. AMI Array 1 experiments confirm
the suitability of the invariant training framework for OSD,
mostly with IcSACC and EcSACC. Under invariant training
conditions, the systems can keep the OSD performance close
to the C = 8 scenario, i.e. when all the channels are active.
On Array 2 data, the performance is slightly degraded, but still
improved concerning the original models.

X. CONCLUSIONS AND PERSPECTIVES

This paper presents several multi-channel front-ends for
joint distant Voice Activity and Overlapped Speech Detection
(VAD+OSD) for speaker diarization. These algorithms are all
based on the same principle: weighting and combining the
channels coming from a microphone array. Three combination-
weight estimation procedures were proposed. Those are all
inspired by the Self-Attention Channel Combinator (SACC),
which estimates combination weights from the multi-channel
short-time Fourier transform (STFT) magnitude.

In the first instance, the STFT is replaced with a learnable
filter bank based on analytical filters. The other two methods
exploit the magnitude and phase of the STFT in explicit
(EcSACC) and implicit (IcSACC) ways. Each approach is
investigated as a front-end of both BLSTM- and TCN-based
VAD+OSD systems. The self-attention-based models achieve
similar performance as the MVDR without requiring the costly
estimation of the covariance matrices. Among the SACC
extensions, the learnable filter bank exhibits mitigated OSD
results while complex extensions drastically improve the per-
formance in the distant speech scenario e.g. EcSACC achieves

68.4% F1-score on the AMI evaluation set with the TCN
model. On the VAD task, the segmentation error rate (SER)
can be improved with channel-combination algorithms.

The impact of VAD and OSD is evaluated the final back-
end task, i.e. speaker diarization. Complex SACC extensions
offer the best diarization performance with 23.30% DER and
30.90% JER for EcSACC. The assignment of overlap segments
highlights the need for robust OSD since one can expect up
to +36.3% relative DER improvement, as shown by Oracle’s
performance.

The complex SACC extensions achieve competitive
VAD+OSD and speaker diarization performance. These ap-
proaches are also designed to be more explainable. The anal-
ysis of the combination weights with the beampattern exhibits
a correlation between the maxima of acoustic energy and
the steering directions. The EcSACC seems better at steering
towards the source. Finally, the performance of the proposed
front-ends highly relies on the microphone array configuration
used during training. Thus, a mismatch between the training
and the testing array setup may lead to severe performance
degradation. To minimize this degradation, a new loss function
is proposed and added to the training process. This training
objective consists of learning a unique feature sequence re-
gardless of the number of available microphones. Experiments
conducted on a TCN-based VAD+OSD system with four front-
ends demonstrate that the performance remains steady regard-
less of the number of active microphones (SACC+STFT :
+10.2% F1-score improvement on the mismatched data from
AMI array 2). In the case of EcSACC and IcSACC, this loss
prevents the model from failing the detection.

In future work, new training objectives to learn a channel-
invariant representation will also be investigated. The evalua-
tion of invariant models in the cross-corpus scenario will also
be considered. Since the complex combination weights encode
spatial information about the active source, they could bring
more information to the OSD system. Complex combination
weights will thus be investigated as additional spatial features.
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