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ABSTRACT
The paper presents a novel three-step transfer learning frame-
work for enhancing cross-lingual transfer from high- to
low-resource languages in the downstream application of
Automatic Speech Translation. The approach integrates a se-
mantic knowledge-distillation step into the existing two-step
cross-lingual transfer learning framework XLS-R. This extra
step aims to encode semantic knowledge in the multilingual
speech encoder pre-trained via Self-Supervised Learning us-
ing unlabeled speech. Our proposed three-step cross-lingual
transfer learning framework addresses the large cross-lingual
transfer gap (TRFGap) observed in the XLS-R framework be-
tween high-resource and low-resource languages. We validate
our proposal through extensive experiments and comparisons
on the CoVoST-2 benchmark, showing significant improve-
ments in translation performance, especially for low-resource
languages, and a notable reduction in the TRFGap.

Index Terms— Cross-lingual transfer Learning, Auto-
matic Speech Translation

1. INTRODUCTION

End-to-end multilingual speech translation technology has re-
cently seen dramatic improvements owing to the widely used
two-step Transfer Learning (TL) framework, self-supervised
pre-training, followed by supervised fine-tuning. A large
transformer encoder is pre-trained using self-supervised
learning on massive amounts of unlabeled multilingual
speech data. This is followed by multi-task supervised fine-
tuning of the pre-trained encoder on several speech-to-text
translation tasks. A popular two-step transfer learning frame-
work is the Cross-Lingual Speech Representation (XLS-R)
framework [1].

Cross-Lingual Transfer Gap. XLS-R consists of pre-
training a transformer encoder using Self-Supervised Learn-
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ing (SSL) on 400K hours of unlabeled speech in 128 lan-
guages collected from diverse speech datasets. The pre-
trained encoder is then fine-tuned using multi-task supervised
learning on 21 speech-to-text translation tasks of the form
X→EN. X refers to a source language, and the learning task
is to translate speech in X to text in English. The paired data
for the 21 X→EN translation tasks comes from the Common
Voice Speech Translation (CoVoST) corpus [2]. Depending
on the amount of labeled data for each task, we categorize
them into high, mid, and low-resource. High-resource tasks
consist of more than 100 hours, mid-resource between 10
and 100 hours, and low-resource less than 10 hours of paired
speech (X) and text (EN) translation data for fine-tuning.
To set the problem statement, we show the performance of
the two-step XLS-R cross-lingual TL framework described
above on the CoVoST X→EN benchmark (Table 1).

Model High Mid Low TRFGap

XLS-R-0.3B 30.6 18.9 5.1 25.1
XLS-R-1B 34.3 25.5 11.7 22.6
XLS-R-2B 36.1 27.7 15.1 21

Table 1. Problem Statement (BLEU-4 scores).

Notice the sizeable cross-lingual transfer gap (TRFGap),
defined as the performance difference between high- and
low-resource tasks. The substantial TRFGap implies that the
knowledge acquired by the translation model while learning
to perform high-resource translation tasks does not help learn
the low-resource translation tasks well. Since the transla-
tion model is built on the knowledge acquired by the speech
encoder during the SSL pre-training step, we hypothesize
that the XLS-R framework’s pre-training step should be im-
proved to facilitate better cross-lingual knowledge transfer
during fine-tuning for multilingual translation, thus reducing
the TRFGap. To that end, we propose a novel three-step TL
framework.

Proposed Solution. We propose a three-step TL frame-
work to reduce the abovementioned TRFGap. A semantic



knowledge-distillation (KD) step, SAMU-XLS-R, proposed
in [3], is inserted between the SSL pre-training and fine-
tuning steps of the XLS-R framework. We hypothesize that
the XLS-R’s pre-training step does not encode semantic
knowledge in the speech encoder, and by injecting semantic
knowledge, we can reduce the TRFGap.

Our proposed novel three-step cross-lingual TL frame-
work (§2) consists of: 1) SSL pre-training of speech encoder
similar to XLS-R, 2) Semantic KD borrowed from SAMU-
XLS-R [3], to encode semantic knowledge in the pre-trained
encoder, and 3) Adapter [4] based Multi-task fine-tuning
of the encoder on several speech-to-text translation tasks.

2. PROPOSED CROSS-LINGUAL TL FRAMEWORK

SSL Pre-training (xlsr-0.3B). This step is borrowed from
the XLS-R contrastive pre-training method presented in [1],
originally proposed in [5]. A transformer encoder is pre-
trained using unlabeled speech in 128 languages. See [1] for
exact pre-training details and transformer architecture. We
use the 300M (0.3B) parameter pre-trained encoder check-
point1. From now on, we refer to this pre-trained SSL check-
point xlsr-0.3B.

Semantic KD (samu-xlsr-0.3B). We fine-tune xlsr-0.3B
via semantic KD as proposed in SAMU-XLS-R [3]. This
framework uses paired tuples (x,y)l for training, where x
is a speech waveform, y is its corresponding text transcript,
and l refers to the language of speech and text. The training
framework consists of the speech and text encoding branches.

The speech branch transforms the sample sequence x ∈
R(S×1) into a vector embedding espeech ∈ R1×D. The text
branch transforms the corresponding transcript y into a vec-
tor embedding etext ∈ R1×D. The parameters of the speech
branch are fine-tuned, while the text branch remains frozen
during training. The cosine distance between the speech and
the text embeddings gives the learning objective. The speech
branch consists of the pre-trained xlsr-0.3B (from the previ-
ous step) that transforms x into an embedding sequence Z ∈
RN×D, followed by a self-attention-based temporal pooling
mechanism with a single learnable query vector [6], that out-
puts the speech embedding espeech. The text branch comprises
the pre-trained Language-Agnostic BERT Sentence Encoder
(LaBSE) [7] that transforms the transcript into an embedding
sequence H ∈ RM×D. The first embedding in the sequence
H is the [CLS] token embedding, which we use as the text
embedding etext.

xlsr-0.3B can encode speech in 128 languages, while
LaBSE can encode text in 109 languages. The paired (x,y)l

tuples for training are derived from the CommonVoice-
version8 dataset [8] using the intersection of the sets of

1https://dl.fbaipublicfiles.com/fairseq/wav2vec/
xlsr2_300m.pt

languages supported by xlsr-0.3B, and LaBSE. This amounts
to 13K hours of training data in 53 languages. Initially, se-
mantic KD was performed in [3] using paired data in 25
languages. Also, unlike the original work, we use speed per-
turbation [9] with factors {0.9, 1.0, 1.1} to increase the size of
the training data threefold. See [3] for a detailed explanation
of the semantic KD learning framework. Moving forward,
we refer to the xlsr-0.3B fine-tuned using the abovementioned
semantic KD as samu-xlsr-0.3B.

Adapter-based Multi-task fine-tuning. Finally, we fine-
tune samu-xlsr-0.3B for speech-to-text translation. The trans-
lation model is a transformer comprising samu-xlsr-0.3B
(from the previous step) as the encoder and pre-trained
MBART as the decoder. MBART [10] is a multilingual
text-to-text translation model trained to translate text in
50 languages to English. We use the autoregressive trans-
former decoder of the MBART checkpoint2 to initialize
the decoder of our speech-to-text translation model. The
translation model’s training data comprises tuples (x,y),
where x is the speech waveform in a source language,
and y is its text translation in a different target language.
The samu-xlsr-0.3B encoder transforms the speech wave-
form x into an embedding sequence H. The MBART
decoder models the likelihood function autoregressively
p(y|x) = p(y1|H)p(y2|y1,H) . . . p(yn|y1:n−1,H). The
model is trained to maximize the log-likelihood function. We
use teacher forcing during training. The model generates text
translation via beam search during inference.

The translation model consists of 700M trainable param-
eters. We only fine-tune 75M. Following [11], in the MBART
decoder, we fine-tune the parameters of cross-attention (CA)
and layernorm [12] modules while keeping self-attention
frozen. Since CA of the MBART decoder was previously
trained using input from the MBART text encoder, it has
to be retrained for the input from samu-xlsr-0.3B encoder.
Layernorm is task and data-dependent; hence, it’s retrained.
In the samu-xlsr-0.3B encoder, we keep all the parameters
frozen to their pre-trained values and insert new parameters
as adapter layers [4]. Two adapter layers are inserted in each
layer of samu-xlsr-0.3B transformer encoder, one after the
self-attention and the other after the feedforward layers. An
adapter layer has an hourglass architecture. The input and
output layers have the same size, while the hidden layer size
is a fraction of the input layer. We found the optimal size
(according to a dev set) of the hidden layer is one-fourth of
the input.

The motivation for using adapters in samu-xlsr-0.3B is
to avoid catastrophic forgetting [13] of semantic knowledge
acquired via the semantic KD step (previous step) of our TL
framework. We show (Table 6) that adapter-based fine-tuning

2https://dl.fbaipublicfiles.com/fairseq/models/
mbart50/mbart50.ft.n1.tar.gz



strategy is essential to achieve good cross-lingual transfer
from high to low-resource language translation tasks.

The translation model training data is derived from the
CommonVoice Speech Translation-2 (CoVoST-2) dataset [2].
CoVoST-2 consists of 21 X→English speech→text transla-
tion tasks. We train our above mentioned transformer on all
21 translation tasks simultaneously. The decoder is condi-
tioned with a language ID to distinguish between translation
tasks. All the model parameters are shared across the tasks.
The model is trained using an Adam optimizer with a max-
imum learning rate of 5e-4 and a three-phase learning rate
scheduler, similar to the semantic KD step (previous step in
our TL framework). The model is trained on 8 A100 Nvidia
GPUs, with a batch size of 10 minutes of speech and corre-
sponding text translations.

3. EXPERIMENTAL RESULTS

Training & Evaluation. Translation models are trained
and evaluated on the 21 X→English speech→text transla-
tion tasks of the CoVoST-2 benchmark. The 21 tasks are
categorized into high (more than 100 hours of training data),
mid (between 10 and 100 hours of training data), and low-
resource tasks (less than 10 hours of training data). There are
four high, five mid, and 12 low-resource tasks. We report the
average BLEU-4 score on the three categories.

Baseline models. We compare our proposed translation
model (§2; Adapter-based Multi-task fine-tuning) against
several other translation models. All translation models are
transformers with MBART decoder initialization. The mod-
els differ in encoder initialization and training. Adapter-based
encoder fine-tuning is only performed for the samu-xlsr-0.3B
translation model, while all the encoder parameters are fine-
tuned for other models. We later show that adapter-based
fine-tuning brings gains only for the samu-xlsr-0.3B trans-
lation model. For decoder fine-tuning, only cross-attention
and layernorm parameters are fine-tuned for all the models.
1) xlsr-[0.3B, 1B, 2B]: refers to different-sized transformer
encoders trained using unlabeled speech via SSL. Note that
samu-xlsr-0.3B is built on top of xlsr-0.3B via semantic KD.
2) mslam-[0.6B, 2B]: the mslam encoders [14] are trained
using a mix of SSL and supervised learning using paired
speech-text tuples. Unlike samu-xlsr-0.3B, which is trained
using semantic KD, mslam is not trained with explicit seman-
tic supervision from the text modality.

Multilingual Translation Results. Table 2 compares samu-
xlsr-0.3B translation model with several xlsr based translation
models. We make the following observations: 1) On high
resource tasks, the xlsr-2B translation model performs the
best, with samu-xlsr-0.3B lagging a couple of points behind.
Compared to the similar-sized xlsr-0.3B model, samu-xlsr-
0.3B performs 4 BLEU points better. 2) On mid-resource

tasks, samu-xlsr-0.3B outperforms all the models, achieving
a BLEU score of 31.1, significantly better than the xlsr-0.3B
model’s BLEU score of 18.9. Our model also outperforms
the larger xlsr-2B speech encoder by 3.4 BLEU points. 3)
On low-resource tasks, samu-xlsr-0.3B performs the best.
Compared to the xlsr-0.3B model, it does better by 15 BLEU
points. It also outperforms the much larger xlsr-2B by 5.2
BLEU points. The cross-lingual transfer gap (TRFGap),
which is the difference in performance between high and
low-resource task groups, is significantly less (14.1 BLEU)
for the samu-xlsr-0.3B model than other models. Second to
samu-xlsr-0.3B is xlsr-2B, which has a TRFGap of 21 BLEU
points while having 500% more parameters.

Model High Mid Low TRFGap

xlsr-0.3B 30.6 18.9 5.1 25.1
xlsr-1B 34.3 25.5 11.7 22.6
xlsr-2B 36.1 27.7 15.1 21
samu-xlsr-0.3B 34.4 31.1 20.3 14.1

Table 2. We compare our proposed samu-xlsr based transla-
tion model with xlsr based translation models. The numbers
are the average BLEU-4 scores.

Model High Mid Low TRFGap

mslam-0.6B 37.6 27.8 15.1 22.5
mslam-2B 37.8 29.6 18.5 19.3
samu-xlsr-0.3B 34.4 31.1 20.3 14.1

Table 3. We compare our proposed samu-xlsr based trans-
lation model with mslam based translation models.

Table 3 compares samu-xlsr-0.3B translation model with
mslam based translation models. samu-xlsr-0.3B performs
better on mid- and low-resource translation tasks. Impor-
tantly, samu-xlsr-0.3B has a lower cross-lingual transfer gap
(TRFGap) between high and low resource groups of 14.1
BLEU points compared to 22.5 for mslam-0.6B and 19.3 for
mslam-2B. The BLEU scores for mslam models are lifted
from the paper [14] since these models are not publicly avail-
able.

Cascade vs. End-to-end Translation. We fine-tune xlsr-
0.3B for Automatic Speech Recognition (ASR) using CTC
framework [15]. The ASR model is used to transcribe speech
into text. The transcription is translated into text in English
using the pre-trained MBART checkpoint3. To train ASR,
we use the same set of transcribed speech data used for the
semantic KD of xlsr-0.3B. Table 4 shows that samu-xlsr-
0.3B end-to-end model is significantly better than the cascade
model.

3https://huggingface.co/facebook/
mbart-large-50-many-to-one-mmt



Model High Mid Low TRFGap

cascade 33.1 22.4 12.2 20.9
samu-xlsr-0.3B 34.4 31.1 20.3 14.1

Table 4. We compare samu-xlsr-0.3B end-to-end with a cas-
cade translation model.

ASR Fine-tuning vs. Semantic KD. Here, we perform ab-
lation over the second step in our three-step transfer learning
framework. To get the samu-xlsr-0.3B speech encoder, we
fine-tune the pre-trained xlsr-0.3B via semantic KD task (§2).
Here, we fine-tune the pre-trained xlsr-0.3B encoder via ASR
task. The ASR fine-tuning uses the same multilingual labeled
speech data that was used for the semantic KD step. ASR
fine-tuning is performed using the Connectionist Temporal
Classification (CTC) framework [15]. The speech encoder
we get after ASR fine-tuning is referred to as ctc-xlsr-0.3B.
Table 5 shows that CTC fine-tuning does not lead to signif-
icant TRFGap reduction, which enforces the importance of
the SAMU-XLS-R semantic KD step. This result is not sur-
prising since SSL pre-trained xlsr encoder is already good at
few-shot ASR [1], implying that the information necessary
for ASR is already encoded in xlsr’s internal representations,
and fine-tuning on ASR task does not add any new informa-
tion.

Model High Mid Low TRFGap

xlsr-0.3B 30.6 18.9 5.1 25.1
ctc-xlsr-0.3B 31.6 20.9 8.5 23.1
samu-xlsr-0.3B 34.4 31.1 20.3 14.1

Table 5. Ablation-I: ASR Fine-tuning vs. Semantic KD as
the second step in our proposed three-step TL framework.

Adapter vs. full encoder fine-tuning. We perform Adapter-
based fine-tuning of the samu-xlsr-0.3B translation model’s
encoder by inserting adapter layers in each encoder layer.
Meanwhile, for xlsr-based translation models, we fine-tune
all the encoder parameters. Hence, it’s natural to ask whether
the gains in cross-lingual task transfer from high to low-
resource translation tasks come from using adapters during
multi-task fine-tuning or by the semantic KD step. Table 6
compares the translation model’s performance when using
Adapter-based fine-tuning vs. fine-tuning all the encoder pa-
rameters. Adapter-based multi-task translation fine-tuning of
xlsr-0.3B encoder (xlsr-0.3B-A in table) slightly decreases the
performance on high-resource translation tasks and slightly
increases on low-resource languages. Although the TRF-
Gap is reduced slightly, it is still substantially larger than
the adapter-based fine-tuning of samu-xslr-0.3B (samu-xlsr-
0.3B-A). Interestingly, full fine-tuning of samu-xlsr-0.3B
encoder (samu-xlsr-0.3B-F in table) has a drastically larger

TRFGap than adapter-based fine-tuning. This result implies
that preserving semantic knowledge acquired by the samu-
xlsr-0.3B encoder due to the semantic KD step is essential for
excellent cross-lingual transfer from high- to low-resource
languages.

Model High Mid Low TRFGap

xlsr-0.3B-F 30.6 18.9 5.1 25.1
xlsr-0.3B-A 28.6 17.9 7.2 21.4
samu-xlsr-0.3B-F 32.4 18.1 8.2 24.2
samu-xlsr-0.3B-A 34.4 31.1 20.3 14.1

Table 6. Ablation II: Adapter vs. full encoder fine-tuning.

Zero-Shot Translation Results. For zero-shot translation,
we train the translation models on the four high-resource
translation tasks out of the 21 X→English translation tasks
in the CoVoST-2 benchmark. The translation models do not
see training data for the five mid and 12 low-resource tasks.
We evaluate the X→EN translation models on all three task
groups to test for zero-shot cross-lingual transfer capability
of samu-xlsr-0.3B translation model from high to mid and
low-resource tasks. We observe, in Table 7, that samu-xlsr-
0.3B, compared to xlsr-0.3B, performs on average 18.8 BLEU
points better in the mid-resource and 11.9 BLEU points in the
low-resource group. These results strengthen our claims that
our three-step cross-lingual TL framework, with the crucial
semantic KD step inspired by SAMU-XLS-R framework [3],
improves cross-lingual transfer from high to low-resource
languages.

Model High Mid Low TRFGap

xlsr-0.3B 31.0 5.8 0.9 30.1
samu-xlsr-0.3B 33.6 24.6 12.8 20.8

Table 7. Zero-shot X→EN translation performance. Mid,
and low-resource tasks are unseen during training.

4. CONCLUSIONS

This paper addresses the central question of cross-lingual
transfer learning in Natural Language Processing. We focus
on the problem of multilingual spoken language translation,
which we model using the transformer model. We analyze the
impact of different encoder initializations on the downstream
translation task performance. We show that by initializ-
ing the model’s encoder with samu-xlsr-0.3B that is trained
using the recently introduced semantic knowledge distilla-
tion framework SAMU-XLS-R presented in [3], we achieve
significantly better cross-lingual transfer from high to low
resource languages in the X→English translation tasks in the
CoVoST-2 speech-to-text translation benchmark.
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