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RAPID COMMUNICATION

Complete mitochondrial genome and draft chloroplastic genome of Haslea 
ostrearia (Simonsen 1974)

Aurelie Peticcaa , Mostefa Fodila, Helene Gateaua, Jean-Luc Mougeta, Francois Sabotb, Benoit Chenaisa and 
Nathalie Cassea 

aBiOSSE (Biology of Organisms: Stress, Health, Environment), UFR Sciences et Techniques, Le Mans Universite, Le Mans, France; bDIADE, 
University of Montpellier, CIRAD, Montferrier-sur-Lez, France 

ABSTRACT 
The first completed, circular mitochondrial genome and the first draft, linear chloroplastic genome of 
the blue diatom Haslea ostrearia (Simonsen 1974, Naviculaceae, Bacillariophyceae) were assembled from 
Illumina and PacBio sequencing. The mitochondrial genome was composed of 38,696 bases and con-
tained 64 genes, including 31 protein-coding genes (CDS), 2 ribosomal RNA (rRNA) genes and 23 trans-
fer RNA (tRNA) genes. For the chloroplast, the genome was composed of 130,200 bases with 169 
genes (131 CDS, 6 rRNA genes, 31 tRNA genes, and 1 transfer messenger RNA gene). Phylogenetic 
trees, using the maximum-likehood method and partial genes currently available for Haslea ostrearia 
and other diatom species, suggested the proximity of all the Haslea ostrearia strains/isolates and the 
possibility of using these genomes as future references.
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Introduction

Haslea (H.) ostrearia is a blue microalga from the Naviculaceae 
family, which lives freely in benthic marine environments or as 
an epiphyte on brown macroalgae (Simonsen 1974, Figure 1). 
The blue color comes from a pigment called marenine, that H. 
ostrearia produces and accumulates at cell apices (Gastineau 
et al. 2014a). This specific pigment is responsible for the green-
ing of oyster gills in farming ponds in Western France. 
Furthermore, it has been shown that marenine could display 
antibacterial, antiviral and antifungal effects (Gastineau et al. 
2014b). However, H. ostrearia is still very much unknown, espe-
cially at the genetic level. One of the reasons for this lack of 
knowledge is that this microalga needs many bacteria to survive 
(Lepinay et al. 2016, 2018). Their excessive presence confuses 
the sequencing data. However, the complete DNA of one of its 
representatives from the North Atlantic Ocean has been 
sequenced, and allowed the reconstruction of its mitochondrial 
and chloroplastic genomes. This study clears the way for future 
research about H. ostrearia and will help characterize the largely 
unknown genetics of this species. In particular, it will serve as a 
future basis for the taxonomic classification of this species, but 
also as a potential marker for finding the presence of H. ostrea-
ria in metagenomic sequencing.

Material

The isolate used in this study was collected in 2018 from an 
oyster pond in Bouin, France (latitude 46.953444 and 

longitude −2.046139) and deposited in the Nantes Culture 
Collection (curator Vona Meleder, vona.meleder@univ-nan-
tes.fr; Nantes, France) under the name NCC 532.

Methods

During 21 days, the culture was grown in enriched artificial 
sea water (Instant Ocean, Aquarium systems O; Harrison et al. 
1980 modified by De Brouwer et al. 2002) at 14 �C under 
300 lm photons/m2/s with a 14h/10h light/dark cycle. On the 
20th day of growth, a 1:100 dose of Sigma’s antibiotic anti-
mycotic solution (Sigma-Aldrich, Saint-Quentin Fallavier, 
France; catalogue#A5955) was added to the culture mix. 
After 24h, the biomass was collected through filtration 
(WhatmanTM Binder-Free Glass Microfiber Filters, Grade GF/C, 
pore size of 1.2 lm) and the whole DNA was extracted using 
the method of Puppo et al. (2017). Extracted DNA was 
sequenced using the PacBio continuous long reads (PB CLR 
SEQUEL2) and Illumina MiSeq platforms (TrueSeqv3, 150pe; 
Genotoul, Toulouse, France), and 85 Gb and 5.241 Gb total 
read lengths were generated, respectively. Illumina reads 
were filtered to remove low-quality reads (<Q30), short reads 
(<75b) and adapter sequences were searched and trimmed 
by trimmomatic v0.39 (Bolger et al. 2014). The de novo gen-
ome assembly was performed using Flye v2.9 (Kolmogorov 
et al. 2020) and the long PB CLR reads with the following 
options: -g 100 m –meta. Polishing was performed with fil-
tered Illumina reads through three loops of racon v1.4.20 
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(Vaser et al. 2017) and bwa-mem v2 2.2.1 (Vasimuddin et al. 
2019). As the sequencing data also contained bacteria, due 
to the characteristics of this microalgae which did not seem 
to be able to survive without them (Lepinay et al. 2016, 
2018). This is also the reason for the decision to sequence 
the data in long and short reads, as it would have been diffi-
cult to obtain a quality assembly with only one of the latter 
(Chen et al. 2022). The mitochondrial and chloroplast 
genomes were identified using minimap2 v2.18 (Li 2018) by 
aligning the metagenome obtained here against the H. nusan-
tara mitochondrion (MH681882 accession number, NCBI data-
base, https://www.ncbi.nlm.nih.gov/) and the Phaeodactylum 
tricornutum chloroplast (NC_008588, NCBI database). The 
sequences aligned with a percent identity superior to 80 were 
retained (%ID). The annotation and gene prediction were per-
formed by Prokka v1.14.6 (Seemann 2014). Since the mitochon-
drial genome is circular, samtools faidx v1.14 (Danecek et al. 
2021) was used to relocate the annotated origin of H-strand 
replication (OH) as the starting gene (position þ1). Attempts to 
make the chloroplast circular using Circlator v1.5.5 (Hunt 
et al. 2015) were unsuccessful, as the sequences may be too 
dense at some point. Downsampling seems to be the solu-
tion to prevent an assembly from failing due to information 
overload (Mirebrahim et al. 2015), but unfortunately with the 
over-representation of bacteria this method cannot be 
applied. The Supplementary Figure 1 was made according to 
the ‘Generating Sequencing Depth and Coverage Map for 
Organelle Genomes’ in protocol.io (https://www.protocols.io/ 
view/generating-sequencing-depth-and-coverage-map-for-o- 
4r3l27jkxg1y/v1) using the assembled genome, the PacBio 
reads, minimap2 2.18 (Li 2018) and Samtools 1.14 (Danecek 
et al. 2021). Genome maps were generated with Artemis 
v18.2.0 (Rutherford et al. 2000).

Phylogenetic trees were created with NGPhylogeny.fr pipe-
line (trimAl and PhyMLþ SMS, Lemoine et al. 2019) with the 
partial COX1 gene for the mitochondrial and the partial rbcL 
gene chloroplast genomes, as these are the only data avail-
able for this species. The mitochondrial dataset grouped 
sequences from different diatom taxa: 5 H. ostrearia strains, 4 
other Haslea species, 5 Navicula species and 2 external 

species from the Eunotia family. The chloroplast dataset al.so 
included different diatom sequences: 3 H. ostrearia strains, 5 
other Haslea species, 8 Navicula species and 2 external spe-
cies from the Eunotia family. All sequences were downloaded 
from NCBI database (https://www.ncbi.nlm.nih.gov/), and 
their access number available on the phylogenetic trees.

Results

The complete circular mitochondrial genome was 38,696 
bases long with a GC content (%GC) of 28.66% (36.07% A, 
35.26% T, 14.76% C, 13.91% G), with a sequencing depth of 
1,325X. The 64 annotated genes were composed of 39 pro-
tein-coding genes (CDS), 2 ribosomal RNA (rRNA) genes and 
23 transfer RNA (tRNA) genes (Figure 2A). The H. ostrearia 
COX1 gene, previously partially sequenced (Gastineau et al. 
2013), was found complete in this study and annotated as 
ctaD by Prokka. The draft chloroplast genome was 130,200 
bases long with 31.04%GC (34.19 A, 34.76% T, 15.31% C, 
15.73% G) and with a sequencing depth of 2,371X. One hun-
dred and thirty one CDS, 6 rRNA genes, 31 tRNA genes and 1 
tmRNA gene were identified within this genome (Figure 2B).

The phylogenetic tree obtained for the rbcL gene from 
diatoms chloroplastic genomes showed a clear separation 
between Navicula and Haslea species, with a bootstrap value 
of 0.818 (Figure 3A), the only exception being the rbcL gene 
of H. howeana found among Navicula. Looking in details, the 
H. ostrearia genes were clustered in the same part of the tree 
with very small branches. They were also separated from the 
other diatoms by a branch with a bootstrap value of 0.986. 
The Eunotia genes, taken as external species, were well 
observed on the external branches of the tree. The same 
observations were made for the mitochondrial gene COX1 
(Figure 3B). H. crucigera was the only Haslea species found 
the Navicula. The COX1 genes from an H. ostrearia were all 
aggregated with small branches and were separated from 
the others by a bootstrap value of 0.999. Due to a lack of 
information about genes in the genus Haslea, only the partial 
COX1 and the rbcL genes were tested.

Discussion and conclusion

Given the lack of information for the genus Haslea, the genomes 
reconstructed here could only be compared directly with those 
of one other species to check their completeness. Both appear 
to be close to the chloroplast and mitochondria of H. nusantara. 
The mitochondrion of the latter was 36,288 bases long for a 
29.24%GC, and the chloroplast was 120,448 bases long for a 
31.10%GC (Prasetiya et al. 2019), i.e. 2 kb and 10 kb more than 
those of H. ostrearia. The 64 annotated genes for the H. ostrearia 
mitochondrion were slightly more numerous than H. nusantara 
ones with 3 additional CDS and one less tRNA (Prasetiya et al. 
2019). Among the genes found here is COX1, which has been 
identified as being highly conserved in the mitochondria of the 
Haslea (Gastineau et al. 2013). The mitochondria of H. ostrearia 
appeared to be colinear with those of H. nusantara, the same 
synteny was observed in their genomes in the form of three dis-
tinct blocks. The same comment could be made for the 

Figure 1. ‘Living cell of Haslea ostrearia observed in light microscopy’ from 
Gabed et al. (2022).
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Figure 2. Genome map of the mitochondrial genome (A) and the chloroplastic genome (B) of H. ostrearia. 
The red and blue colors in GC shiew (a) and GC plot (b) show if the value is below or above average. Protein-coding genes are shown in light blue, transfer RNA genes in light green and 
ribosomal RNA in light grey. The chloroplast genome is shown as a linear genome because it is not complete. The genome map was made using Artemis v18.2.0.

Figure 3. Maximum likelihood phylogenetic trees inferred from COX1 and rbcL genes from diatoms genus. 
The phylogenetic trees was performed with, respectevily, Haslea ostrearia (in red) and 16 to 18 other diatom chloroplastic gene rbcL (A) and mictochondrial gene COX1 (B). Numbers near 
the nodes indicate bootstrap support values. The accession number associated with each gene is listed next to the species name. Eunotia species were used as external species. 
NGPhylogeny.fr pipeline was used to generate these phylogenetic trees.
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chloroplast, the structure and the genes were very similar to the 
H. nusantara ones. The two chloroplast genomes closely 
resembled each other, sharing close to 90% sequence identity. 
The only exceptions were a missing part of the genome corre-
sponding to �10 kb of the H. nusantara chloroplast (positions 
around 90,000-104,000) and the sequence inversions observed 
between H. ostrearia and H. nusantara for the first 70,000 bases of 
the latter. It was also very similar to the general features of diatom 
chloroplast genomes from Prasetiya et al. (2019) study. This ampli-
fied the idea that the genomes are complete for the mitochondria 
and almost complete for the chloroplast, even if the latter has not 
been circularized. In addition, the already known H. ostrearia rbcL 
gene, annotated as cbbL, and the psbC partial gene were also 
found completed in this study (Gastineau et al. 2013). 
Phylogenetic trees of both mitochondrial and chloroplastic 
sequences supported the hypothesis that H. ostrearia strains used 
here were very close to each other and had a different evolution-
ary history from other diatoms or Haslea species (Figure 3). High 
read coverage was also observed for each genome, respectively 
1389X and 2321X for the mitochondrial and the chloroplastic 
sequences (Supplementary Figure 1). In the case of the latter, 
there is a short drop of up to 6X in coverage, but the average 
observed over the 4,000 bases it represents is �200X which is 
above the 30X traditionally desired for a de novo assembly.

Even if the chloroplast genome was not complete, it 
seemed that only a few bases were missing. Its size exceeded 
that of the plastid from the close species H. nusantara, but 
with a highly similar composition (%GC and genes number). 
Since all H. ostrearia strains, for which DNA sequences are 
available, presented a close proximity to each other, the 
mitochondrial and chloroplast genomes presented here could 
be used as a reference for this species.
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