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Théo Mariotte1 , Antonio Almudévar2, Marie Tahon1, Alfonso Ortega2

1LIUM, Le Mans Université
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ABSTRACT

Audio signal segmentation is a key task for automatic audio index-
ing. It consists of detecting the boundaries of class-homogeneous
segments in the signal. In many applications, explainable AI is a vi-
tal process for transparency of decision-making with machine learn-
ing. In this paper, we propose an explainable multilabel segmen-
tation model that solves speech activity (SAD), music (MD), noise
(ND), and overlapped speech detection (OSD) simultaneously. This
proxy uses the non-negative matrix factorization (NMF) to map the
embeddings used for the segmentation to the frequency domain. Ex-
periments conducted on two datasets show similar performances as
the pre-trained black box model while strong explainable features
arise. Specifically, the frequency bins used for the decision can be
easily identified at both the segment level (local explanations) and
global level (class prototypes).

Index Terms— multilabel audio segmentation, explainability,
non-negative matrix factorization, music detection, speech detection

1. INTRODUCTION

Audio segmentation is a key task for many speech technologies
such as automatic speech recognition, speaker identification, and
dialog monitoring in different multi-speaker scenarios, including
TV/radio, meetings, and medical conversations. More precisely,
these technologies must be aware of the presence of noisy environ-
ments (brouhaha, external noise), and how many speakers are active
at each time. In many domains, such as health or human-machine
interactions, the prediction of segment timestamps is not enough
and it is necessary to include some explanations. Indeed, the cur-
rent trend for explainable AI is a vital process for transparency of
decision-making with machine learning: the user (a doctor, a judge,
or a human scientist) has to justify the choice made based on the
system output. Explainability for AI can be addressed at different
stages of the process. Pre-hoc explainability intends to understand
and describe data with explainable features and statistics. Another
stage is to develop explainable-by-design models. The last stage
consists of the extraction of explanations from a pre-trained model
by the use of proxy models or perturbation mechanisms. Our work
comes within the scope of such post-hoc explanations.

The proposed approach aims to train an explainable proxy model
from a black-box segmentation system. While many works have
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been conducted in explaining neural networks in vision [1] and NLP
[2], the literature is limited in the audio domain. The first intents
are focused on saliency map extraction to reveal what information
is used in the output [1, 3]. Audio classifier decisions can be inter-
preted by post-hoc analysis with approaches such as SoundLime [4].
Recently, a few explainable models have been developed like APNet
[5], which extends the training of prototypes to the audio domain,
and post-hoc visualization of explanations obtained from Shapley
values [6]. In the architecture proposed in [7], the authors explain
a black box audio classifier with a proxy model which is optimized
to classify audio scenes while reconstructing the audio with the non-
negative matrix factorization framework [8].

This paper focuses on automatic audio segmentation in the con-
text of large-scale multimedia data from archivists, i.e. the detection
of homogeneous segments containing speech (SAD), music (MD),
noise (ND), and overlapped speech (OSD) with a unified model.
Early studies on speech [9], overlapped speech [10], and music [11]
segmentation are focused on the statistical modeling of handcrafted
acoustic features. Currently, the segmentation is mainly performed
with neural networks and supervised learning. While each task has
been generally solved independently as a binary frame-wise clas-
sification task (SAD [12], OSD [13, 14], MD [15, 16]), more recent
approaches propose to solve multiple tasks simultaneously. The mul-
ticlass model predicts a single class and class intersection is empty.
For example, in [17], authors propose to segment speech, music, and
noise with a single multiclass model. A few works also report joint
SAD and OSD [18–20]. In this paper, SAD, OSD, MD, and ND
are simultaneously solved as a multilabel frame classification task.
Thus, multiple classes can be predicted simultaneously, and the in-
tersection between classes is not empty.

We propose to train an explainable proxy model from a pre-
trained multilabel segmentation model (designated as the teacher).
The architecture is inspired by [7]. The proxy is trained following
a teacher-student approach, commonly used in knowledge distilla-
tion [21]. The teacher inputs Wavlm pre-trained features [22] and
outputs the pseudo probability of each class. Two types of proxy
models are investigated. The former inputs a spectrogram and the
latter uses the teacher’s Wavlm outputs. Contrary to [7], we con-
sider frame-level, i.e. time segmentation, instead of utterance-level
classification. We demonstrate that proxy models provide similar or
even better performance as the teacher while being smaller and ex-
plainable. These models provide local (segment-level) explanations
by highlighting the salient frequencies for a given audio input and
global explanations that can be seen as class prototypes. Contrary
to state-of-the-art methods such as Shapley [6] or SoundLime [4],
our contribution not only brings post-hoc explanations but also pro-
vides decisions. Finally, we show that the relevant information for
classification can be mapped to the spectral domain. A classification
score confirms the selection of relevant components. To the best of



our knowledge, this is the first intent to design an explainable neural
multilabel segmentation model.

This paper is arranged as follows: sec. 2 presents the system
along with the proxy model training strategy. Sec. 3 introduces the
experimental protocol and sec. 4 the segmentation results. Sec. 5
demonstrates the explainability capacities of the proposed system.

2. NMF-BASED EXPLAINABLE MODEL

The architectures and training framework of the proxy models are
described in this section.

Wavlm
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Fig. 1: Diagram of the proposed architecture for NMF-based multi-
label segmentation explanation. The A and B branches represent the
spectrogram and Wavlm-based proxy models respectively.

2.1. Multilabel audio segmentation formulation

Audio segmentation is solved as a multilabel framewise classifica-
tion task. Let {S,y} be a training set composed of sequences of
acoustic features S ∈ RD×T , where D is the feature vector di-
mension and T the number of frames, and the aligned annotations
y ∈ RC×T , with C being the number of classes. Let f : RD×T →
RC×T be a parametric function that estimates the logits for each
class from the sequence of features such as ŷ = f(S). The parame-
ters of f are optimized to minimize a loss function L(ŷ,y) (here we
used a cross-entropy), with an iterative algorithm. The sequence of
feature S is extracted from the audio signal by an additional function
S = g(x).

2.2. Non-negative matrix factorization (NMF)

NMF has been extensively used for audio signal processing [23].
This approach factorizes a given non-negative matrix X ∈ RF×T

+

into two non-negative matrices: W ∈ RF×K
+ , usually denoted as

dictionary, and H ∈ RK×T
+ , denoted as activations. K represents

the rank of the factorization. Both matrices are jointly learned by
solving

W,H = argmin
W,H

∥X−WH∥22, (1)

with a two-step optimization process [8]. In this work, we consider
the sparse NMF implementation [24] as suggested in [7]. In our
segmentation proxy model, the dictionary W is pre-learned while
the activation H is extracted by a neural model Ψ and referred to as
an embedding. The proxy model architecture and the way NMF is
integrated is described in the following subsection.

2.3. Proxy model framework

In this work, the f model is pre-trained with frozen weights and
serves as a teacher for the proxy model. We use a similar approach

as [7] where the proxy model is composed of two functions. Let Ψ
be a function that maps a sequence of D-dimension feature vectors
S ∈ RD×T to the embedding H ∈ RK×T

+ . The proxy model log-
its ỹ ∈ RC×T are obtained with an additional Θ function such as
ỹ = Θ(H). The log-spectrogram of the input audio signal X̃ is also
reconstructed from H with the W dictionary: X̃ = WH. Non-
negativity is ensured by a ReLU activation function σ, e.g. σ(H).
Note that W can also be trained simultaneously with the model.

The training objective of such a model is composed of 3 loss
terms. The first trains the proxy model to mimic the teacher’s deci-
sions. Considering multilabel segmentation, and following the com-
mon approaches in knowledge distillation [21], we use the binary
Kullback-Leiber (KL) divergence between the teacher and the proxy
model output distributions, denoted as LKD(ŷ, ỹ).

The second loss term constrains the H embedding to minimize
the NMF-based spectrogram reconstruction and is implemented as
the squared L2-norm between the target spectrogram X and the re-
construction X̃:

LNMF (X, X̃) = ∥X−WH∥22. (2)

The last loss term minimizes the L1-norm of the H embedding
to enforce its sparsity. Having a sparse embedding reduces the num-
ber of active components, and makes the explanation step easier
(Sec. 5). Finally, the global training objective is the weighted sum
of the 3 terms given in eq. 3 where (α, β, γ) is a triplet of hyperpa-
rameters to weight each term of the loss.

L = αLKD(ŷ, ỹ) + βLNMF (X, X̃) + γ∥H∥1. (3)

3. EXPERIMENTAL PROTOCOL

3.1. Datasets

In the current literature, there is no audio data annotated to perform
SAD, OSD, MD, and ND simultaneously. Therefore, models are
trained on 4 datasets listed in the table 1 to perform multilabel audio
segmentation so that all the classes are represented. The teacher is
optimized on the 4 training subsets described in the papers associ-
ated with each dataset. This represents about 300 hours of annotated
audio for training. Due to the large amount of data, the teacher pre-
training requires a lot of resources and a lengthy training process to
converge. We propose to train the proxy model on a subset of the
training set. Only Albayzin (AragonRadio train and 324TV) and Di-
Hard train data are used for the knowledge distillation step, which
represents 87 hours of audio.

To evaluate the segmentation performance, both teacher and
proxy models are evaluated following the same protocol. The
models are evaluated on Aragon Radio and DiHard III test sets.
The test partitions follow the split proposed for the original chal-
lenges [25, 26].

3.2. Model architectures

The teacher model is similar to [14] and is composed of two main
parts: feature extraction and sequence modeling. The former is per-
formed using pre-trained Wavlm Large [22] that outputs a sequence
of 1024-dimension vectors. The latter transforms the sequence of
features to predict the segmentation. It is composed of a 64-channel
bottleneck layer followed by 3 TCN blocks [30] composed of 5 1-D
convolutional layers with exponentially increasing dilatation. A 1-D
convolution layer processes the output of the TCN blocks to project



Table 1: Datasets used to train both teacher (T) and proxy (P) models
with the available labels in each of them. Missing annotations for a
given class are removed from the classification loss.

Model Available label

Dataset T P SAD MD ND OSD

Albayzin [25, 27] ✓ ✓ ✓ ✓ ✓
OpenBMAT [28] ✓ ✓
ALLIES [29] ✓ ✓ ✓
DiHard III [26] ✓ ✓ ✓ ✓

the hidden representations to the logits space. A sigmoid activation
function is then applied to get normalized scores for each class.

As described in section 2, two types of proxy models are inves-
tigated. In the first approach, the proxy model (denoted as Spec. in
Table 2) inputs a log-spectrogram extracted on 64ms sliding win-
dows with 20ms step. In that case, S = X. The Ψ function is im-
plemented with the same TCN-based architecture as the teacher but
with 4 TCN blocks of 4 convolutional layers. The bottleneck and
hidden layers are composed of 128 and 256 channels respectively.
The second approach uses Wavlm features (denoted as Wavlm) from
the teacher as input. In this case, the Ψ model is smaller to reduce
the number of trainable parameters w.r.t. the teacher. The archi-
tecture is the same as the teacher’s but with only 2 TCN blocks of
3 convolutional layers. The Θ function is implemented as a linear
layer with no bias of K input dimensions and C outputs, followed
by a sigmoid.

3.3. NMF pre-training and hyperparameters

As previously introduced, the W dictionary is pre-trained to map the
embedding to the frequency domain. The pre-training is performed
on a subset of Aragon Radio using Sparse NMF [24]. We select seg-
ments between 1s and 4s representing each type of class. In practice,
we found that building a subset with 1200 segments containing 16%
of speech and 42% of music and noise offers the best reconstruction
quality for each type of signal. This approach however showed lim-
ited reconstruction quality with the Wavlm-based model. To tackle
this, we explored training the W dictionary along with the proxy
model (denoted as Wavlm (W trained)). In this case, the dictionary
is implemented as a linear layer with no bias followed by a ReLU
activation. For each approach, the NMF rank is fixed at K = 256
since it offers the best performance.

The proxy model is optimized with the ADAM optimizer
with a learning rate of 10−3 and batches of 64 segments. We set
(α, β, γ) = (10, 5, 0.1) to scale the classification and reconstruction
losses while lowering the impact of the sparsity term.

4. SEGMENTATION PERFORMANCE

This section compares the performances in terms of the F1-score of
each proxy model to the teacher model which is considered as our
baseline. The SAD, ND, MD, and OSD performances are presented
in the table 2. The proxy models are expected to reach similar, even-
tually slightly lower, performances as the teacher. The score ob-
tained on OSD by the teacher model compares with the state of the
art which is 63.4% on DiHard III [14].

The spectrogram-based system (spec.) shows 96.3% and 95.5%
F1-score on the SAD task on DiHard and AragonRadio respectively.
This represents a little degradation concerning the teacher. The ND
(73.0%) and MD (87.6%) are also degraded by an absolute -5,6%

Table 2: F1-score (%) obtained for each segmentation task on both
AragonRadio and DiHard III evaluation sets. Bold values indicate
the significantly best scores.

Aragon Radio DiHard III

Model SAD ND MD SAD OSD

Teacher 96.8 78.6 93.2 96.9 60.7

Spec. 96.3 73.0 87.6 95.5 40.1
Wavlm (W trained) 96.7 78.5 93.0 96.8 60.8
Wavlm 96.8 79.5 93.1 96.9 61.4

compared to the teacher. On OSD, the performance is strongly de-
graded with a 40.1% F1-score. The spectrogram-based model de-
grades the segmentation performance. However, this result is ex-
pected since the teacher is trained on Wavlm pre-trained features
which perform better than the spectrogram. Considering the cost of
Wavlm pre-training and the inference time, the spectrogram-based
model offers a convincing performance.

Using Wavlm features as input of the proxy model drastically
improves the segmentation performance. When the NMF dictionary
is trained simultaneously as the segmentation task, the proxy model
reaches 96.1% and 96.7% F1-score on SAD. The ND performance
remains lower than the teachers with a 72.6% F1-score, which repre-
sents an absolute -6% degradation. The MD and OSD performances
are similar to the teacher with 93.0% and 60.5% F1-score respec-
tively. While showing similar performance as the teacher, training
the NMF dictionary degrades noise detection. When the NMF dic-
tionary is pre-learned, the proxy model delivers similar or even better
segmentation performance as the teacher. The proxy model reaches
a 79.5% F1-score on ND (+0.9% absolute improvement w.r.t. the
teacher), and 61.4% F1-score on OSD. This system shows the best
segmentation performance among all the models.

The Wavlm-based proxy models deliver the best performance
when the dictionary is pre-learned. This model is kept for explana-
tion extraction in the next section.

5. DECISION EXPLANATION

This section describes the explanation extraction process to identify
the relevant frequency bins for the segmentation.

5.1. Explanation extraction

The NMF framework allows to map the H = [h1, · · · ,ht, · · · ,hT ]
where ht ∈ RK embedding to the frequency domain. Furthermore,
the segmentation prediction is obtained from this embedding with
the Θ linear transformation. The first step in the explanation process
is to identify the k ∈ [1, · · · ,K] NMF components that are the most
relevant for each classification task. We first apply a pooling opera-
tion to the embedding by averaging it over the time dimension: zk =
1
T

∑T
t=1 hk,t. To identify the relevant components to detect the class

c, we define a relevance vector rc = [r1,c, · · · , rk,c, · · · rK,c] in
which each element is computed following (4), where θk,c is the k-
th weight of the linear layer associated to class c. The highest values
in r correspond to the most relevant component. Therefore, the most
relevant components are selected by applying a threshold τ . A fil-
tered relevance vector Rc,τ is obtained, in which the k-th element is
defined as:

Rk,c(τ) =

{
rk,c = zk × θk,c if rk,c > τ

0 otherwise.
(4)
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samples from AragonRadio eval set with speech only (left) and mu-
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5.2. Segment-level (local) explanation

The filtered relevance vector Rc(τ) belongs to the same space as the
H embedding. Hence, it can be projected to the frequency domain
by the following NMF linear transformation:

Xc(τ) = WRc(τ), (5)

where Xc(τ) ∈ RK is the projection of the relevant compo-
nents in the frequency domain given class c and threshold τ . This
representation highlights the relevant frequency bins to detect class
c.

After identifying the relevant components, it is necessary to
measure how confident the model is regarding this selection. Model
confidence is evaluated with the classification scores. The score is
obtained by only keeping the relevant components in the H embed-
ding and forwarding this filtered embedding Hc(τ) through the Θ
layer such that ỹc(τ) = Θ (Hc(τ)). Thus, the frequency-domain
explanation Xc(τ) can be compared to the model output for a given
threshold τ .

Figure 2 shows the relevant components projected in the fre-
quency domain with (5) for two types of segments: speech and mu-
sic. The relevant components are presented as a function of the rel-
evance threshold: the higher τ the fewer components are selected.
The classification score obtained from the selected components is
also presented. The figure shows that the relevant components for
speech are located between 100Hz and 1kHz. While τ > 0.40,
the most relevant components for speech classification remain, e.g.,
around 200Hz. As we are in a multilabel framework, the presence of
speech can also imply the presence of overlap, therefore overlap pre-
diction is also affected by these components. This can be explained
by the presence of common relevant frequency bins between SAD
and OSD (Fig. 3) as described in the next section.

In the case of MD, the relevant frequency bins are located
between 50Hz and 200Hz. The components located in the band
[60,80]Hz are highly relevant for music detection. When those are
removed (τ=0.9), the music prediction drops. Speech and over-
lap scores remain similar for each τ since the frequency bins are
different between music and these classes.
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Fig. 3: Global relevant components for speech (sp), music (mu), and
overlapped speech (ov).

The quality of the reconstruction in the frequency domain limits
the explanation extraction. In the case of the Wavlm-based proxy
model, the reconstruction is of low quality in high frequencies. Thus,
no explanation can be extracted in this part of the spectrum.

5.3. Global explanation

The previous explanation is obtained at the segment level, meaning
that the relevant components are identified locally. However, there
is no guarantee that the components used to detect a class c in a
segment are the same across an entire dataset. Thus, we propose
a global explanation, r̄c vector, which highlights the global relevant
components to detect the class c. It averages the relevance vectors rc
for a set of N segments Dc = {x1,c, · · · ,xn,c, · · ·xN,c} containing
the class of interest c: r̄c = 1

N

∑
xc∈Dc

rc.
To compute the average relevance r̄c, N = 100 segments con-

taining exclusively each class of interest are selected to build each
subset Dc. To better balance the data towards the overlap class, two-
speaker artificial speech mixtures are generated by summing two
randomly selected speech segments. The noise class is not repre-
sented since too few segments contain exclusively noise.

Figure 3 presents the average relevance r̄c for each k compo-
nent, computed for SAD, OSD, and MD. It shows that some compo-
nents are typical for SAD and OSD. For example, the component of
index 50 is activated for both classes. The figure also demonstrates
that the components related to music are different from speech and
overlap. This confirms the behavior observed at the segment level in
Fig. 2. Finally, Fig. 3 shows negative values that are due to negative
weights in the Θ layer. This may highlight some components that
are very discriminant between classes, e.g. around k = 70 where
the relevance is negative for speech and positive for overlap.

6. CONCLUSIONS

This paper proposes a set of explainable proxy models for multilabel
audio segmentation. The proxy is trained to fit the logit distribu-
tion of a pre-trained black-box teacher model. Non-negative Matrix
Factorization (NMF) is the core of this approach. It maps the embed-
ding used for the decision-making process to the frequency domain.
Hence, one can easily identify the relevant frequency bins used to
predict the segmentation. Experiments conducted on AragonRadio
and DiHard III datasets show that the proxy model offers the same
performance as the teacher while providing strong explainability ca-
pacities. In the future, we plan to work on the evaluation of the
extracted explanations
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