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The wave transport properties of two-dimensional stealthy hyperuniform distributions of rigid scatterers
embedded in a waveguide are experimentally characterized for scalar waves in airborne audible acoustics. The
nonresonant nature of the scatterers allows us to directly link these properties to the geometric distribution of
points through the structure factor. The transport properties are analyzed as a function of the stealthiness χ

of their hyperuniform point pattern and compared to those of a disordered material in the diffusive regime,
which are characterized by the Ohm’s law through both the classical mean free path and the corrected mean
free path by the collective approximation considering the effects of correlation. Different scattering regimes
are theoretically and numerically identified showing transparent regions, isotropic band gaps, and anisotropic
scattering depending on χ . The robustness of these scattering regimes to losses, which are unavoidable in audible
acoustics is experimentally unveiled.

DOI: 10.1103/PhysRevB.106.064206

I. INTRODUCTION

Wave transport properties in complex systems are one of
the most studied topics in wave physics. Waves traveling in
these complex systems often undergo multiple scattering. De-
pending on both the distribution of scatterers and the physical
properties of each scatterer, several phenomena can appear in
different ranges of frequencies such as Anderson localization
[1,2] in disordered systems or wave collimation [3] and fo-
cusing [4] in periodic systems. The opening of band gaps is
probably the most celebrated phenomenon in periodic media
and has given rise to a plethora of studies in electromagnetic
[5] or elastic [6] wave transport. In photonic [7,8] or phononic
[9,10] crystals, two main phenomena contribute to the gener-
ation of the band gaps [11,12]: The Bragg scattering (based
on geometrical arguments) and the excitation of the single
scatterer Mie resonances (based on intrinsic local properties
of the scatterer) [13,14]. While Bragg scattering establishes
the necessary condition for the opening of band gaps, Mie
resonances are helpful for the opening of full band gaps in
two or three dimensional systems [12,15,16].

Recently, stealthy hyperuniform materials have emerged as
amorphous systems presenting unique wave transport proper-
ties due to the correlated disorder and therefore have opened
new venues for controlling waves [17–23]. Hyperuniform ma-
terials are based on the concept of hyperuniformity, i.e., the
suppression of the long-range density fluctuations of the point
pattern [24–29]. Stealthy hyperuniform point patterns are
characterized by the stealthiness χ , which imposes constrains
on the structure factor in the reciprocal space. Several papers
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have shown the evolution of the point distribution with χ in
1D [23,27,30], 2D [25–27], and 3D [26,27] systems. Three
classes of point patterns can be distinguished in function of χ :
Disordered, wavy-crystalline, and crystalline [26]. For values
of χ � 0.45, isotropic structure factors in the reciprocal space
are obtained, i.e., with low angular fluctuations corresponding
to disordered systems. Anisotropic structure factors in the re-
ciprocal space are obtained corresponding to wavy-crystalline
and crystalline point patterns for values χ � 0.55.

Wave transport properties in materials made of hyperuni-
form distributions of scatterers, have recently been analyzed
for electromagnetic [17,18,31] and elastic [20,32] waves by
combining the geometric properties of stealthy hyperuniform
point patterns with the Mie resonances of the scatterers. So
designed hyperuniform materials are transparent to incident
long-wavelength excitation and present isotropic band gap at
shorter wavelengths with χ � 0.45. This last features is in
opposition to the quasiperiodic systems in which anisotropic
band gaps are created with χ � 0.5 [29,33]. Waveguides
with arbitrary paths have been designed by exploiting these
isotropic full band gaps [17,18]. Nevertheless, Mie resonances
are always used in all these examples, although hyperuni-
form materials should be uniquely characterized by the spatial
Fourier transform of the point pattern. In this sense, the use of
nonresonant scatterers seems the best option to discriminate
between scattering produced by the local resonances and the
scattering produced by the peaks of the structure factor due to
the point pattern distribution. For example, when disorder is
introduced into periodic systems, Bragg and Mie resonances
together have been shown to play important roles [11,15]: The
band gap closes rapidly as disorder increases when the gap
is due to Bragg scattering, while it is more robust, when it
is due to Mie resonances [12,16]. Recently, several papers
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have analyzed the interplay of these two phenomena in hy-
peruniform materials [22,23]. It has been shown that when
the local resonances are tuned in the transparent frequency
band of the hyperuniform material, a dip of transmission is
produced [22], while if the resonance is close to the Bragg
frequency, the isotropic band gaps in hyperuniform materials
are wider [23]. The acoustic system presented in this paper
allows to use nonresonant scatterers to build the hyperuniform
materials and therefore ensures that the transport properties
are only due to hyperuniform point pattern distribution used
to build the material.

In this paper, the wave transport properties of two-
dimensional (2D) hyperuniform distributions of rigid scat-
terers embedded in a rectangular cross-sectional waveguide
are numerically and experimentally characterized for scalar
waves in airborne audible acoustics. In this regime, solid
scatterers are usually nonpenetrable (impervious) and present
a Neumann boundary condition due to the huge impedance
mismatch between their properties and those of the air (host
medium) [34]. These scatterers are thus considered acousti-
cally rigid and do not resonate. Therefore, airborne audible
acoustics seems to be a good candidate to investigate the
connection between the wave transport properties of a given
distribution of rigid scatterers and its corresponding structure
factor. We perform both a multimodal method (Sec. III B 1)
and a full wave solution of the Helmholtz equation (finite
element method, Sec. III B 2) to obtain the transport prop-
erties of the system made of a discrete distribution of rigid
scatterers. The obtained results with these two methods can
be compared with experiments (Sec. III B 2), and with the
theoretical transport properties obtained from the Ohm’s law
using the mean free path of the media calculated with and
without the effects of correlation (Sec. III B 3). In order to
consider the effect of correlation, we make use of the col-
lective approximation [35]. Moreover, viscothermal losses are
not avoidable in acoustics. As a consequence, we solve the
problem considering an absorption length in order to account
for the viscothermal losses. We pay attention to the transi-
tion from a random to a periodic distribution of scatterers
in hyperuniform materials by changing the stealthiness of
the system χ . The transport properties for low values of χ

(uncorrelated disorder) are well captured by the Ohm’s law
using the classical mean free path of the media. As soon as
the value of χ increases, the transmission calculated with
the Ohm’s law by means of the corrected mean free path
by the collective approximation [35] evidences the presence
of the isotropic band gaps, which becomes anisotropic for
χ � 0.5. These results emphasize the relation of the transport
properties in hyperuniform materials with the distribution of
points through the structure factor by eliminating the local
resonance of the scatterers. The good agreement between
simulations, experiments, and theory shows that the transport
properties of the hyperuniform materials are robust to the
presence of losses.

II. HYPERUNIFORM POINT PATTERNS

Let us consider a distribution of N points located at po-
sitions ri (i = 1, ..., N ) inside a square domain of side L, as
shown in Fig. 1(a). The structure factor S(q) of the point
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FIG. 1. (a) Hyperuniform point pattern of N = 600 points in a
square region of side L. The point pattern can be rotated an angle θ

with respect to its center. The point pattern has been generated by us-
ing the procedure described in the main text and in Refs. [29,36,37].
The point pattern shown in the area Ls × h delimited by the dashed
lines is used to extract the point pattern that will be used to made a
hyperuniform material by placing rigid scatterers at those positions.
Inside this area the number of points will be Ns � 200. We char-
acterize the acoustic wave transport properties of such material by
measuring the scattering coefficients of the sample when embedded
in a rectangular acoustic waveguide. (b) Shows a picture of the
acoustic waveguide used in the experimental set-up displaying how
the material is placed inside. The material is excited by an incident
plane wave. For each angle θ , a different material can be created and
then analyzed though the transmission coefficient as a function of the
angle θ .

pattern ri (i = 1, ..., N ) is defined as its spatial Fourier trans-
form and reads as follows [38,39]:

S(q) = 1

N

N∑
i=1

N∑
j=1

e−ıq.(r j−ri ), (1)

where q is a vector in the Fourier space. It is worth noting here
that if the point pattern is periodic, the structure factor will
present the characteristic Bragg peaks [29]. For example, they
are located at qB = (n2π

√
N/L, m2π

√
N/L), with m, n ∈ Z

for a two-dimensional square array, which periodicity is a =
L/

√
N . For periodic structures, qB represents the well-known

vectors of the reciprocal lattice in the reciprocal space.
The hyperuniformity concept can be defined by either the

local number variance σ 2(R) (i.e., the variance in the num-
ber of points within a randomly-thrown spherical window of
radius R) of the point pattern in the real space or by the
structure factor S(q) in the reciprocal or Fourier space [29].
Here, we use the structure factor S(q). Hyperuniform point
patterns are characterized by a structure factor that vanishes
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FIG. 2. [(a)–(d)] Typical configurations of two-dimensional stealthy hyperuniform points pattern scatterers placed in a wave-guide of
width h = 400 mm and length Ls = 1.5h for different values of χ . Their corresponding structure factor are presented [(e)–(h)] for a single
point pattern generation at initial angle θ = 0; [(i)–(l)] show the corresponding angularly averaged structure factor.

in the long-wavelength limit, i.e., S(q → 0) = 0 where q =
|q|, while stealthy hyperuniform point patterns are charac-
terized by a structure factor that vanishes around the origin
of wavevectors, S(q < qc) = 0 with qc the cut-off reciprocal
vector defining � that refers to the set of the constrained
reciprocal vectors (q < qc) [25]. The distribution of points
that meets these conditions on the structure factor can be
characterized by the stealthiness χ . The stealthiness is the
ratio of the number M(�) of constrained reciprocal lattice
vectors to the number of degrees of freedom in the real space
d (N − 1) in d dimensions (if the system translational degrees
of freedom are neglected) [27]. In this paper, we consider a
two-dimensional system d = 2 and thus � is a circular region
of radius qc in the reciprocal space centered in the origin of
coordinates. Considering the symmetry of the structure factor,
S(q) = S(−q), and M(�) = 1

2π (qcL/2π )2, the stealthiness
becomes

χ = (qcL)2

16π (N − 1)
. (2)

It is worth noting here that the expression of χ strongly de-
pends on the shape of the domain �. Other expressions can

be obtained when the � is a square centered in the origin o
coordinate with side qc as shown in Ref. [19] for instance.

A stealthy hyperuniform point pattern characterized by a
stealthiness χ is designed with N = 600 points embedded in
a square area of side L. This point pattern is generated using
the procedure given by the works of Zhang et al. [36,37]
and Froufe-Pérez et al. [29]. For convenience and because
of experimental constrains, we consider a subset of Ns points
embedded in a rectangular area of size Ls × h as shown in
Fig. 1(a). Note that other stealthy hyperuniform point patterns
with the same χ can be generated by rotating the initial point
pattern by an angle θ and keeping the points located in the area
Ls × h as shown in Fig. 1(a). Our approach here is to average
over a finite number of samples that are originated from a sin-
gle large configuration and cropping it. This approach allows
us to extract different patches with the same hyperuniformity
properties [33,40].

Figures 2(a)–2(d) represents four stealthy hyperuniform
point patterns made of Ns � 200 points, created with the
previous procedure, for four different stealthiness χ =
[0, 0.3, 0.48, 0.6]. We have analyzed the evolution of the point
patterns by increasing the radius of the constrained area qc,
or equivalently, by increasing the stealthiness χ . The values
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of the stealthiness are bounded between χmin = 0 and χmax =
π/4 (when qc = 2π

√
N/L), leading respectively to Poison’s

distributions and perfect crystal lattices [27]. The point pat-
tern clearly crystallizes when the stealthiness increases and
approaches to 0.5. Figures 2(e)–2(h) show the structure factor
calculated by using Eq. (1) showing the corresponding point
patterns due to the discretization for each point pattern. The
vectors in the reciprocal space are normalized by the ampli-
tude of the smallest Bragg reciprocal vector qB = 2π

√
N/L.

The circumference of the constrained area in the reciprocal
space of radius qc = 4

√
χNπ/L is clearly visible. In addi-

tion, the structure factor clearly exhibits an extra isotropic
region close to qc for χ = 0.48, where an increase of the
structure factor is visible (yellow region). When χ � 0.5,
the structure factor is anisotropic. The system behaves as a
wavy-crystalline system for χ = 0.6 as described in Ref. [25].
Finally, Figs. 2(i)–2(l) show the angularly average structure
factor over 60 realizations. The information on the isotropy
is lost, but the cutoff wavevector of the hyperuniform ma-
terials is clearly visible, where S(q) = 0 for all q < qc. The
diffraction pattern visible around q = 0 is a phenomenon
that appears when the Fourier Transform is calculated with a
finite window. Considering rectangular windows, the diffrac-
tion pattern can be observed as soon as the sampling of the
media in the real space does not correspond to the nodes
of the diffraction pattern in the reciprocal space. Here, our
sampling is driven by the size of the scatterers that renders
the diffraction pattern by the Fourier transform visible. It can
be removed by following the procedure shown in Ref. [19].
However, we prefer to keep it as it can be associated to
the finite size effects of the sample and also for the sake of
simplicity.

III. ACOUSTIC WAVE TRANSPORT
IN 2D HYPERUNIFORM DISTRIBUTION

OF RIGID SCATTERERS

A. 2D Hyperuniform acoustic materials

The hyperuniform material used in this work is made by
placing aluminum cylinders of radius rs = 0.5 cm at the po-
sitions of the extracted point pattern in the rectangular area
of size Ls = 0.6 m and h = 0.4 m as schematically shown
in Fig. 1(b). Figure 3(a) shows a picture of one of the 2D
hyperuniform acoustic materials experimentally analyzed in
this paper.

In order to acoustically characterize the 2D hyperuniform
materials, they are embedded in an air filled rectangular
waveguide with h = 0.4 m and height hz = 1.5 cm. The cutoff
frequency for the second propagating mode along the waveg-
uide height, i.e., the z direction, is around 11 500 Hz. The
studied frequency range goes from 400 Hz to 8000 Hz, in such
a way that the waveguide can be considered as 2D because a
single mode can exist along the z direction. The right end of
the waveguide is anechoic. The system is excited by a plane
wave traveling from the left to the right.

B. Wave transport in complex media embedded in a waveguide

The wave transport properties of such materials are ob-
tained via their scattering coefficients, i.e., by the reflection

(a)

(b)

(c)

(b)

(c)

Scattering

region

x1x2 x4x30 x

h
y

FIG. 3. (a) Top view of the experimental setup. The scatter-
ing region is made of 200 aluminum cylinder of 1-cm diameter.
(b) Schematics representation of the scattering problem for numer-
ical computation. (c) Schematics representation of the scattering
problem with the four lines at x1, x2, x3, and x4 used to measure
pressure field.

and transmission coefficients defined in this section. The wave
transport properties of the hyperuniform materials can thus
be theoretically, numerically, and experimentally character-
ized as explained here. This allows us to analyze the relation
between the properties of the point pattern in the reciprocal
space with the scattering of the system.

1. Multimodal method

The wave transport properties of the stealthy hyperuniform
materials are obtained numerically by a multimodal method
where the Helmholtz equation (∇2 p + k2 p = 0 with ∂n p = 0
on the rigid boundaries) is projected on the local transverse
modes and then solved using an admittance matrix as de-
scribed in Refs. [41–45]. This procedure is detailed in the
Supplemental Material [46]. To solve this problem, we dis-
cretize the scattering region on a regular grid of size �x = �y.
The scattering medium of length L = Nx�x is thus constituted
of Nx columns numbered as i = {0, 1, ..., i, ..., Nx} and Ny

rows numbered as j = {0, 1, ..., j, ..., Ny}. Thus, h = Ny�y

[see Fig. 3(b)]. Here, each column is assumed invariant along
the x axis and the associated scattering matrix of the ith
column Si is solved using the admittance matrix. The global
scattering matrix S of the system is calculated by assembling
the single scattering matrix of each column characterizing
the scattering in the far field region, so accounting for the
propagative components. The global scattering matrix reads

S =
(

R+ T−

T+ R−

)
, (3)
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where R+, R− are the reflection coefficients matrix from each
side of the full scattering medium and T+ and T− the corre-
sponding transmission matrices. We notice that the system is
reciprocal, i.e., ST = S (T meaning transpose) [47].

The general solution for the acoustic pressure ψ (x, y) can
be expressed considering the separation of variables as fol-
lows:

ψ (x, y) =
∑

m

pm(x)hm(y), (4)

where hm(y), m ∈ N, is the complete set of orthonormal func-
tions, solutions of the eigenproblem h′′

m(y) = −k2
y hm(y) (with

h′
m ≡ dhm/dy) considering rigid boundary conditions at y = 0

and y = h, i.e., h′
m(h) = h′

m(0) = 0. The transmission of an
incident mode n to a transmitted mode m is given by

p+
m(L/2) =

∑
n

Tmn p+
n (−L/2), (5)

where Tmn are the components of the transmission matrix. The
conductance of the system can be calculated directly from
these coefficients using the Landauer formula [48]

g = Tr(TT †), (6)

with Tr() the trace and T †, the adjoint of T . In this pa-
per, the average conductance over all angles θ ∈ [0; 2π ] is
denoted 〈g〉.

We assume that the wave energy is distributed over all
modes via a multiple scattering process. The sum of the trans-
mission coefficients, corresponding to the transmission of the
incident plane wave, is linked to the conductance by

〈T 〉 = 〈g〉/Nmod, (7)

where Nmod is the number of propagating modes considered in
the solution.

2. Experimental and numerical full wave characterization
of the scattering properties

In addition to the multimodal calculations described above,
we reconstruct the scattering parameters of the material lo-
cated in the scattering region as shown in Fig. 3(c). We
both experimentally measure and numerically evaluate the
pressure field along the y axis of the waveguide at 41
equidistant positions. Four lines separated by a distance
of x2 − x1 = x4 − x3 = 1.5 cm upstream (x1, x2) and down-
stream (x3, x4) are considered to separate both right-going
and left-going waves on both sides of the sample. On the
left-hand side (x < −Ls/2), modes are associated to complex
pressures, p±

n (x) = c±
n e±iknx, while on the right-hand side [x >

Ls/2, assuming anechoic termination, i.e., p−
n (x) = 0], modes

are only associated to complex pressures p+
n (x) = d+

n eiknx. We
note that in this paper the time harmonic convention is e−iωt .

The complex coefficients c±
n and d+

n can be obtained via
the following approximation of the integral projection on
modes hn:

p+
n (x) + p−

n (x) �
∑

i

ψ (x, yi )hn(yi ), (8)

where ψ (x, yi ) is the evaluated/measured pressure at the ith
position along the y direction of the waveguide at position x.

The transmission, through the sample, of an incident plane
wave n = 0 to the mth mode is given by the transmission
coefficient

p+
m(L/2) = Tm0 p+

0 (−L/2). (9)

The numerical simulations have been conducted with the
acoustic module of COMSOL Multiphysics, considering per-
fectly matched layers (PML) at the anechoic termination of
the waveguide. In the experimental set-up, the anechoic ter-
mination is made of a foam block of triangular shape. In
the experiments, the plane wave is generated by a set of
nine equally-spaced identical high-speakers mounted on the
left-end side of the waveguide providing a quasi plane wave
excitation along the frequency range of the study.

3. Wave transport properties of a disordered material

The wave transport properties of a disordered material
made of a random spatial distribution of scatterers embedded
in a waveguide can be described with a single scale parameter
s = Ls/�s [49,50]. The scattering mean free path �s measures
the average distance needed for the wave to undergo enough
scattering to lose the information of its initial incident direc-
tion. The scattering mean free path can be calculated from
the number density of scatterers σn and the scattering cross
section of a single scatterer σs. However, this cannot be gener-
ally computed in correlated disordered systems. The so-called
collective approximation [35] should be used instead, since
this approximation explicitly includes the structure factor of
the correlated structure. The structural correlations can be
seen as a modification of the angular scattering pattern of
the individual scatterers and be accounted for by correcting
the expression of the single scatterer differential scattering
cross section dσ/dθ by the static structure factor S(q) as
dσ ∗

s
dθ

= dσs
dθ

S(q). This “effective” scattering cross section can
be used to calculate a corrected scattering mean free path
based on the collective approximation �∗

s (see Supplemental
Material [46]) and a corrected scale parameter s∗. We note
here that both �s and �∗

s are frequency dependent parameters.
Three main transport regimes are associated with the

range of scale parameter s that are accurately described
by the Dorokhov-Mello-Pereyra-Kumar (DMPK) equa-
tion [49,51,52]. When the scattering is weak (s � 1), a
ballistic transport model can be applied and 〈g〉 ≈ Nmod. The
second regime is the diffusive regime (1 � s � Nmod), where
the transverse modes are strongly coupled and the average
conductance decreases with the length of the sample accord-
ing to the Ohm’s law

〈g〉 = Nmod/(1 + s). (10)

We note that this expression can be also calculated with
s∗. The DMPK equation also provides a property related to
the variance of the transmission coefficient. In the diffusive
regime, the variation is small and does not depend on the scale
parameters of the medium. It reads as follows:

var(T/〈T 〉) = 2
3 〈g〉. (11)

As the diffusion regime is isotropic by definition and pro-
duces small variations in the transmission coefficient from a
disordered realization to another, we consider this quantity as
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FIG. 4. [(a), (c), (e), (g)] Average transmission over 60 realizations through an hyperuniform material as a function of the frequency. The
vertical dashed lines represent the cutoff frequency qc that are determined by χ . The red line represents the theoretical transmission deduced
from the Ohm’s law using the theoretical mean free path of the random media (see Supplemental Material [46]). This line is the same for all the
cases, as the scatters are the same, so the scattering cross section, as well as the density of scatterers. Results using the multimodal procedure
are displayed in blue lines and results using COMSOL computation are displayed by the black lines with open circles. The band gap of the
perfectly crystallized media is highlighted by the yellow zone in the ξ = 0.6 case (see Supplemental Material [46]).(b), (d), (f), (h) Variance
of the transmission as a function of the frequency compared to the theoretical results 3var(T/〈T 〉)/2〈g〉 [from Eq. (11)].

a threshold to measure the isotropy of the structure. Finally,
when s � Nmod, the probability of a wave to return to the same
coherent volume is not negligible. The interference generated
in this volume traps the waves to a finite region of space. The
conductance of the medium drops drastically and a transition
occurs from the diffusive to the localized regimes.

When losses are accounted for in disordered material, the
absorption length �a must be introduced. Two regimes are dis-
tinguished depending on the value of this absorption length.
The first regime appears when the losses are strong, i.e., when
the absorption length is much smaller than the mean free path,
i.e., �a � �s. In this case, the wave is exponentially damped,
T = exp (−Ls/�a), before the scattering effects appear. The
scattering of the wave is negligible and the effect of hyper-
uniformity and other phenomena arising from scattering are
not observed. The second regime appears when the losses are
weak, i.e., when the absorption length is much larger than the
mean free path, i.e., �a � �s. The wave scattering coexists
with the losses and an absorbing diffusive transport of the
wave takes place.

The generalized DMPK equation for disordered systems
has been widely studied by Brouwer [53] in the absorbing
diffusive regime and the transmission can be derived as

gB(s, sa) = Nmod

sa sinh

(
s

sa

)
+ 1

, (12)

where sa ≡ ξa/�s, with ξa = √
�a�s/2, is the diffusive absorp-

tion length, in mean free path units. Notice, here, that the
effects of correlation can be also considered by using s∗ and
�∗

s in Eq. (12).

C. Numerical and theoretical results in the absence of loss

We start the discussion by comparing the transmission
coefficients of different stealthy hyperuniform materials with
different values of χ ranging from uncorrelated random to
periodic patterns. The transmission coefficients are calculated
and compared when using the multimodal method, the finite
elements numerical method as well as the Ohm’s law calcu-
lated from the classical mean free path and the corrected mean
free path from the collective approximation. In this section,
we do not consider losses, which will be addressed in the next
section.

Figure 4(a) shows the average transmission over 60 realiza-
tions with χ = 0 calculated by both the multimodal method
(blue continuous line) and the full wave numerical simulations
(black line with open black circles). The predictions by the
Ohm’s law with the classical mean free path are shown by the
red dashed line while those corresponding to the collective
approximation are shown by the red continuous line. For this
case in which the point distribution does not have any correla-
tion, all the methods provide the same behavior, as expected.
In addition to these results, Fig. 4(b) shows 3var(T/〈T 〉)/2〈g〉
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in terms of frequency. This quantity tends to 1 when the
frequency increases.

Figures 4(c) and 4(d) show the corresponding averaged
results for 60 realizations with χ = 0.3. Vertical line shows
the limit 2

√
χ/N imposed by χ , so the transparency re-

gion. As previously discussed, the point pattern presents a
zero-structure factor for qx/qB smaller than this limit. As
shown in Fig. 4(c), the average transmission is close to
1 in this range of frequencies, showing the characteristic
transparency regime of stealthy hyperuniform materials. For
frequencies higher than this limit, the transmission decreases
with the frequency. The average transmission follows the
Ohm’s law for frequencies higher than the cutoff frequency
imposed by χ , i.e., the system behaves as a disordered me-
dia in the diffusive regime. We note that the transmission
coefficient calculated with the collective approximation cap-
tures also this behavior and is close the calculated with to
both the multimodal and finite element methods. Figure 4(d)
shows the different behaviors between the transparent and
the diffusive regimes, which are in agreement with the pre-
dictions of the DMPK model, Eq. (11), in the diffusive
regime.

Figures 4(e) and 4(f) show the average results over 60
realizations with χ = 0.48. For this value, the point pattern
presents a structure factor with three characteristic regions:
the zero region for qx < qc, an isotropic region with increased
values of the structure factor [see Figs. 2(g) and 2(k)], and a
region of isotropic random scattering. These three behaviors
can be identified for the wave transport properties shown in
Fig. 4(e). For qx < qc the transparent region of the stealthy
hyperuniform material is shown. Just after the limit qx = qc,
the transmission presents a dip due to the isotropic region
with increased structure factor. The value of the transmission
is smaller than that predicted by the Ohm’s law with the
classical mean free path. When the collective approximation
(red continuous line) is used, the Ohm’s law reproduces well
the transmission as calculated with both the multimodal and
the finite element methods. This behavior is typical of an
isotropic band gap although the point distribution is not pe-
riodic. For higher frequencies, the transmission coefficients
follow again the Ohm’s law, which means that the system falls
back into the diffusive behavior. Figure 4(f) shows the vari-
ance, the behavior of which is in accordance with the previous
discussion.

Finally, Figs. 4(g) and 4(h) show the averaged results over
60 realizations with χ = 0.6. The point distribution is closer
to a periodic pattern. In this case, we can clearly see the
transparency region at low frequencies and the presence of the
band gap due to the periodicity. The behavior of the system
does not follow the Ohm’s law calculated with the classical
mean free path, meaning that the scattering is anisotropic.
Instead, if the collective approximation is used, the corrected
mean free path, exhibits the sharper features in frequency and
angular dependence due to the oscillations of the structure
factor, recovering the effects of the correlation. The yellow
area represents the band gap of a triangular lattice as calcu-
lated in the Supplemental Material [46]. A transmission dip
appears in the frequency range of the band gap of the regular
lattice showing the hints of periodicity for the structures with
χ � 0.5.

D. Experimental results: Lossy hyperuniform media

In this section, we experimentally characterize the wave
transport properties of the stealthy hyperuniform materials for
airborne sound. For these waves, the losses are unavoidable.
They arise from different dissipation mechanisms in complex
quasi-1D waveguides that occurs at the scatterer boundaries,
in the background medium and at the waveguide walls. Their
effects on the wave transport properties of the hyperuniform
materials are analyzed. Here, we consider the same config-
urations as described above accounting for the thermal and
viscous losses in the propagation of acoustic waves by simply
adding an imaginary part to the wavenumber in the wave
equation for the sake of simplicity.

Figures 5(a) and 5(b) show the image of a stealthy hyper-
uniform material and its transmission properties respectively
for the case χ = 0, i.e., for a random distribution of scatterers
embedded in the rectangular waveguide. Continuous blue line
in Fig. 5(b) shows the experimental transmission averaged
over 3 realizations (the set of experimental transmissions co-
efficients for the three realizations are shown with the bluish
lines). These results have been used to evaluate the absorption
length of the system, which is �a = 2.5 m. Red line represents
the transmission calculated by the Ohm’s law using the col-
lective approximation, Eq. (12). Black continuous line shows
the numerical results, obtained from the multimodal method,
averaged over 60 realizations. The grey area shows the stan-
dard deviation. We can observe that the medium presents the
behavior predicted by the Ohm’s law as for diffusive transport
in disordered media.

Figures 5(c) and 5(d) show the image of a stealthy hy-
peruniform material and the corresponding average results
with χ = 0.3. As previously, vertical line shows the limit
imposed by χ , i.e., qc. The average transmission represented
in Fig. 4(c) shows the characteristic transparency region of
stealthy hyperuniform materials but with an amplitude smaller
than the one calculated in the absence of loss, see Fig. 4. This
represents a quasitransparent region. For frequencies higher
than the limit qc, we see that the transmission decreases with
the frequency. Interestingly, while the average transmission
does not follow the Ohm’s law in the transparent region,
the averaged transmission follows the Ohm’s law for higher
frequencies than qc, i.e., the system behaves as a disordered
media in the absorbing diffusive regime.

Figures 5(e) and 5(f) show the image of a stealthy hyper-
uniform material and the corresponding results for χ = 0.48.
For this case, the three characteristic regions can be identi-
fied even in the presence of losses in Fig. 5(f). For qx < qc

the characteristic quasitransparent region is shown. Just after
the limit qx = qc, a dip of transmission is shown due to the
isotropic scattering with increased structure factor. This be-
havior is also captured by the Ohm’s law calculated with the
collective approximation, capturing the effect of correlation.

Finally, Figs. 5(g) and 5(h) show the image of a stealthy
hyperuniform material and the corresponding results for χ =
0.6. In this case, we can clearly see the quasi-transparency
region at low frequencies and the presence of the band gap
due to the hints of periodicity of the material. We can see
that the transmission dip appears in this frequency range com-
ing also from the hints of periodicity for the structures with
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FIG. 5. [(a), (c), (e), (g)] Picture of the scatterers distributions used for the experimental study. [(b), (d), (f), (h)] Average transmission
through a hyperuniform material as a function of the frequency. Blue lines display the experimental results averaged over 3 realizations.
Bluish lines show the experimental transmission coefficient from all measurements. The numerical results averaged over 60 realizations are
represented by the black line with a standard deviation displayed by the gray zone. Red lines show the transmission calculated by using the
collective approximation together with the Eq. (12) for lossy disordered system. �a = 2.5 m is used as a constant absorption length. The vertical
lines represents the cutoff frequency kc determined by Eq. (2).

χ � 0.5. In this case the dip in transmission calculated by
the Ohm’s law with the collective approximation falls in a
different frequency because it is angularly averaged, while the
experimental results are done for the normal incidence.

IV. CONCLUSIONS

In this paper, we have experimentally and numerically an-
alyzed the transport properties of 2D stealthy hyperuniform
materials made of rigid scatterer distributions embedded in
a waveguide for acoustic waves in the audible regime. The
nonresonant character of the scatterers allows linking the
properties of the structure factor in the reciprocal space with
the scattering properties. This shows the presence of tips of
transmission by avoiding the need of local resonances. The
stealthiness χ imposes a cutoff frequency up to which the
structure factor is zero, implying that materials made of rigid
scatterer hyperuniform distributions are transparent to waves
with frequencies lower than this cut-off frequency. These
configurations have been also experimentally and numerically
analyzed in order to see the feasibility of the structures for the
acoustic characterization and for the analysis of the effect of

the losses and correlation in the wave transport properties. The
losses have been accounted for the system via the absorption
length that has been phenomenologically recovered from the
experiments and used in the theoretical predictions through
the generalized DMPK equation. The effect of correlation has
been accounted for by the collective approximation, i.e., by
correcting the scattering cross section by the structure factor.
Both the effect of losses and the effect of correlation are
well captured by the finite element method and by the theo-
retical predictions with the collective approximation in good
agreement with the experiments. These results open venues to
the control of acoustic waves with disordered materials with
target scattering properties.
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