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Abstract
Overlapped speech occurs when multiple speakers are simul-
taneously active. This may lead to severe performance degra-
dation in automatic speech processing systems such as speaker
diarization. Overlapped speech detection (OSD) aims at detect-
ing time segments in which several speakers are simultaneously
active. Recent deep neural network architectures have shown
impressive results in the close-talk scenario. However, perfor-
mance tends to deteriorate in the context of distant speech. Mi-
crophone arrays are often considered under these conditions to
record signals including spatial information. This paper inves-
tigates the use of the self-attention channel combinator (SACC)
system as a feature extractor for OSD. This model is also ex-
tended in the complex space (cSACC) to improve the inter-
pretability of the approach. Results show that distant OSD
performance with self-attentive models gets closer to the near-
field condition. A detailed analysis of the cSACC combination-
weights is also conducted showing that the self-attention mod-
ule focuses attention on the speakers’ direction.
Index Terms: overlapped speech detection, multi-microphone,
distant speech, interpretability

1. Introduction
Speaker diarization in the multi-party scenario is still a chal-
lenging task [1–3]. Diarization systems are subject to severe
performance degradation when several speakers are overlap-
ping, which may naturally occur in spontaneous speech. Over-
lapped speech detection (OSD) is thus needed for robust speaker
diarization [4] to process overlapped speech segments sepa-
rately.

Recent advances in neural network based OSD have shown
impressive results in near-field conditions compared to classical
approaches [5–8]. Notably, recurrent neural networks such as
Long Short-Term Memory (LSTM) [9,10] reached state-of-the-
art near-field OSD performance. Few researches have however
been produced on the distant speech scenario [11–13] while this
configuration offers practical benefits by avoiding speakers to
wear their own microphone.

On distant OSD, Cornell et al. [12] proposed a Temporal
Convolutional Network (TCN) [14] based OSD and speaker
counting architecture. The authors also proposed a detailed
benchmark of several OSD architectures [13] and showed that
distant OSD can be improved by fusing spatial features with
acoustic features. Only handcrafted spatial features were inves-
tigated, which may not be as optimal as spatial features learned

This project has received funding from the European Union’s
Horizon 2020 research and innovation program under the Marie
Sklodowska-Curie grant agreement No 101007666, the Agency is not
responsible for this results or use that may be made of the information
and from the French ANR Extensor (ANR-19-CE23-0001-01)

in an end-to-end manner.
Spatial information available in multi-microphone signals

can be exploited using spatial filtering. Many algorithms based
on classical signal processing [15–18] or on neural networks
[19–21] have been proposed in the literature. Signal-based ap-
proaches often require extracting explicit information about the
input signal (e.g. speaker location, noise statistics). On neural
approaches, Gong et al. [22] proposed the Self Attention Chan-
nel Combinator (SACC) which learns how to combine channels
using self-attention [23]. Combination-weights are learned on
the magnitude of the multichannel Short-Time Fourier Trans-
form (STFT) of the input signal. This approach has shown
significant improvement in the context of distant Automatic
Speech Recognition (ASR).

Building on these previous works, we propose a multichan-
nel OSD system based on the SACC algorithm. SACC acts as
a feature extractor from the raw multi-microphone input signal.
Two types of OSD systems are implemented, respectively based
on Bidirectional LSTM (BLSTM) and TCN sequence model-
ing. As combination-weights learned by SACC offer limited
interpretation, we propose its extension in the complex space,
cSACC. cSACC learns complex combination-weights to pre-
serve the phase information in the STFT and get closer to stan-
dard spatial filtering algorithms (e.g. beamforming [15]). We
also show that cSACC weights are easily interpretable and pro-
vide information on the spatial directions exploited by the OSD
system. To the best of our knowledge, this work is the first ap-
plication of SACC for the task of OSD and its extension to use
complex weights is the first attempt in the domain.

The paper is organized as follows. In Section 2, we intro-
duce the supervised OSD framework. The BLSTM and TCN
architectures are also presented. In Section 3, we describe the
SACC and the cSACC architectures and their integration into
the OSD system. The dataset, experiments and results are pre-
sented in Sections 4 and 5. Finally, a detailed analysis of the
cSACC combination-weights is conducted in Section 6. Con-
clusions and perspectives are drawn in Section 7.

2. Overlapped Speech Detection
2.1. Principle

We formulate OSD as a binary classification task. Let X =
{X1,X2, . . . ,XN} be a sequence of feature vectors, with N
being the number of frames, and its associated sequence of bi-
nary labels y = {y1, y2, . . . , yN}. We wish to determine the
optimal parameters θ̂ of a model f(X,θ) to predict the se-
quence ŷ = {ŷ1, ŷ2, . . . , ŷN}, with ŷn ∈ {0, 1} being the
predicted binary label of the nth frame.

The sequence of feature vectors X is extracted from the raw
audio time signal x ∈ RM×T with M being the number of mi-
crophones and T the number of samples. Feature extraction is



performed by a function X = g(x) which may be handcrafted
(e.g. MFCC, MVDR beamforming) or jointly optimized with
the parametric model f in an end-to-end manner (e.g. SACC,
cSACC). Similarly to [10,12,13], the feature extraction applies
a downsampling operation to the input data to reduce the com-
putational cost. The overall OSD pipeline is presented in Fig-
ure 1.

2.2. Sequence modeling and frame classification

2.2.1. BLSTM
Sequence modeling is first performed using the BLSTM archi-
tecture as described in [9,10]. Two BLSTM layers composed of
P = 256 cells are stacked. The resulting sequence is post pro-
cessed using a three-layers feed forward network (FFN) with
output sizes L1 = 128, L2 = 128 and L3 = 2 respectively.
FFN layers are followed by tanh activation functions except
for the last one. A softmax activation is applied to the output
logits to compute classification probabilities.

2.2.2. TCN
TCN architecture has been proposed as an alternative to
BLSTM and FFN for OSD [12]. This architecture is composed
of causal convolutional layers with residual connections. The
key feature of the TCN is the dilated convolution, allowing to
learn a large temporal context. We employed the same TCN ar-
chitecture as [12] composed of R = 5 residual convolutional
blocks repeated P = 3 times1. Classification is performed by a
1-d convolutional layer followed by a softmax activation func-
tion to compute classification probabilities.
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Figure 1: Flowchart of the OSD task with the proposed cSACC
feature extractor. Sequence modeling is performed with BLSTM
or TCN architecture. The bottom part of the figure presents the
inference procedure: two detection thresholds are applied to the
positive-class output of the model to extract a binary sequence.

1https://github.com/popcornell/OSDC

3. Multichannel feature extraction
Combining and weighting channels coming from multiple mi-
crophones allows to select spatial information in a multi-
microphone input signal (e.g. beamforming [15]). In order to
automatically combine multiple channels, we apply the SACC
method [22] as a feature extractor for the OSD task. This
method is also extended in the complex space (cSACC) to pre-
serve all of the STFT information during the weight-estimation
procedure.

3.1. Self-Attention Channel Combinator

Let Xstft ∈ CM×N×K be the multichannel STFT of the input
signal x, where K is the number of frequency bins. The SACC
algorithm computes combination-weights w ∈ RM×N×1 ap-
plied to each STFT channel before combining them. Those
weights are determined from the log-magnitude of the STFT us-
ing self-attention [23]. Let q, k and v be three linear transforma-
tions, mapping the input STFT log-magnitude Xlog to the query
and the key Q,K ∈ RM×N×D and the value V ∈ RM×N×1.
The combination weights are computed as follows:

w = softmax

(
softmax

(QKT

√
D

)
V

)
, (1)

withD being the output dimension of the linear layers mapping
the STFT log-magnitude to Q and K. The last softmax ac-
tivation constrains the weights to be within the interval [0, 1].
Mean and Variance Normalization (MVN) is applied on each
frequency bin before feeding the self attention module to re-
duce the variation range of the input data. The combined STFT
magnitude Xatt is finally obtained as the weighted sum of the
different channels:

Xatt =

M∑
m=1

w ⊙ ∥Xstft∥. (2)

Since channels combination can lead to a large variation
in the data, MVN is applied to the combined STFT for each
frequency bin, and converted to the log-mel scale using F =
64 filters as in [22]. The process of the SACC algorithm is
presented in Figure 1. The use of multiple self-attention heads
[23] was investigated to compute combination-weights but did
not bring significant improvement.

The SACC combination-weights can be visualized as a
function of the speaker direction of arrival (DOA) [22]. How-
ever, since weights belong to the real space, the lack of infor-
mation about the phase limits their interpretation. In order to
preserve the phase information of the STFT along the process
and to better understand weights learned by SACC, we propose
its extension in the complex space.

3.2. Complex Self-Attention Channel Combinator

We propose an extension of the SACC algorithm in the com-
plex space (cSACC). This model learns complex weights di-
rectly from the incoming multichannel STFT Xstft. We sepa-
rate the real and imaginary parts XR

stft and XI
stft respectively.

Weights are then computed separately on the real part wR and
the imaginary part wI using equation (1). Two self-attention
modules are thus needed. The complex combined STFT can be
written as:

Xatt =

M∑
m=1

wR ⊙XR
stft + j ×wI ⊙XI

stft, (3)

where j =
√
−1. MVN is applied to to each frequency bin

on both real and imaginary parts of the STFT before computing



combination-weights. The magnitude of the complex weighted
STFT is then converted to the log-mel scale usingF = 64 filters
before being fed to the sequence modeling network. Similarly
to SACC, MVN is applied before log-mel conversion.

4. Experimental study
4.1. Dataset

Experiments are conducted on the AMI2 meeting corpus [24]
using two types of audio signals: close-talk speech material
recorded with the speakers’ headset and distant speech signals
recorded by the microphone array (Array 1). It consists of
a uniform circular array (UCA) composed of M = 8 omni-
directional microphones placed on the table during meetings.
To train and evaluate our models, the AMI corpus is split into
training, development and evaluation subsets, containing about
80 h, 10 h and 10 h of human-annotated audio signals respec-
tively. The data partition follows the protocol proposed in [25]
which guarantees different speakers across subsets. Overlapped
speech binary labels are computed from the manual segment
annotation provided. Audio signals are sampled at 16 kHz.

4.2. Baselines

Both SACC and cSACC feature extractors are compared to four
different baselines. (i) Close talk MFCC: MFCC are extracted
from close-talk recordings from the AMI headset mix. This
model is referred to as the close-talk reference. (ii) Single Dis-
tant Microphone (SDM): MFCC are extracted from the sig-
nal coming from the first channel of the UCA. (iii) Channels
sum: time signals coming from each microphone of the UCA
are directly merged in the time domain without any weighting
scheme. MFCC are then extracted. (iv) MVDR beamformer:
signals are weighted and merged using the MVDR solution pro-
posed in [16]. We use the recent MVDR implementation from
the torchaudio toolkit [26]. Since we are dealing with sig-
nals recorded under real conditions, speech and noise covari-
ance matrices are estimated using the Coherent-to-Diffuse Ratio
(CDR). The CDR is estimated under diffuse noise and unknown
DOA conditions [27] (eq. 25). The STFT magnitude of the
MVDR beamformed signal is then converted to mel-scale using
F = 64 filters similarly to the SACC and cSACC approaches.

4.3. Training and evaluation procedures
OSD models are trained on 245k two-second segments ran-
domly sampled from the AMI train set. Features are extracted
on 25 ms sliding window with 10 ms shift. The learning rate is
set to lr = 10−3 since scheduling schemes did not bring any
improvement. Binary cross-entropy is used as a training objec-
tive with stochastic gradient descent (SGD) optimizer [28]. To
counteract class imbalance, 50% of the training segments are
augmented on-the-fly by summing them to another randomly
sampled training segment. Associated labels of each segment
are also combined [9, 10]. No other data augmentation proce-
dure is applied to make the comparison between monochannel
and multichannel approaches easier. Furthermore, multichan-
nel data augmentation (e.g. additional reverberation) was in-
vestigated but did not bring significant improvement. This may
be due to different locations of the speakers in the real acquisi-
tions and in the room impulse response (RIR) simulations. Af-
ter training, detection thresholds are tuned on the development
set. Model performance is evaluated using F1-score and aver-

2https://groups.inf.ed.ac.uk/ami/corpus/

age precision (AP) [13] and reported on both development and
evaluation subset.

5. Results
Overlapped speech detection performance with the BLSTM ar-
chitecture are presented in table 1. As expected, the use of a sin-
gle distant microphone drastically degrades OSD performance
with an absolute 23,5% loss on the evaluation F1-score. Direct
sum of the channels offers similar performance. MVDR beam-
forming improves detection by an absolute 22% F1-score gain,
probably because it better takes advantage of spatial informa-
tion. Self-attention based channel combination also reduces the
gap between close talk and distant OSD. The SACC and cSACC
methods reach about 23% and 19% absolute improvement on
the F1-score respectively compared to the SDM configuration.
The same behavior is observed on the AP scores with about
19% and 13% improvement in the distant speech scenario. The
SACC model slightly outperforms MVDR without requiring
to extract explicit information from the multi-microphone in-
put signal (e.g. noise statistics, speakers location). The self-
attention mechanism automatically extract useful spatial infor-
mation for distant OSD from the multichannel audio data. The
extension of the SACC approach in the complex space does not
improve the results compared to SACC. However, this formula-
tion allows to better interpret the combination-weights learned
by the model, as shown in Section 6.

Table 1: OSD performance on the AMI meeting corpus for each
feature extraction method used as BLSTM architecture front-
end. Bold value indicates the best model in the distant speech
scenario.

F1-score (%) AP (%)
AMI Dev Eval Dev Eval

Close talk MFCC 67,9 63,1 71,7 63,6

Single channel MFCC 49,1 39,6 50,6 42,6
Sum channels MFCC 49,1 31,5 42,4 34,2
MVDR 62,7 60,1 67,0 59,6

SACC 64,8 62,4 67,9 61,6
cSACC 62,2 58,9 65,0 55,8

Table 2 presents OSD performance with each feature ex-
tractor using the TCN architecture. The use of TCN globally
improves detection compared to the BLSTM architecture. For
example, AP is improved by 7,6% in the close-talk scenario and
by 12% in the SDM scenario. Furthermore, SACC and cSACC
still improve detection performance compared to SDM, reach-
ing similar performance as MVDR beamforming. The score
gap between SACC and cSACC still appears with TCN se-
quence modeling. The difference in performance with cSACC
could be explained by the fact that the real and imaginary parts
of the weight are learned separately. To tackle this, complex-
valued deep neural networks [29, 30] or learnable analytic fil-
terbank [31] are going to be investigated. Preliminary work has
also shown that the use of a different optimizer could improve
the performance with cSACC architecture.

6. Analysis
Hereafter, we conduct an analysis of the combination-weights
learned by the cSACC algorithm. The analysis shows that the
model is focusing on the speakers’ direction when overlapped
speech is detected.



Table 2: OSD performance on the AMI meeting corpus for each
feature extraction method used as TCN architecture front-end.

F1-score (%) AP (%)
AMI Dev Eval Dev Eval

Close talk MFCC 71,6 68,1 76,7 71,2

Single channel MFCC 62,0 48,5 59,4 54,6
Sum channels MFCC 57,0 46,6 61,3 56,2
MVDR 68,3 64,2 72,4 66,1

SACC 68,2 64,2 72,7 64,3
cSACC 65,0 60,8 68,7 60,1

6.1. Beampattern

The response of standard spatial filters, the so-called beampat-
tern, can be computed based on filter weights and the array ge-
ometry [15, 18]. The magnitude of the beampattern represents
the gain applied in every θ azimuth angular direction. Hence,
the beampattern computed on a set of cSACC combination-
weights wn provides information about the directions in which
the attention is focused.

Let ψm = 2π(m − 1)/M be the mth microphone angu-
lar position and r the radius of the UCA. The beampattern is
defined as [18]:

Bn[wn, θ] =

M∑
m=1

w∗
m,ne

jω̄ cos(θ−ψm), (4)

with ω̄ = ωr/c and c = 340 m/s being the speed of the sound.
The n subscript represents the frame-index since combination-
weights are time-variant.

The Time-Averaged Beampattern (TAB) can be computed
from (4). It represents the average steering direction of the
cSACC algorithm on a given time window of length NT . The
TAB can be formulated as follows:

B̂ =
1

NT

NT−1∑
n=0

Bn[wn(ω, θs), θ]. (5)

6.2. Simulated utterances

The analysis of the cSACC combination-weights is performed
on simulated data to analyze them in a controlled environment.
First, clean utterances are taken from the Librispeech dataset
[32]. We simulate a L = 5 m × l = 4 m × h = 3 m room
with T60 = 0.8 s reverberation time. RIRs are then computed
between two sources and an 8-microphone UCA of r = 5 cm
radius using the gpuRIR toolkit [33]. Finally, each clean utter-
ance from each speaker is convolved with its own set of RIRs.
Convolved signals from each location are delayed from each
other and summed to generate the artificial distant overlapped
speech.

6.3. cSACC combination-weights analysis

The cSACC combination-weights are analyzed within the best
performing TCN based OSD architecture. An example of
beampattern magnitude computed on those weights is proposed
in Figure 2. The beampattern is presented as a heat-map func-
tion of time and DOA. DOA associated with higher amplitude
indicates the steering direction of the cSACC algorithm. This
figure shows that the model is switching attention between the
angular direction of each speaker.

Two examples of TAB for two active speakers are presented
in Figure 3. The TAB is only computed on time segments where

Figure 2: Beampattern magnitude computed from (4) as a func-
tion of time and DOA for two active speakers located in different
angular locations (- - -). Frame-wise MVN has been applied as
well as a 100 frames moving average for better readability.

the output probability of the model verifies p(c = 1|x) > 0.6.
Hence, the main lobes of the TAB informs us on the angular di-
rections where cSACC draws attention when overlapped speech
is detected. The utterance-averaged SRP-PHAT [15] is also pre-
sented as a heatmap. It has been computed on a circular plane
of two meters radius and allows to compare the cSACC steering
directions to the distribution of the acoustic energy. Figure 3
shows that, over the utterance, cSACC model steers towards the
direction of the two active speakers for these two examples. A
quantitative study may be conducted to confirm these observa-
tions.

(a) (b)

Figure 3: TAB computed from (5) (−) on two overlapped speech
utterances compared to SRP-PHAT energy map and ground-
truth (- - -) speakers location with two simultaneously active
speakers. TAB is normalized between [0, 1] for better visual-
ization.

7. Conclusion
In this paper, we investigated the use of self-attention channel
combinators as distant overlapped speech detection front-end.
We showed that self attention-based algorithms reach state-of-
the-art performance without requiring handcrafted feature ex-
traction. Furthermore, the original self-attention channel com-
binator (SACC) [22] slightly outperforms MVDR beamformer
without requiring to estimate speech signal statistics. The
SACC model was also extended in the complex space to pre-
serve all of the information in the STFT. Even if this approach
does not improve detection performance, it allows a better in-
terpretation of the learned combination-weights. Combination-
weight analysis showed that the model seems to draw attention
to the angular directions of the active speakers.

Further work will be conducted on the use of self-attention
to combine channels in a full diarization pipeline in order to
evaluate the benefits of this kind of approach on the overall task.
Other signal representations such as learnable filterbank [31] or
pre-trained models (e.g. WavLM [34]) will be investigated as
an alternative to the STFT.
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