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Abstract

Speaker segmentation consists in partitioning a conversation be-
tween one or more speakers into speaker turns. Usually ad-
dressed as the late combination of three sub-tasks (voice activity
detection, speaker change detection, and overlapped speech de-
tection), we propose to train an end-to-end segmentation model
that does it directly. Inspired by the original end-to-end neural
speaker diarization approach (EEND), the task is modeled as a
multi-label classification problem using permutation-invariant
training. The main difference is that our model operates on
short audio chunks (5 seconds) but at a much higher tempo-
ral resolution (every 16ms). Experiments on multiple speaker
diarization datasets conclude that our model can be used with
great success on both voice activity detection and overlapped
speech detection. Our proposed model can also be used as a
post-processing step, to detect and correctly assign overlapped
speech regions. Relative diarization error rate improvement
over the best considered baseline (VBx) reaches 17% on AMI,
13% on DIHARD 3, and 13% on VoxConverse.
Index Terms: speaker diarization, speaker segmentation, voice
activity detection, overlapped speech detection, resegmentation.

1. Introduction
The speech processing community relies on term segmentation
to describe a multitude of tasks: from classifying the audio
signal into three classes {speech, music, other}, to detecting
breath groups, localizing word boundaries, or even partitioning
speech regions into phonetic units. On this coarse-to-fine time
scale, speaker segmentation lies somewhere between {speech,
non-speech} classification and breath groups detection. It
consists in partitioning speech regions into smaller chunks
containing speech from a single speaker. It has been addressed
in the past as the combination of several sub-tasks. First,
voice activity detection (VAD) removes any region that does
not contain speech. Then, speaker change detection (SCD)
partitions remaining speech regions into speaker turns, by
looking for time instants where a change of speaker occurs [1].
From a distance, this definition of speaker segmentation may
appear clear and unambiguous. However, when looking more
carefully, lots of complex phenomena happen in real-life
spontaneous conversations – overlapped speech, interruptions,
and backchannels being the most prominent ones. Therefore,
researchers have started working on the overlapped speech
detection (OSD) task as well [2, 3, 4].

This work was granted access to the HPC resources of IDRIS
under the allocation AD011012177 made by GENCI, and was partly
funded by the French National Research Agency (ANR) through
the PLUMCOT (ANR-16-CE92-0025) and the GEM (ANR-19-CE38-
0012) projects.

End-to-end speaker segmentation. Instead of addressing
voice activity detection, speaker change detection, and over-
lapped speech detection as three different tasks, our first
contribution is to train a unique end-to-end speaker segmen-
tation model whose output encompasses the aforementioned
sub-tasks. This model is directly inspired by recent advances in
end-to-end speaker diarization and, in particular, the growing
End-to-End Neural Diarization (EEND) family of approaches
developed by Hitachi [5, 6, 7]. The proposed segmentation
model is better than (or at least on par with) several voice
activity detection baselines, and sets a new state of the art
for overlapped speech detection on all three considered
datasets: AMI Mix-Headset [8], DIHARD 3 [9, 10], and
VoxConverse [11]. We did not run speaker change detection
experiments.

Overlap-aware resegmentation. Our second contribution
relates to the problem of assigning detected overlapped speech
regions to the right speakers. While a few attempts have been
made in the past [4, 12], it remains a very difficult problem for
which a simple heuristic baseline has yet to be beaten [13]. We
show, through extensive experimentation, that our segmentation
model consistently beats this heuristic when turned into an
overlap-aware resegmentation module – setting a new state
of the art on the AMI dataset when combined with the VBx
approach.

Reproducible research. Last but not least, our final contribu-
tion consists in sharing the pretrained model and integrating it
into pyannote open-source library for reproducibility purposes:
huggingface.co/pyannote/segmentation. Expected out-
puts of the proposed approaches (VAD, OSD, and resegmenta-
tion) are also available at this address in RTTM format to facili-
tate future comparison.

2. End-to-end speaker segmentation
Like in the original EEND approach [5], the task is modeled as
a multi-label classification problem using permutation-invariant
training. As depicted in Figure 1, the main difference is that our
model operates on short audio chunks (5 seconds) but at a much
higher temporal resolution (around every 16ms). Processing
short audio chunks also implies that the number of speakers is
much smaller and less variable than with the original EEND ap-
proach (dealing with whole conversations) – making the prob-
lem easier to address. For instance, we found that 99% of every
possible 5s chunks in the training set (later defined in Section 3)
contained less than Kmax = 4 speakers.

2.1. Permutation-invariant training

Given an audio chunk X, its reference segmentation can be
encoded into a sequence of Kmax-dimensional binary frames
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Figure 1: Actual outputs of our model on two 5s excerpts
from the same conversation between two speakers (source: file
DH EVAL 0035.flac in DIHARD3 dataset). Top row shows the
reference annotation. Middle row is the audio chunk ingested by
the model. Bottom row depicts the raw speaker activations, as
returned by the model. Thanks to permutation-invariant train-
ing, notice how the blue speaker corresponds to the orange ac-
tivation on the left and to the green one on the right.

y = {y1, . . . ,yT} where yt ∈ {0, 1}Kmax and ykt = 1 if
speaker k is active at frame t and ykt = 0 otherwise. We may
arbitrarily sort speakers by chronological order of their first ac-
tivity but any permutation of the Kmax dimensions is a valid
representation of the reference segmentation. Therefore, the
binary cross entropy loss function LBCE (classically used for
such multi-label classification problems) has to be turned into a
permutation-invariant loss function L by running over all pos-
sible permutations perm(y) of y over its Kmax dimensions:

L (y, ŷ) = min
perm(y)

LBCE (perm(y), ŷ) (1)

with ŷ = f(X) where f is our segmentation model whose ar-
chitecture is described later in the paper. In practice, for effi-
ciency, we first compute the Kmax ×Kmax binary cross entropy
losses between all pairs of y and ŷ dimensions, and rely on the
Hungarian algorithm to find the permutation that minimizes the
overall binary cross entropy loss.

2.2. On-the-fly data augmentation

For training, 5s audio chunks (and their reference segmentation)
are cropped randomly from the training set. To increase vari-
ability even more, we rely on on-the-fly random data augmen-
tation. The first type of augmentation is additive background
noise with random signal-to-noise ratio. Inspired by our previ-
ous work on overlapped speech detection [4], the second type
of augmentation consists in artificially increasing the amount
of overlapping speech. To do that, we sum two random 5s au-
dio chunks with random signal-to-signal ratio (and merge their
reference segmentation accordingly). Resulting chunks whose
number of speakers is higher than Kmax are not used for train-
ing.

2.3. Segmentation

Once trained, the model can be used for segmentation pur-
poses or any sub-tasks by a simple post-processing of its output
speaker activations:

• for segmentation or speaker change detection, a sin-
gle θ = 0.5 binarization threshold already gives decent

𝜃on

𝛿off𝛿on

𝜃off

Figure 2: To obtain the final binary segmentation, speaker acti-
vations are post-processed with θon/θoff hysteresis thresholding,
then filling gaps shorter than δoff (light green region in right
example) and finally removing active regions shorter than δon

(does not happen in these examples).
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Figure 3: Effect of the proposed overlap-aware resegmentation
approach (third row) on the VBx diarization baseline (second
row). We highlight three regions where the heuristic performs
better (t ≈ 100s), same (t ≈ 120s), or worse (t ≈ 115s)
than the proposed approach (source: file DH EVAL 0035.flac
in DIHARD3 dataset).

results, but one can get even better performance by us-
ing a slightly more advanced post-processing borrowed
from [14] and summarized in Figure 2.

• for voice activity detection, we start by computing the
maximum activation over the Kmax speakers:

ŷVAD
t = max

k
ŷkt (2)

and, then only, apply the aforementioned post-
processing on resulting mono-dimensional ŷVAD.

• for overlapped speech detection, since at least two
speakers need to be active simultaneously to indicate
overlapping speech, we compute the second highest (de-
noted max2nd) activation:

ŷOSD
t = max2nd

k
ŷkt (3)

and post-process the resulting mono-dimensional ŷOSD

with the same approach.

2.4. Overlap-aware resegmentation

While a growing number of diarization approaches do try and
take overlapped speech into account [7], the most dependable
ones (like the VBx approach [15] used in Figure 3) still assume
internally that at most one speaker is active at any time. There is
therefore a need for a post-processing step that assigns multiple
speaker labels to overlapped speech regions [4, 17].

Given an existing speaker diarization output (withK speak-
ers) encoded into a sequence of K-dimensional binary frames



yDIA
t , we propose to use the segmentation model as a lo-

cal, overlap-aware, resegmentation module. The segmentation
model is applied on a 5s-long window sliding over the whole
file. At each step, we find the permutation of the speaker activa-
tions ŷ that minimizes the binary cross entropy loss with respect
to yDIA. Permutated sliding speaker activations are then aggre-
gated over time and post-processed with the threshold-based ap-
proach introduced in Section 2.3.

3. Experiments
Datasets and partitions. We ran experiments and report
results on three speaker diarization datasets, covering a wide
range of domains:

DIHARD3 corpus [9, 10] does not provide a training set.
Therefore, we split its development set into two parts: 192 files
used as training set, and the remaining 62 files used as a smaller
development set. The latter is simply referred to as development
sets in the rest of the paper. When defining this split (shared
at huggingface.co/pyannote/segmentation), we made
sure that the 11 domains were equally distributed between both
subsets. The evaluation set is kept unchanged.

VoxConverse does not provide a training set either [11].
Therefore, we also split its development set into two parts: first
144 files (abjxc to qouur, in alphabetical order) constitute the
training set, leaving the remaining 72 files (qppll to zyffh) for
the actual development set.

AMI provides an official {training, development, evaluation}
partition of the Mix-Headset audio files [8]. While we kept the
development and evaluation sets unchanged, we only used the
first 10 minutes of each file of the training set, to end up with
an actual training set similar in size (22 hours) to that of the
DIHARD3 (25 hours) and VoxConverse (15 hours) training
sets.

Experimental protocols. We trained a unique segmentation
model using the composite training set (62 hours) made of the
concatenation of all three training sets. The composite devel-
opment set (24 hours) served as validation and was used to de-
crease the learning rate on plateau and eventually choose the
best model checkpoint. At the end of this process, only one
segmentation model is available (not one model per dataset) and
used for all experiments.

However, detection thresholds (θon, θoff, δon, and δoff) were
tuned specifically for each dataset using their own develop-
ment set because the manual annotation guides differ from
one dataset to another, especially regarding δoff which controls
whether to bridge small intra-speaker pauses. For the same rea-
sons, detection thresholds were optimized specifically for each
task addressed in the paper:

• voice activity detection thresholds are chosen to mini-
mize the detection error rate (i.e. the sum of the false
alarm and missed detection rates), with no forgiveness
collar around speech turn boundaries;

• overlapped speech detection thresholds are chosen to
maximize the detection F1-score, with no forgiveness
collar either;

• for resegmentation, detection thresholds are chosen to
minimize the diarization error rate, without forgiveness
collar but with overlapped speech regions. This is con-
sistent with DIHARD3 evaluation plan [10] and AMI
Full evaluation setup [15], but not with VoxConverse
challenge rules that uses a 250ms collar [11].

All metrics were computed using pyannote.metrics [18] open
source Python library.

Implementation details. Our segmentation model ingests 5s
audio chunks with a sampling rate of 16kHz (i.e. sequences
of 80000 samples). The input sequence is passed to SincNet
convolutional layers using the original configuration [19] – ex-
cept for the stride of the very first layer which is set to 10
(so that SincNet frames are extracted every 16ms). Four bidi-
rectional Long Short-Term Memory (LSTM) recurrent layers
(each with 128 units in both forward backward directions, and
50% dropout for the first three layers) are stacked on top of
two additional fully connected layers (each with 128 units and
leaky ReLU activation) which also operate at frame-level. A fi-
nal fully connected classification layer with sigmoid activation
outputs Kmax-dimensional speaker activations between 0 and 1
every 16ms. Overall, our model contains 1.5 million trainable
parameters – most of which (1.4 million) comes from the recur-
rent layers.

As introduced in Section 2.2, 50% of the training samples
are made out of the weighted sum of two chunks, with a signal-
to-signal ratio sampled uniformly between 0 and 10dB. We also
use additive background noise from the MUSAN dataset [20]
with a signal-to-noise ratio sampled uniformly between 5 and
15dB.

We train the model with Adam optimizer with default Py-
Torch parameters and mini-batches of size 128. Learning
rate is initialized at 10−3 and reduced by a factor of 2 ev-
ery time its performance on the development set reaches a
plateau. It took around 3 days using 4 V100 GPUs to reach
peak performance. While we do share the pretrained model at
huggingface.co/pyannote/segmentation for reproduc-
ing the results, the whole training process is also reproducible
as everything has been integrated into version 2.0 of pyan-
note.audio open-source library [16].

Table 1: Voice activity detection // FA = false alarm rate (%) / Miss. = missed detection rate (%)

VAD AMI [8, 15] DIHARD 3 [9] VoxConverse [11]
FA Miss. FA+Miss. FA Miss. FA+Miss. FA Miss. FA+Miss.

silero vad 9.4 1.7 11.0 17.0 4.0 21.0 3.0 1.1 4.2
dihard3 [9] NA NA NA 4.0 4.2 8.2 NA NA NA

Landini et al. [12] NA NA NA NA NA NA 1.8 1.1 3.0
pyannote 1.1 [16] 6.5 1.7 8.2 4.1 3.8 7.9 4.5 0.3 4.8

Ours – pyannote 2.0 3.6 3.2 6.8 3.9 3.3 7.3 1.8 0.8 2.5

https://huggingface.co/pyannote/segmentation
https://huggingface.co/pyannote/segmentation


Table 2: Overlapped speech detection // FA = false alarm rate (%) / Miss. = missed detection rate (%) / F1 = F1-score (%)

OSD AMI [8, 15] DIHARD 3 [9] VoxConverse [11]
FA Miss. Precision Recall F1 FA Miss. Precision Recall F1 FA Miss. Precision Recall F1

Kunesova et al. [3] NA NA 71.5 46.1 56.0 NA NA NA NA NA NA NA NA NA NA

Landini et al. [12] NA NA NA NA NA NA NA NA NA NA 10.4 71.8 73.0 28.2 40.7
pyannote 1.1 [16, 4] 51.1 12.1 63.2 87.9 73.5 48.2 45.2 53.2 54.8 54.0 130.4 17.7 38.7 82.3 52.6

Ours – pyannote 2.0 16.9 29.4 80.7 70.5 75.3 46.9 37.2 57.2 62.8 59.9 26.3 24.5 74.2 75.5 74.8

Table 3: Resegmentation // FA = false alarm / Miss. = missed detection / Conf. = speaker confusion / DER = diarization error rate

Baseline Overlap-aware AMI [8, 15] DIHARD 3 [9] VoxConverse [11]
resegmentation FA Miss. Conf. DER FA Miss. Conf. DER FA Miss. Conf. DER

pyannote 1.1 [16] 5.0 16.2 8.5 29.7 3.4 13.2 12.6 29.2 2.0 10.1 9.5 21.5
Heuristic [13] w/ our OSD 6.9 7.9 10.9 25.7 6.3 8.9 12.8 28.1 2.8 7.3 10.1 20.3
Ours – pyannote 2.0 4.0 13.0 9.1 26.1 5.1 9.8 10.3 25.2 2.4 3.1 9.8 15.4

dihard3 [9] NA NA NA NA 3.6 13.3 8.4 25.4 NA NA NA NA

Heuristic [13] w/ our OSD NA NA NA NA 6.8 8.7 8.8 24.3 NA NA NA NA

Ours – pyannote 2.0 NA NA NA NA 4.6 10.2 7.5 22.2 NA NA NA NA

VBx [15] w/ our VAD 3.1 17.2 3.8 24.1 3.6 12.5 6.2 22.3 1.7 5.1 1.4 8.3
Heuristic [13] w/ our OSD 5.1 8.7 6.1 19.9 7.0 7.8 6.4 21.2 2.7 2.1 2.0 6.8
Ours – pyannote 2.0 4.3 10.9 4.7 19.9 4.7 9.7 4.9 19.3 2.7 2.6 1.8 7.1

Oracle Ours – pyannote 2.0 4.7 10.0 1.4 16.1 4.6 9.8 1.8 16.2 2.6 2.5 0.6 5.7

4. Results and discussions
Voice activity detection. Table 1 compares the performance of
the proposed voice activity detection approach with the official
dihard3 baseline [9], Landini’s submission to VoxConverse
challenge [12], and pyannote 1.1 VAD models [16]. The main
conclusion is that, despite it being trained for segmentation, our
model is better than other models trained specifically for voice
activity detection. Note, however, that one should not draw
hasty conclusions regarding the performance of silero vad
model [21] as it is an off-the-shelf model which was not trained
specifically for these datasets.

Overlapped speech detection. Finding good and reproducible
baselines for the overlapped speech detection task proved to
be a difficult task. We thank Kunesova et al. [3] and Landini
et al. [12] for sharing the output of their detection pipelines.
Results are reported in Table 2 that shows that, like for
voice activity detection, our segmentation model can be used
successfully for overlapped speech detection, even though it
was not initially trained for this particular task. It outperforms
pyannote 1.1 overlapped speech detection which we believe
was the previous state of the art [4].

Overlap-aware resegmentation. While our segmentation
model was found to be useful for both voice activity detection
and overlapped speech detection, post-processing the output of
existing speaker diarization pipelines is where it really shines.
Table 3 summarizes the resegmentation experiments performed
on top of three of them, ranked from worst to best baseline
performance: pyannote 1.1 pretrained pipelines [16], dihard3
official baseline [9], and BUT’s VBx approach [15]. The (ad-
mittedly wrong) criterion used for selecting those baselines was
their ease of use and reproducibility. Because results reported
in [15] for VBx baseline rely on oracle voice activity detection
and the shared code base does not provide an official voice ac-
tivity detection implementation, we used our own (marked as
Ours in Table 1) and applied VBx on top of it. Our proposed

resegmentation approach consistently improves the output of
all baselines on all datasets. Relative diarization error rate im-
provement over the best baseline (VBx) reaches 17% on AMI,
13% on DIHARD, and 13% on VoxConverse.

For comparison purposes, we also implemented a heuristic
that consists in assigning detected overlapped speech regions
to the two nearest speakers in time [13]. Despite its simplic-
ity, this heuristic happens to be a strong baseline, very diffi-
cult to beat in practice [12]. Yet, our proposed resegmenta-
tion approach outperforms it for all but two experimental condi-
tions (for which the heuristic is better only by a small margin).
A closer look at the speaker confusion error rates shows that
our approach is significantly better at identifying overlapping
speakers. This is confirmed by the low speaker confusion error
rates obtained when we apply it on top of an oracle diarization
(with yDIA = y): only 1.4%, 1.8%, and 0.6% of speech are re-
assigned incorrectly on AMI, DIHARD and VoxConverse re-
spectively. Figure 3 provides a qualitative sneak peak at their
respective behavior on a short 20 seconds excerpt. In particular,
it appears that the two (heuristic and proposed) approaches do
behave differently and could complement each other.

5. Conclusions
The overall best pipeline reported in this paper is the combina-
tion of our voice activity detection, off-the-shelf VBx cluster-
ing, and our overlap-aware resegmentation approach, reaching
DER = 19.9% on AMI Mix-Headset using the full evaluation
setup introduced in [15], DER = 19.3% on DIHARD 3 evalu-
ation set (full condition, 2.6% behind the winning submission),
and DER = 7.1% (or DER = 3.4% with a 250ms forgiveness
collar) on VoxConverse development set.

Even with a forgiveness collar, missed detection and false
alarms are the main source of errors (twice as high as speaker
confusion) for all three datasets – indicating that, despite
progress, overlapped speech detection remains an unsolved (and
sometimes ill-defined) problem.
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