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a b s t r a c t 

A series of new norbornene monomers containing sterically hindered phenol groups have been synthe- 

sized and polymerized via ring-opening metathesis polymerization (ROMP) using the Grubbs 3 rd genera- 

tion catalyst (G3’). ROMPs exhibit first-order kinetics and molar masses increase linearly with monomer

conversion and well-controlled phenol hindered-functionalized polynorbornenes were obtained with a

monomer to initiator ratio up to 1 0 0 0. The first-order rate constants show that the ROMP activity is

closely associated with the norbornene monomer steric congestion. The antioxidant behavior of these

hindered phenol-containing polynorbornenes with different para -bridged side groups in polypropylene

(PP) was estimated by onset oxidation temperature (OOT) measurements. The ability of these hindered

phenol-containing norbornenes to copolymerize by ROMP with dicyclopentadiene (DCPD) was used to

bound covalently the antioxidant moiety onto a polydicyclopentadiene (PDCPD) resin whose thermal age- 

ing has been investigated.

1. Introduction

Adding antioxidants has proved to be an effective method 

of slowing down the oxidation of polymers [1–3] . Among these 

species, hindered phenols have demonstrated their capacity to trap 

radicals and their effectiveness as stabilizers against the oxidation 

of polymers [4–7] . However, their effectiveness is limited over time 

by diffusion, evaporation or extraction phenomena which decrease 

their concentration in the stabilized material [8–10] and pose a 

potential environmental issue [11] . The two main approaches de- 

veloped to retard the physical loss of antioxidants are (i) produc- 

tion of antioxidants with high molar mass [ 12 , 13 ] and (ii) chemi- 

cally attach antioxidants to the polymer by copolymerization of an 

olefin with an antioxidant-functionalized vinyl [ 14 , 15 ] or norbor- 

nenyl [16–18] monomer or chemical modification of the polyolefin 

matrix [19–21] . For these purposes, hindered phenol-functionalized 

vinyl monomers have been (co)polymerized by the radical route 

[22] , but generation of radicals during the polymerization process

may induce reaction with antioxidant groups.
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ROMP is an attractive method for preparing well-defined hin- 

dered phenol-functionalized polymers thanks to highly functional 

tolerant Grubbs initiators [ 23 , 24 ]. A number of norbornenes deriva- 

tives containing hindered phenol-containing norbornenes have 

successfully polymerized by ROMP to prepare the corresponding 

polymeric antioxidants ( Scheme 1 ) [25–31] . 

Norbornenes bearing two sterically hindered phenols have been 

previously (co)polymerized using the first-generation Grubbs (G1) 

and second-generation Hoveyda-Grubbs (HG2) catalysts (R 1 and 

R 2 , Scheme 1 ) [27] . Polymers with number-average molar mass 

( M n ) of 7 0 0 0 g.mol −1 and 22 0 0 0 g.mol −1 and dispersities ( Ð) 

ranging from 1.8 and 2.1 were obtained. The antioxidant activity of 

the resulting hydrogenated (co)polymers has been assessed by the 

2,2-diphenyl-1-picrylhydrazyl (DPPH) test. Xue et al. have reported 

the synthesis and ROMP of a series of hindered phenol-containing 

norbornenes using G1 (R, R’ = R 3 , R 4 , R 5 , Scheme 1 ) with high M n 

ranging from 19 900 et 1 022 500 g.mol −1 and 1.06 ≤ Ð ≤ 2.78 

[28–30] . The antioxidant ability of the resulting polymers was de- 

termined by oxidation induction temperature (OIT) in polypropy- 

lene (PP). 

2,6-Di- tert -butyl phenol norbornene has also been copolymer- 

ized with ethylene [16] or ethylene and norbornene [18] in the 

presence of a metallo-aluminoxane catalytic system. The result- 

ing co- and terpolymers with tunable amounts of antioxidant 
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Scheme 1. Structures of hindered phenol-containing norbornene monomers polymerized by ROMP reported in the literature and in this work.

functionalities dispersed in low-density polyethylenes and com- 

mercial grades of ethylene-norbornene copolymers have been 

shown to increase the thermo-oxidative resistance of the films by 

OIT measurements [ 17 , 18 ]. 

In the present work, novel 2,6-di- tert -butylphenol containing- 

norbornenes ( M1, M2 and M3 , Scheme 1 ) have been synthe- 

sized from 2-hydroxyethyl-5-norbornene-2-carboxylate, resulting 

in monomers with different electronic donating effect of the sub- 

stituent in para -position of antioxidant phenol group for an ex- 

pected effect of the norbornene reactivity toward ROMP (R 3 , R 4 

[29] , R 5 , Scheme 1 ). Their ROMP has been investigated using

the third-generation Grubbs catalyst [(H 2 IMes)(py) 2 (Cl) 2 Ru = CHPh]

(G3’). The free radical trapping phenol efficiency of these antioxi- 

dant structures has been studied. Two approaches were applied to 

increase persistence of antioxidants in the polymeric matrix and 

avoid the physical loss of the low molar mass antioxidant com- 

monly used for stabilizing commercial polyolefins due to diffu- 

sion and volatility [12–22] . Hindered phenol-functionalized poly- 

norbornenes were then incorporated in PP and polydicylopentadi- 

ene (PDCPD). The hindered phenol-functionalized norbornene M1 

has also been used as a comonomer of dicyclopentadiene (DCPD) 

and chemically attached to polydicyclopentadiene (PDCPD) through 

ROMP copolymerization with an industrial DCPD formulation. The 

resulting materials have been subjected to thermal ageing stud- 

ies and their behavior was compared with a 2,6-di- tert -butyl-4- 

methylphenol (BHT)-stabilized bulk PDCPD. 

2. Experimental

2.1. General Characterization 

Nuclear magnetic resonance (NMR) spectra were recorded on a 

Bruker AC-400 spectrometer operating at 400.16 MHz for 1 H NMR 

and 100.62 MHz for 13 C NMR. The coupling constants and chemical 

shifts are reported in hertz (Hz) and parts per million (ppm) rela- 

tive to deuterated solvent resonances, respectively. High resolution 

mass spectra (HR-MS) were recorded on a Waters-Micromass®

GCT Premier TM (GC, CI + , methane) instrument using a HP 6890 

GC apparatus equipped with a chromatographic column of 25 m 

height, 250 mm diameter, and 0.25 mm thickness. The sample 

was warmed at a temperature of 40 °C for 5 min and then fur- 

ther heated up to 220 °C at a heating rate of 10 °C.min 

−1 . The 

molar masses (number-average molar mass M n , weight-average 

molar mass M w 

) and dispersity ( Ð = M w 

/ M n ) values were mea- 

sured by Size Exclusion Chromatography (SEC) using tetrahydrofu- 

ran (THF) as an eluent, and carried out using a system equipped 

with a Waters 2707 autosampler, with a guard column (Waters, 

Styragel, 20 μm Guard column, 30 × 4.6 mm) followed by two 

columns (Waters, 2 Styragel THF HR2 + HR4, 300 × 7.8 mm) and 

with a Waters RI-2414 detector. The instrument operated at a flow 

rate of 1.0 mL.min 

−1 at 35 °C and was calibrated with narrow lin- 

ear polystyrene (PS) standards ranging in molar mass from 580 

g mol −1 to 483 0 0 0 g mol -1 . Fourier Transform Infra-Red (FT-IR) 

spectra were obtained using a Nicolet avatar 370 DTGS system. 

Spectra were obtained at regular time intervals in the MIR region 

of 40 0 0-50 0 cm 

–1 at a resolution of 4 cm 

–1 (640 scans) and ana- 

lyzed using OMNIC Spectra software. Onset oxidation temperature 

(OOT) was measured by differential scanning calorimetry (DSC) on 

a TA Instruments Q100 according to already reported procedures 

[32–34] . A sample of 2.5 mg was placed in an aluminum pan. Af- 

ter placing the uncovered sample pan together with an empty pan 

reference in a calibrated DSC oven, the sample and the reference 

were continuously heated at 15 °C.min 

−1 under pure oxygen gas 

flow (50 mL.min 

−1 ). OOT was determined by the onset of the de- 

composition process characterized by an exothermic peak shown 

by the DSC in the heat flow. 

2.2. Materials 

All the reagents used in this study were purchased from 

Sigma-Aldrich, unless otherwise noted. o -Dichlorobenzene 

(99%), dicyclopentadiene formulation (DCPD, TELENE SAS), N - 

(3-dimethylaminopropyl)- N ’-ethylcarbodiimide hydrochloride 

(EDC.HCl, ≥98% ), 4-( N,N -dimethylamino)pyridine (DMAP, 99%), 

3,5-di- tert -butyl-4-hydroxybenzoic acid (98%), 3,5-di- tert -butyl- 

4-hydroxyphenylpropanoic acid ( ≥98%, Fisher Chemical), 2,6-di- 

tert -butyl-4-methylphenol (BHT, ≥ 99%), ethyl vinyl ether (99%,

Acros), 2-hydroxyethyl-5-norbornene-2-carboxylate (Molekula),

magnesium sulfate (MgSO 4 , Fisher Chemical), polypropylene

(PP, isotactic, M w 

∼ 12 0 0 0 g mol −1 , average M n ∼ 5 0 0 0 g

mol −1 ), ruthenium salicylaldimine phenylindenylidene complex

(TELENE SAS), silicagel for column chromatography (SiO 2 , Kieselgel

https://www.sigmaaldrich.com/catalog/product/sigma/a2129


60, 230-400 mesh Merck), sodium bicarbonate (NaHCO 3,
 

 Fisher 

Chemical) and sodium chloride (NaCl, grade technical grade, 

Fisher Chemical) were used as received. Pure water was ob- 

tained from a reverse-osmosis purification system and had a 

conductivity of 18.2 M � cm at 25° C. Dichloromethane (DCM, 

HPLC grade, Fisher Chemical) was dried over a dry solvent 

station GT S100. Cyclohexane (99.8%, Quaron), ethyl acetate 

(EtOAc, technical grade), diethyl ether (technical grade), and 

methanol (technical grade) were freshly distilled before use. 

2-(3,5-Di- tert -butyl-4-hydroxyphenyl)acetic acid [ 28,  35]  and 

(1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro- 

(phenylmethylene)bis(pyridine)ruthenium [36] ( G3′
 

 ) were synthe- 
sized according to a literature procedure. 

2.3. Synthesis of 2-((3,5-di-tert-butyl-4-hydroxybenzoyl)oxy)ethyl 

5-norbornene-2-carboxylate (M1) and 2-((3-(3,5-di-tert-butyl-4-

hydroxyphenyl)propanoyl)oxy)ethyl 5-norbornene-2-carboxylate (M2)

3,5-Di- tert -butyl-4-hydroxybenzoic acid (for M1)  or 3,5-di- tert-  

butyl-4-hydroxyphenylpropanoic acid (for M2)  (6.04 mmoles), 

EDC.HCl (1.1573 g, 6.04 mmoles) and DMAP (67.1 mg, 0.55 mmole) 

were dissolved in dry DCM (10 mL) in a 50 mL round-bottom flask 

equipped with a magnetic stirrer and a rubber septum. The solu- 

tion was kept stirring for 5 min. A solution of 2-hydroxyethyl-5- 

norbornene-2-carboxylate (1.0 0 0 g, 5.49 mmoles) in 10 mL of dry 

DCM was added dropwise under argon at 0° C. The resulting mix- 

ture was kept stirring overnight at room temperature. The reaction 

mixture was washed with NaHCO 3 solution (0.1N), deionized wa- 

ter and brine. The organic layer was dried over anhydrous MgSO 4.
 

 

The solvent was removed under reduced pressure. 

M1. The crude product was purified by chromatography on 

SiO 2 using 5/2 cyclohexane/ EtOAc as the eluent. The product was 

dried for overnight resulting in the pure product (1.3427 g; 59%) 

as a yellow solid. 1 H NMR (400.16 MHz, CDCl 3 ), δ (ppm): 7.91 

(s, 2H, H Ar ), 6.15 (m, 2H, CH = C H -CH-CH-C(O)O endo and exo ), 

6.09 (dd, 3 J = 5.2 Hz, 3 J = 2.8 Hz, 1H, CH = C H -CH-CH 2 exo ), 5.92 

(dd, 3 J = 5.6 Hz, 3 J = 2.8 Hz, 1H, CH = C H -CH-CH 2 endo ), 5.69 
(s, 1H, O H ), 4.64-4.29 (m, 4H, C(O)O-C H 2 -C H 2 ), 3.22 (s, 1H, C H-  

CH-C(O)O endo ), 3.06 (s, 1H, C H -CH-C(O)O exo ), 2.98 (dt, 3 J = 12 

Hz, 3 J = 4 Hz, 1H, C H -C(O)O endo ), 2.90 (s, 1H, CH 2 bridge -C H-  

CH 2 ), 2.26 (ddd, 3 J = 12 Hz, J = 4 Hz, 3 J = 1.2 Hz, 1H, C H-  

C(O)O exo ), 1.94 (m, 1H, C H H-CH-C(O) endo and exo ), 1.54-1.26 

(m, 21H, -C(C H 3 ) 3,
 

 CH H -CH-C(O) endo and exo,  C H 2 bridge ) (Fig. 

S1). 13 C NMR (100.62 MHz, CDCl 3 ), δ (ppm): 174.06 (CH- C (O)O), 

166.83 (CH 2 -O C (O)), 158.37 ( C -OH), 137.82 (CH = C H-CH-CH-C(O)O), 
135.7 ( C -C(CH 3 ) 3 ), 132.05 ( C H = CH-CH-CH-C(O)O), 127.36 ( C H Ar ), 
120.86 (CH 2 -OC(O)- C Ar ), 62.35 (CH-C(O)O- C H 2 ), 62.09 ( C H 2 -OC(O)- 
Ar), 4 9.4 8 ( CH 2 bridge ), 45.46 ( = CH- C H-CH-C(O)O), 43.30 ( = CH-C H-  
CH 2 ), 42.52 ( C H-C(O)O), 36.35 ( C (CH 3 ) 3 ), 29.77 (C( CH 3 ) 3 ), 28.82 

( C H 2 -CH-C(O)O) (Fig. S2). FT-IR (cm 

−1 ): 3562 ( ν O-H), 2958 ( ν C-H 

alkane), 1711 ( ν C = O ester), 1431 ( δ C-H alkane), 1300, 1227 ( ν C- 

O ester), 1184, 1110, 764,710 ( γ C-H alkene). HRMS (CI-Na + ): Calcd 

for C 25 H 34 O 5 + Na + : 437.2304; found: 437.2282. 

M2. The crude product was purified by chromatography on 

SiO 2 using 8/2 cyclohexane/ EtOAc as the eluent. The product was 

dried for overnight resulting in the pure product (1.3613 g; 56%) 

as a brown viscous oil. 1 H NMR (400.16 MHz, CDCl 3 ), δ (ppm): 

6.99 (s, 2H, C H Ar ), 6.18 (dd, 3 J = 8 Hz, 3 J = 4Hz, 1H, CH = C H-  

CH-CH-C(O)O endo ), 6.14 (dd, 3 J = 8Hz, 3 J = 4Hz, CH = C H -CH- 
CH-C(O)O exo ), 6.10 (dd, 3 J = 8Hz, 3 J = 4Hz, 1H, CH = C H -CH- 
CH 2 exo ), 5.92 (dd, 3 J = 8 Hz, 3 J = 4Hz, 1H, CH = C H -CH-CH 2 
endo ), 5.08 (s, 1H,O H ), 4.44-4.11 (m, 4H, C(O)O-C H 2 -C H 2 -OC(O)), 
3.21 (s, 1H, = CH-C H -CH-C(O)O endo ), 3.04 (s, 1H, = CH-C H -CH- 

C(O)O exo ), 2.97 (dt, 3 J = 8 Hz, 3 J = 4 Hz, 1H, C H -C(O)O endo ), 2.88 
(m, 3H, CH 2 bridge -C H -CH 2,

 

 OC(O)-C H 2 -CH 2 -Ar), 2.62 (t, J = 8Hz, 

2H, OC(O)-CH 2 -C H 2 -Ar), 2.26 (dd, J = 12 Hz, J = 4 Hz, 1H, C H-  

C(O)O exo ), 1.91 (m, 1H, C H H-CH-C(O) endo and exo ), 1.51-1.19 (m, 

21H, C(C H 3 ) 3 , CH H -CH-C(O) endo and exo , C H 2 bridge ) (Fig. S3). 13 C 

NMR (100.62 MHz, CDCl 3 ), δ (ppm): 175.94 (CH- C (O)O), 174.41 

(CH 2 -O C (O)), 152.22 ( C -OH), 137.77 (CH = C H-CH-CH-C(O)O), 135.79 

( C -C(CH 3 ) 3 ), 132.20 ( C H = CH-CH-CH-C(O)O), 130.99 ( C H Ar ), 124.78 

( C H-C-C(CH 3 ) 3 ), 62.51 (CH-C(O)O- C H 2 ), 61.88 ( C H 2 -OC(O)), 4 9.4 9 

( C H 2 bridge ), 46.72 (CH 2 bridge - C H- C H-C(O)O), 46.27 (CH 2 bridge - CH - 

CH 2 ), 45.75 ( C H-C(O)O), 36.09 (OC(O) C H 2 -CH 2 -Ar), 34.22 ( C (CH 3 ) 3 ), 

31.42 (OC(O)CH 2 - C H 2 -Ar) 30.18 (C( CH 3 ) 3 ), 29.21 ( C H 2 -CH-C(O)O) 

(Fig. S4). FT-IR (cm 

−1 ): 3630 ( ν O-H), 2950 ( ν C-H alkane), 1730 ( ν
C = O ester), 1433 ( δ C-H alkane), 1149,710 ( γ C-H alkene). HRMS 

(CI-Na + ): Calcd. for C 27 H 38 O 5 + Na + : 465.2617; found: 465.2616. 

2.4. Synthesis of 2-(2-(3,5-di-tert-butyl-4-hydroxyphenoxy)acetoxy) 

ethyl 5-norbornene-2-carboxylate (M3) 

2-(3,5-Di- tert -butyl-4-hydroxyphenoxy)acetic acid (0.8186 g, 

2.92 mmoles), EDC.HCl (0.5649 g, 2.96 mmoles) and DMAP (33.6 

mg, 0.27 mmole) were dissolved in dry DCM (5 mL) in a 50 mL 

round-bottom flask equipped with a magnetic stirrer and a rub- 

ber septum. The solution was kept stirring for 5 min. A solu- 

tion of 2-hydroxyethyl-5-norbornene-2-carboxylate (0,500 g; 2,75 

mmoles) in 5 mL of dry DCM was added dropwise under argon 

at 0 °C. The resulting mixture was kept stirring overnight at room 

temperature. The reaction mixture was washed with NaHCO 3 so- 

lution (0.1N), deionized water and brine. The organic layer was 

dried over anhydrous MgSO 4 . The solvent was removed under re- 

duced pressure. The crude product was purified by chromatog- 

raphy on SiO 2 using 9/1 cyclohexane/ EtOAc as the eluent. The 

product was dried for overnight resulting in the pure product 

(0.6227 g; 51%) as an orange-brown viscous oil. 1 H NMR (400.16 

MHz, CDCl 3 ), δ (ppm): 6.78 (s, 2H, C H Ar ), 6.17 (m, 3H, CH = C H - 

CH-CH 2 endo , CH = C H -CH-CH 2 exo , CH = C H -CH-CH-C(O)O exo ), 5.92 

(dd, 1H, 3 J = 8 Hz, 3 J = 4Hz, CH = C H -CH-CH-C(O)O endo ), 4.83 

(s, 1H,O H ), 4.59 (s, 1H, -C(O)O-C H 2 -O) 4.49-4.12 (m, 4H, C(O)O- 

C H 2 -C H 2 -OC(O)), 3.19 (s, 1H, = CH-C H -CH-C(O)O endo ), 3.00 (s, 1H, 

= CH-C H -CH-C(O)O exo ), 2.98 (dd, 3 J = 8 Hz, 3 J = 4 Hz, 1H, C H - 

C(O)O endo ), 2.91 (m, 2H, CH 2 bridge -C H -CH 2 ), 2.25 (dd, 3 J = 12 Hz, 
3 J = 4 Hz, 1H, C H -C(O)O exo ), 1.90 (m, 1H, = CH-CH-C H H-CH-C(O) 

endo and exo ), 1.55-1.17 (m, 21H, C(C H 3 ) 3 , = CH-CH-CH H -CH-C(O) 

endo and exo , C H 2 bridge ) (Fig. S5). 13 C NMR (100.62 MHz, CDCl 3 ), 

δ (ppm): 174.67 (CH- C (O)O), 168.98 (CH 2 -O C (O)), 150.72 ( C -OH), 

148.30 (O- C Ar ), 138.04 (CH = C H-CH-CH-C(O)O), 135.45 ( C -C(CH 3 ) 3 ), 

131.51 ( C H = CH-CH-CH-C(O)O), 111.74 ( C H Ar ), 65.78 (OC(O)- C H 2 - 

O), 63.15 (C(O)-O- C H 2 ), 61.39 (CH 2 - C H 2 -OC(O)), 50.05 ( C H 2 bridge ), 

45.72 ( = CH- C H-CH-C(O)O), 43.11 ( = CH- C H-CH 2 ), 42.52 ( CH -C(O)O), 

34.46 ( C (CH 3 ) 3 ), 30.16 (C( C H 3 ) 3 ), 28.95 (CH- C H 2 -CH-C(O)O) (Fig. 

S6). FT-IR (cm 

−1 ): 3634 ( ν O-H), 2952 ( ν C-H alkane), 1730 ( ν C = O 

ester), 1428 ( δ C-H alkane), 1168, 1096, 710 ( γ C-H alkene). HRMS 

(CI-Na + ): Calcd. for C 26 H 36 O 6 + Na + : 467.2410; found: 467.2389. 

2.5. General procedure for the ROMP of hindered phenol-containing 

norbornenyl monomers 

In a typical experiment, a dry Schlenk tube was charged with 

the desired quantity of monomer and a stir bar. The Schlenk tube 

was capped with a rubber septum, and the desired quantity of de- 

gassed anhydrous DCM by freeze-pump-thaw cycles was added via 

a syringe to obtain a homogeneous solution ([monomer] 0 = 0.05 

mol.L −1 ). The Schlenk tube was immersed in an oil bath pre- 

set at 25 °C and was stirred under argon for 10 min. A stock so- 

lution of catalyst G3’ in degassed anhydrous DCM ([G3’] 0 = 5- 

7 mmol.L -1 ) was prepared in a separate vial. The desired quan- 

tity of catalyst G3’ was injected quickly into the monomer solu- 

tion to initiate the polymerization (initial reaction time, t = 0). 

The reaction mixture was stirred from 8 min to 1h30. Aliquots of 



Table 1

Characteristics of the polymers obtained from ROMPs of hindered phenol-containing norbornenyl monomers in DCM at 25 °C, using G3’ initiator with varying monomer-to- 

initiator molar ratio.

Run Monomer [M] 0 /[I] 0 
a)

Reaction

time (min) Conv. b) (%) M n , calc 
c) (g.mol −1 ) M n , SEC 

d) (g.mol −1 ) Ðd)

1 M1 100 10 100 41 500 38 300 1.09

2 M1 500 15 100 207 100 108 500 1.34

3 M1 1000 90 100 414 100 200 700 1.51

4 M2 100 8 100 44 300 53 600 1.54

5 M2 500 20 83 183 530 121 400 1.68

6 M2 1000 90 78 344 860 202 600 1.79

7 M3 100 8 99 44 060 31 400 1.13

8 M3 100 10 100 44 500 48 400 1.90

9 M3 500 20 97 215 440 120 600 1.47

10 M3 1000 90 93 413 020 233 000 1.87

a) Monomer-to-initiator molar ratio. b) The monomer conversions were determined by comparing the integrations of the alkene protons of hindered phenol-containing

norbornenes ( M1 : 5.92-6.15 ppm, M2 : 5.92-6.18 ppm, M3 : 5.92-6.17 ppm) and the aromatic protons of the monomers ( M1 : 7.91 ppm, M2 : 6.99 ppm, M3 : 6.78 ppm) and

their polymer ( PM1 : 7.87 ppm, PM2 : 6.98 ppm, PM3 : 6.76 ppm) from 

1 H NMR spectra of the crude mixtures. c) M n , calc = ([M] 0 /[I] 0 ) × conv. × M monomer + M extr. with 

M1 = 414 g mol −1 , M2 = 442 g mol −1 , M3 = 4 4 4 g.mol −1 , and M extr. = 104 g.mol −1 . d) Determined by SEC in tetrahydrofuran (THF) using a RI detector, calibrated with 

linear polystyrene (PS) standards.

reaction mixture were taken at different reaction times and poly- 

merizations were quenched by adding two drops of ethyl vinyl 

ether for 1 H NMR spectroscopy analysis. The solvent of aliquots 

was then removed under reduced pressure for further SEC mea- 

surements to determine number-average molar masses ( M n , SEC ) 

and dispersity ( Đ). The final reaction mixture was then diluted in 

DCM and precipitated into 20 mL of stirred cold methanol, filtered 

and dried overnight under reduced pressure. The recovered poly- 

mer was then analyzed by 1 H NMR spectroscopy and SEC. 

Poly[2-((3,5-di- tert -butyl-4-hydroxybenzoyl)oxy)ethyl 5- 

norbornene-2-carboxylate] (PM1). Yellow solid. [ M1 ] 0 /[ G3’ ] 0 = 

100 (run 1, Table 1 ); conversion = 100 %, M n , SEC = 38 300 g.mol -1 ; 

Ð = 1.09. 1 H NMR (400.16 MHz, CDCl 3 ), δ (ppm): 7.87 (bs, 2nH, 

C H Ar ), 5.99 (bs, 1nH, OH), 5.50-5.00 (bs, 2nH, C H = C H ), 4.50-4.00 

(bs, 4nH, C H 2 -C H 2 ), 3.25-2.20 (bs, 3nH, C H -C H -C(O)O, = CH-C H - 

CH 2 ), 1.90 (bs, 2nH, C H 2 -CH-C(O)), 1.54-1.26 (bs, 20nH, C(C H 3 ) 3 , 

C H 2 bridge ) (Fig. S7). 

Poly[2-((3-(3,5-di- tert -butyl-4-hydroxyphenyl)propanoyl)oxy) 

ethyl 5-norbornene-2-carboxylate] (PM2). Pale orange solid. 

[ M2 ] 0 /[ G3’ ] 0 = 100 (run 4, Table 1 ); conversion = 100 %, 

M n , SEC = 53 600 g.mol −1 ; Ð = 1.54. 1 H NMR (400.16 MHz, 

CDCl 3 ), δ (ppm): 6.98 (bs, 2nH, C H Ar ), 5.08 (bs, 1nH, O H ), 5.20- 

5.50 (bs, 2nH, C H = C H ), 4.35-4.00 (bs, 4nH, C(O)O-C H 2 -C H 2 -O(CO)), 

3.34-2.70 (bs, 2nH, = CH-C H -C H -C(O)O, CH-C H -CH 2 , OC(O)-CH 2 - 

C H 2 -Ar), 2.62 (t, J = 12 Hz, 4nH, OC(O)-C H 2 - CH 2 -Ar), 1.91 (bs, 

2nH, = CH-C H 2 -CH-C(O)), 1.51-1.19 (bs, 20nH, C(C H 3 ) 3 , C H 2 bridge ) 

(Fig. S8). 

Poly[2-(2-(3,5-di- tert -butyl-4-hydroxyphenoxy)acetoxy)ethyl 

5-norbornene-2-carboxylate] (PM3) . Translucent solid. 

[ M3 ] 0 /[ G3’ ] 0 = 100 (run 7, Table 1 ); conversion = 99 %, M n , SEC = 31 

400 g.mol −1 ; Ð = 1.13. 1 H NMR (400.16 MHz, CDCl 3 ), δ (ppm): 

6.76 (bs, 2nH, C H Ar ), 5.50-5.00 (bs, 2nH, C H = C H ), 4.85 (1nH, 

O H ), 4.58 (bs, 2nH, C(O)O- CH 2 -O), 4.50-4.00 (bs, 4nH, C H 2 -C H 2 ), 

3.25-2.25 (bs, 3nH, C H -C H -C(O)O, = CH-C H -CH 2 ), 1.90 (bs, 2nH, 

= CH-CH-C H 2 -CH-C(O)), 1.50-1.25 (bs, 20nH, C(C H 3 ) 3 , C H 2 bridge ) 

(Fig. S9). 

2.6. General procedure for preparation of PP and PP/hindered 

phenol-containing polynorbornene blends 

All samples are prepared according to a procedure adapted 

from the literature [29] . In a typical experiment, a 100 mL 

round-bottom flask equipped with a magnetic stirrer and a re- 

flux condenser was charged with 1 g of PP with 15 mL of o - 

dichlorobenzene. A solution of hindered phenol-containing poly- 

norbornene of D P n = 100 (5 μmol in di- tert -butylphenol func- 

tions) in 1 mL of DCM was prepared. 0.4 mL of the solution (2 

μmol in di- tert -butylphenol functions) was added to the round- 

bottom flask under nitrogen atmosphere. The mixture was stirred 

at 135 °C for 1 hour to dissolve PP completely. For PP and PP/ hin- 

dered phenol-containing polynorbornene, the mixture was cooled 

and precipitated into 100 mL of stirred cold diethyl ether, then the 

blend was filtered and dried overnight at 70 °C under reduced pres- 

sure. 

2.7. General procedure for preparation of PDCPD films and exposure 

conditions 

In a typical experiment, stabilized bulk PDCPD materials were 

prepared in a 100 mL plastic beaker by mixing 10 g of DCPD for- 

mulation purchased by TELENE SAS and the desired quantity of 

BHT, hindered phenol-containing norbornene or polynorbornene 

(1.044 mmole/100 g of DCPD formulation). 0.1 g of a solution 

of the ruthenium salicylaldimine phenylindenylidene complex pur- 

chased by TELENE SAS was then added to the mixture. The poly- 

merization occurs immediately at room temperature in 10 min. Af- 

ter polymerization, material was cut in 15-25 μm slices using a Re- 

ichert Jung microtome. Samples were stored in the freezer prior to 

exposure in ventilated ovens at atmospheric pressure at 50 °C. 

3. Results and discussion

3.1. Synthesis of hindered phenol-based norbornenyl monomers 

A series of hindered phenol-containing norbornenyl monomers 

were synthesized from the 2-hydroxyethyl-5-norbornene-2- 

carboxylate ( M1, M2 and M3 , Scheme 2 ). For the latter, the 

electron-donating effect of the oxygen atom located in the para - 

position of phenol was reported to improve the efficiency of 

the antioxidant group [31] . The new M1 and M3 monomers 

were obtained by esterification in a one-step process from 2- 

hydroxyethyl-5-norbornene-2-carboxylate ( endo / exo = 80:20) 

and the 3,5-di- tert -butyl-4-hydroxybenzoic acid and the 2-(3,5- 

di- tert -butyl-4-hydroxyphenoxy)acetic acid [35] , respectively.

Monomer M2 [37] was synthesized through a new procedure

by esterification with 3,5-di- tert -butyl-4-hydroxyphenylpropanoic

acid.

The 1 H NMR spectra of M1 (Fig. S1), M2 (Fig. S3) and M3 (Fig. 

S5) showed the signals of CH = CH protons at 5.90 and 6.20 ppm 

(labeled a exo , a endo , b endo and b exo , Fig. S1, S3 and S5) and the pres- 

ence of two multiplets attributed to -O- CH 2 - CH 2 -O- at 4.29 and 

4.64 ppm, 4.11 and 4.44 ppm, and 4.12 and 4.49 ppm for M1, M2 , 



Scheme 2. Synthesis of hindered phenol-containing norbornenyl monomers M1, M2 and M3 .

Scheme 3. ROMP of hindered phenol-containing norbornenyl monomers M1, M2 and M3 .

and M3 (labeled h and i, Fig. S1, S3 and S5), respectively. The inte- 

gration area ratio of the characteristic resonances is in good agree- 

ment with the ratio of corresponding protons, demonstrating that 

full esterification occurred. The endo / exo ratio was preserved af- 

ter esterification and purification, as ascertained by the integra- 

tion area ratios of the vinylic protons (labeled a exo , a endo , b endo and 

b exo , Fig. S1, S3 and S5) and a vinylic endo proton (labeled b endo , 

Fig. S1, S3 and S5). Morever, HRMS analyses confirmed the struc- 

ture of M1, M2 and M3 as the experimental molecular weights 

(M + Na + = 437.2282, 465.2616 and 467.2389 respectively) were in 

good agreement with the calculated values (M + Na + = 437.2004, 

465.2617 and 467.2410 respectively). 

3.2. ROMP of hindered phenol-based norbornenyl monomers 

M1, M2 and M3 were polymerized in dichloromethane (DCM) 

at 25 °C through ring-opening metathesis polymerization (ROMP) 

using Grubbs’ third-generation catalyst ( G3 ′ ) as the initiator, pos- 

sessing dramatic tolerance toward various functional groups of 

substrates [38] ( Scheme 3 ). 

ROMP of the hindered phenol-containing norbornenyl 

monomers was conducted at increasing monomer-to-initiator 

molar ratio [M] 0 /[I] 0 (100-1000). The conversion, number-average 

molar mass ( M n,SEC ), and dispersity ( Ð) are summarized in 

Table 1 . 

M n,SEC increased with the increase of [M] 0 /[I] 0 , and the Ð val- 

ues were in the range 1.09-1.90. The conversion of the polymeriza- 

tion remained relatively constant throughout the [M] 0 /[I] 0 series 

for M1 and M3 . While the SEC traces of the polymers PM1 and 

PM3 displayed a monomodal distribution with narrow dispersity 

Đ < 1.14 for a [M] 0 /[I] 0 = 100 (Fig. S10A and S12A), SEC traces 

for [M] 0 /[I] 0 ratios of 500 and 1000 showed a monomodal mass 

distribution with a spreading toward lower molar masses due to 

backbiting [ 39 , 40 ] (Fig. S10B, S10C, S12B and S12C). It should be 

noted that ROMP of M3 for a [M] 0 /[I] 0 ratio of 100 has to be con- 

ducted within 8 min instead of 10 min with M1 , in order to avoid 

the apparition of a second population at lower retention times, as 

ascertained by the SEC trace (Fig. S13B vs. S13A). The ratio of the 

peak molecular weight M p of these two populations (45 200 and 

89 800 g mol −1 ) of around 2 suggests chains recombination reac- 

tions [41] . Unlike M1 and M3 , the increase of [M] 0 /[I] 0 resulted in 

a decrease of the conversion of M2 as well as an increase of the 

Ð values (runs 4-6, Table 1 ). The loss of control of the polymeriza- 

tion entailed tailing of the elution profile in the SEC trace (Fig. S11) 

toward lower molar masses can be attributed to backbiting. More- 

over, chains recombination reactions occurred for a [M] 0 /[I] 0 ratio 

of 100 (run 4, Table 1 ) even for lower conversions ( Fig. 1 E), show- 

ing the ill-defined ROMP of M2 . The influence of the anchor group 

between the ROMP-able group and the sterically hindered phenol 

on the kinetics of ROMP was evaluated. 

3.3. Influence of the structure of hindered phenol-based norbornenyl 

monomers on kinetics 

Kinetics analysis of ROMP of hindered phenol-containing nor- 

bornenyl monomers M1, M2 and M3 with an initial monomer 

concentration of 0.05 mol.L −1 and a [M] 0 /[I] 0 ratio of 100 at 

25 °C in DCM using G3 ′ as the initiator were conducted using 1 H 



Fig. 1. Kinetic plots – ln([M] t /[M] 0 ) versus reaction time for ROMP using G3’ as the initiator with an initial monomer concentration of 0.05 mol.L −1 and a [M] 0 /[I] 0 ratio of 

100 at 25 °C in DCM of (A) M1 , (B) M2 , and (C) M3 . SEC traces for ROMP of (D) M1 , (E) M2 , and (F) M3 . Molar mass and dispersity versus conversion plots for (G) M1 , (H)

M2 , and (I) M3 .

NMR spectroscopy. Linear pseudo first order was observed for the 

ROMP of the hindered phenol-containing norbornenyl monomers 

M1, M2 and M3 ( Fig. 1 A-C). The SEC chromatograms of the crude 

polymers at different reaction time during ROMP of M1 and M3 

( Fig. 1 D and 1 F) are symmetrical and shift to lower elution vol- 

umes with increasing polymerization time. Additional evidence of 

a well-controlled polymerization is indicated by the linear pro- 

gression of M n , SEC vs. monomer conversion and the narrow molar 

mass distribution ( Fig. 1 G and 1 I). In contrast, while the SEC chro- 

matograms of PM2 shown in Fig. 1 E shift to lower elution times, 

dispersities increase with increasing monomer conversion ( Fig. 1 H) 

and a high molar mass shoulder is observed from the very start of 

the polymerization that is approximately double the molar mass 

of the main polymer peak. It should be noted that such a behavior 

was also observed for PM3 at the end of the polymerization (run 

8 vs. run 7, Table 1 and Fig. S13B vs. S13A). These new populations 

can be attributed to acyclic metathesis between the chain-end and 

double bonds in the polymer which competes with propagation 

during ROMP, as reported by Lee et al. [41] ( Fig. 1 E). While the 

observed coupling for PM3 is ascribed to prolonged stirring of liv- 

ing propagating polymer species without the addition of ethyl vinyl 

ether even after complete conversion [42] , the competing acyclic 

metathesis reactions that occur during the polymerization of PM2 

have been reported as the result of the scrambling of chain length 

between two interacting chains [43] . This side reaction could be 

minimized by diluting the living end concentration by increasing 

the monomer-to-initiator ratio under the same initial conditions as 

observed on the SEC trace for initial monomer-to-initiator ratios of 

500 and 1000 (B and C, Fig. S11). 

Table 2

Kinetic data for ROMP of M1, M2 with M3 using G3’ as the initiator with an initial

monomer concentration of 0.05 mol.L −1 and a [M] 0 /[I] 0 ratio of 100 at 25 °C in DCM. 

Run Monomer Conv. % (2 min) k p 
app a) k p 

b) 

1 M1 55 0.384 7.7

2 M2 75 0.640 12.8

3 M3 85 0.670 13.4

a) min −1 , calculated from the slopes of semilogarithmic kinetic plots. b)

min −1 .L.mol −1 . 

Kinetic analysis of hindered phenol-containing norbornenyl 

monomers M1, M2 and M3 with a different anchor group between 

the ROMP-able entity and the hindered phenol revealed different 

tendencies in propagation apparent rate constants (kp 

app ) values 

( Table 2 ). Electronic effects are minor as the electronic nature of 

carbonyl oxygen chelating to the Ru center is not changed between 

M1 , M2 and M3 [ 30 , 44–47 ]. As stated in Grubbs’ works, the much 

lower reactivity of M1 (0.384 min 

−1 ) that is two-fold less reactive 

than M2 (0.640 min 

−1 ) and M3 (0.670 min 

−1 ) can be attributed to 

local steric congestion around the propagating metallocycle or the 

different solvent quality which may cause the observed difference 

in the rate of polymerization [48–50] . 

3.4. Stabilizing activity of hindered phenol-containing norbornenes 

and polynorbornenes 

The stabilizing activity of hindered phenol-containing polynor- 

bornenes was evaluated according to a reported procedure by ex- 



Table 3

OOT results of PP sample stabilized with PM1, PM2 , and

PM3 hindered phenol-containing polynorbornenes.

Run Stabilizer OOT a) ( °C)

1 - 180 ± 1 

2 PM1 189 ± 1 

3 PM2 187 ± 1 

4 PM3 188 ± 1 

a) The OOT is reported at the extrapolated onset tem- 

perature.

posing virgin polypropylene (PP) and PP stabilized with PM1, PM2 

and PM3 to oxidative conditions [51] . The onset oxidation temper- 

ature (OOT) values of PP with hindered phenol-containing polynor- 

bornenes indicate an improved thermal-oxidative stability with re- 

spect to pure PP, independently of the nature of the substituent 

in para -position of antioxidant phenol group, which only has a 

second order influence on antioxidant efficiency ( Table 3 ). The in- 

crease in stability is of the same order of magnitude as that al- 

ready reported in the literature for the hindered phenol-containing 

polynorbornenes issued from the hindered phenol-containing nor- 

bornenes with the R 4 group ( Scheme 1 ) [29] . 

Further studies on the exploitation of these new antioxidant 

agents to be used in DCPD formulation for stabilization of PD- 

CPD material have therefore been conducted with ( P ) M1 . Stabi- 

lized bulk PDCPD materials were obtained by bulk polymerization 

of DCPD formulation using a ruthenium salicylaldimine phenylin- 

denylidene complex as the initiator in the presence of the stabiliz- 

ing agent. The concentration of the stabilizing agent has been set 

at the same concentration as in the industrial formulation (see ex- 

perimental section) when 2,6-di- tert -butyl-4-methylphenol (BHT) 

is used, i.e. 1.044 mmol in phenol function per 100 g of DCPD 

formulation. The incorporation of the hindered phenol-based poly- 

norbornenes with a [M] 0 /[I] 0 ratio of 100 failed because of their 

insolubility in the DCPD formulation. 

Incorporation of a hindered phenol-based antioxidant in the 

PDCPD has then been performed by bulk copolymerization be- 

tween DCPD and the hindered phenol-containing norbornene M1 

used both as comonomer and stabilizing agent. The thermal age- 

ing of the resulting stabilized bulk PDCPD material ( PDCPD-M1 ) 

has been studied on 15-25 μm films by Fourier Transform Infra- 

Red (FT-IR) analysis and compared with a virgin bulk PDCPD film 

( v-PDCPD) and a BHT-stabilized bulk PDCPD film ( PDCPD-BHT ). 

PDCPD thin films were exposed at 50 °C under air. Their oxidation 

was observed by FT-IR spectroscopy (Fig. S14) with the appearance 

of absorption peaks, which perfectly overlap for the three PDCPD 

formulations, at around 3400 cm 

−1 (highlighted in grey in Fig. S14) 

ascribed to stretch vibration mode of O-H and at 1650-1750 cm 

−1 

(highlighted in grey in Fig. S14), ascribed to stretch vibration mode 

of C = O, the absorptions below 1700 cm 

−1 indicating the presence 

of conjugated carbonyls coming from highly oxidizable allylic car- 

bons [52] . Thermal ageing of the PDCPD films has been monitored 

by converting carbonyl absorbances into concentrations using Beer 

Lambert’s law with εCO = 300.L.mol −1 cm 

−1 [53] ( Fig. 2 ). The car- 

bonyl concentration of PDCPD-M1 (B, Fig. 2 ) displays an induction 

period of 8 h while v-PDCPD (A, Fig. 2 ) oxidizes instantly. After 

this induction period, PDCPD-M1 and v-PDCPD oxidize with the 

same rate, although much faster than PDCPD-BHT (C, Fig. 2 ). Mon- 

itoring of thermal ageing of PDCPD-M1 and v-PDCPD is not possi- 

ble anymore beyond 80 h because the films have become too brit- 

tle. While copolymerization between M1 and DCPD prevents physi- 

cal loss of antioxidants from the bulk PDCPD material, immobilized 

phenol is less efficient than its free counterpart. Such a behavior 

could be induced by the higher hindrance of the carbon in para - 

position of the hindered phenol-containing M1 compared to BHT, 

thus limiting the reaction between phenoxy and radicals groups, 

which is inconsistent with previous works on the efficiency of sev- 

eral phenol groups studied for polyolefin stabilization [54] . These 

results are more likely due to the low mobility in a glassy polymer 

[55] . The rate constant for the bimolecular reaction between two

peroxy radicals POO ° was shown to be much lower than in rubbery

materials such as elastomers. It could be the same in particular for

the reaction between POO ° and radical by products generated by

stabilizer. This is in line with the first estimations of correspond- 

ing rate constants [56] where the rate constant for POO ° + phe- 

noxy radical is about 5 L.mol −1 .s −1 at 50 °C vs 10 8 in model

liquids.

For ageing in aqueous media however, the grafted stabilizers 

could be more efficient than their free analogs because those latter 

could migrate out of the polymer. 

Fig. 2. Carbonyls concentration-time profiles during ageing at 50 °C under air of (A) v-PDCPD , (B) PDCPD-M1 , and (C) PDCPD-BHT .



4. Conclusions

Novel hindered phenol-containing norbornenes were success- 

fully synthesized by esterification between 2-hydroxyethyl-5- 

norbornene-2-carboxylate and di- tert -butyl-4-hydroxy carboxylic 

acid derivatives. Their subsequent polymerization was performed 

by ROMP using ruthenium-based third generation initiator G3’.  

Well-defined polymers were obtained from M1 and M3.  Acyclic 

metathesis reactions were observed during ROMP of M2,  which 

prevent from obtaining well-defined polymers. Kinetics analyses 

of ROMP for a targeted [M] 0 /[I] 0 ratio of 100 show that the 

norbornene monomer steric congestion plays an important role 

in the rate of ROMP. The OOT values of PP with the hindered 

phenol-containing polynorbornenes increased compared to virgin 

PP, showing their thermo-oxidative resistance. While the incorpo- 

ration of polynorbornenes as additives in DCPD formulations failed 

due to their insolubility, hindered phenol-containing norbornene 

M1 has been successfully copolymerized with DCPD. The result- 

ing material shows an induction period before its thermal ageing 

at 50° C monitored by FT-IR analyses. 
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