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Abstract 22 

The work reported here is the first study aimed at providing a full screening of a real 23 

unsortable non-recycled post-consumer WEEE stream free of brominated flame retarded 24 

plastics, separated using on-line X-ray detection, toward its recycling. In the existing sorting 25 

lines, up to 40% of plastics from waste electrical and electronic equipment (WEEE) stream 26 

can be rejected, herein named unsortable plastics, To have the most representative 27 

homogeneous sample for physico-chemical characterizations, a sampling method was 28 

developed to overcome the heterogeneity of the investigated 500 kg batch. The batch 29 

screening on both representative samples (~500 µm size) and 100 plastic fractions (~20 mm 30 

size), by means of routine techniques used in the plastic industry, has allowed to quantify 31 

reliably the main polymers included in the studied batch; ~50 % styrene-based polymers, ~15 32 

% polypropylene (PP), ~15 % polycarbonate (PC), ~1-4 % polyamide (PA), polyethylene 33 

(PE), polyvinyl chloride (PVC), poly(ethylene terephthalate) (PET), poly(methyl 34 

methacrylate) (PMMA) and ~8 % of multi-layer plastics, paints and thermosets. The 35 

identification of the ~8.0% inorganic phase by X-ray fluorescence spectrometry revealed the 36 

presence of several additives/charges commonly incorporated in plastic materials, such as 37 

calcium carbonate and talc. The studied batch was then subjected to electron beam irradiation 38 

at 50 and 200 kGy doses, as a means of compatibilization between the batch components. The 39 

mechanical properties and thermal behavior of irradiated samples pointed out the crucial role 40 

of the residual free radical scavenger agents present in post-consumer WEEE streams, leading 41 

to significantly different properties compared to those of irradiated virgin polymer blends 42 

highlighted in the literature. 43 

Keywords: 44 

Unsortable plastics, Post-consumer WEEE, Electron beam irradiation, Sampling method, 45 

Plastics recycling, Mechanical properties 46 
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 47 

1. Introduction 48 

Waste electrical and electronic equipment (WEEE) is the fastest growing source of waste, 49 

potentially rising 4% per year (Sahajwalla and Gaikwad, 2018). This increasing waste stream 50 

has led to the publication of directive 2012/19/EU by the European Commission, targeting a 51 

WEEE recycling rate between 55% and 80% (2012/19/EU, 2012). WEEE is a complex stream 52 

consisting of a mixture of metals (Kyere et al., 2018), ceramics, glass and plastics. The 53 

proportion of the latter, depending on the six WEEE categories defined in directive 54 

2012/19/EC (2012/19/EU, 2012), is ranging between 10 wt.% and 33 wt.% (Gramatyka et al., 55 

2007; Kang and Schoenung, 2005; Parajuly and Wenzel, 2017; Vazquez and Barbosa, 2016; 56 

Wang and Xu, 2014; Widmer et al., 2005). Therefore, to achieve the objectives set out in 57 

directive 2012/19/EC, WEEE plastic recycling is imperative. Furthermore, plastic waste 58 

management has become an ecological issue given the need to limit the impact of plastics on 59 

our environment (Dolores et al., 2020; Hamaide et al., 2014; Ismail and Hanafiah, 2019; 60 

Milad et al., 2020); From an economical point of view, studies on the plastic composition in 61 

WEEE reported in the literature highlighted the presence of different types of polymers, the 62 

amount of which varies with the source (Alwaeli, 2011; Bovea et al., 2016; Chancerel and 63 

Rotter, 2009; Dimitrakakis et al., 2009; Maris et al., 2015; Martinho et al., 2012; Stenvall et 64 

al., 2013; Taurino et al., 2010). Considering the economic effectiveness of the waste utilized 65 

as substitutes for primary materials, as discussed by Alwaeli (2011), only the most 66 

representative polymers of the stream, that can be technically sorted and valorized according 67 

to the regulatory, are separated individually for further mechanical recycling operations. The 68 

plastic composition of WEEE issued from small electrical and electronic equipment (EEE) 69 

recycling units in Europe consists mainly of acrylonitrile-butadiene-styrene copolymer 70 

(ABS), polypropylene (PP), polystyrene (PS), and high-impact polystyrene (HIPS) 71 
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(Dimitrakakis et al., 2009; Maris et al., 2015; Martinho et al., 2012). Up to now, the 72 

complexity and financial cost of plastic sorting makes difficult to consider the separation of 73 

the plastics from each other to facilitate recycling of a single type of polymer.  74 

In the past decade, near infrared spectroscopy (NIR) has been integrated in the recycling 75 

process of WEEE (Menad, 2016), and allows to separate automatically on line the ABS, PP 76 

and PS from waste white plastics with a high accuracy up to 99% (Li et al., 2019). This 77 

technique can potentially detect other plastics. However, it is not always relevant to the 78 

amount of each plastic and the economic issues related to sorting schemes. As a result, about 79 

40% of WEEE plastics are rejected from the sorting line, herein named unsortable (Fig. 1), 80 

because i) they do not comply with sorted resins, ii) they contain dark pigments, named black 81 

plastics (Maris et al., 2015), which are not recognized by the classical NIR equipment or iii) 82 

because they contain brominated flame retardants (BFR), estimated to be ~25% of WEEE 83 

plastics (Hennebert, 2017). Using on-line X-ray detection, BFR-containing plastics are 84 

separated as specified in the directive 2019/1021/EU (2019/1021/EU, 2019). Indeed, the 85 

recovery of brominated flame retarded plastics has been restricted to treatments that destroy 86 

or irreversibly transform the substances, as stated in 2012/19/EC directive and Stockholm 87 

convention (2012/19/EU, 2012; Stockholm Convention, 2017). 88 
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 89 

Fig. 1. General sorting steps for post-consumer WEEE plastic waste 90 

 91 

Based on this observation, Tostar et al. (2016) have studied recycling of a polymer blend 92 

based on 80 wt.% styrene-based polymers and 10 wt.% PP from WEEE,  by adding a 93 

compatibilizer or by gamma irradiation. The irradiation of polymeric materials with ionizing 94 

radiation appears to be a promising tool to chemically modify polymers as it leads to the 95 

formation of free radicals along the backbone even on low reactive polymers, such as 96 

polyolefins (Burillo et al., 2002; Chmielewski et al., 2005). The compatibilization is ensured 97 

by (i) direct crosslinking between macroradicals of two polymers to form new covalent bonds 98 

(Gu et al., 2014; Li et al., 2009) or (ii) indirect crosslinking via a coupling agent binding two 99 

polymers (Lambla and Seadan, 1993, 1992; Xanthos and Dagli, 1991). The resulting 100 

copolymers act as a compatibilizing agent which concurrently lower the interfacial tension at 101 

phase boundaries and enhance their adhesion, leading to an improvement of the mechanical 102 

properties (Maris et al., 2018; Utracki, 2002). For example, the mechanical properties of a 103 

blend of seven virgin polymers frequently found in plastic solid waste: low-density 104 

polyethylene (LDPE), high-density polyethylene (HDPE), poly(vinyl chloride) (PVC), PS, 105 

HIPS, PP, and poly(ethylene terephthalate) (PET) were improved through the addition of 106 
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peroxides (Vivier and Xanthos, 1994). Similarly, Said et al. (2013) have reported an 107 

enhancement of the tensile properties of different PET/LDPE mixture compositions subjected 108 

to gamma irradiation at 25 and 50 kGy doses. Blends of waste polyethylene/LDPE 70/30, 109 

exposed to electron beam (EB) irradiation at doses up to 300 kGy, showed higher ductility, 110 

toughness, and resistance to oxidative degradation. These irradiated blend materials were 111 

successfully blow molded to make bottles (Satapathy et al., 2006).  112 

Apart from Taurino et al. (2010) investigations on characterization of two sorted black/grey 113 

plastic waste categories (i.e. personal computers and televisions), the work reported in this 114 

article is the first study aimed to analyze and provide a full screening of a real unsortable non-115 

recycled post-consumer WEEE stream.  116 

In this contribution, for the first time the composition of unsortable post-consumer WEEE 117 

plastics stream free of BFR, sorted using on-line X-ray technique as specified in the directive 118 

2019/1021/EU, was investigated. The studied 500 Kg batch was collected in France from the 119 

following streams: cooling appliances, household electrical equipment, and information 120 

technology (IT), such as computers, printers and phones. The polymer and additives/charges 121 

composition of unsortable plastics has been determined using Fourier-transform infrared 122 

(FTIR) spectroscopy, X-ray fluorescence spectrometry, differential scanning calorimetry 123 

(DSC), and thermogravimetric analysis (TGA).  124 

 Burillo et al., 2002; Fel et al., 2016; Lambla and Seadan, 1993; Numata and Fujii, 1995; 125 

Said et al., 2013; Satapathy et al., 2006; Tostar et al., 2016; Vivier and Xanthos, 1994 have 126 

reported the impact of irradiation process on polymer blend. In contrast to these cited studies 127 

where polymer blend recycling was simulated on the basis of virgin polymers or unsorted 128 

plastics, the present work provides a comprehensive investigation on EB-irradiated unsortable 129 

post-consumer WEEE batch prior to melt-process. EB irradiation has the advantage of being a 130 
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clean and continuous process that is already commercially well-established (Drobny, 2010). 131 

Thus, the impact of EB irradiation doses (50 and 200 kGy) on thermal behavior and 132 

mechanical properties of the studied batch was investigated. 133 

2. Experimental Section 134 

2.1.  Materials  135 

A 500 kg big bag of unsortable post-consumer WEEE, collected in April 2015, was 136 

supplied by Veolia (France). Liquid nitrogen used to grind the sample was provided by Air 137 

Liquide (France). 138 

2.2. Sampling procedure  139 

The sampling procedure was carried out on a 500 kg batch with heterogenous fraction sizes 140 

(<70 mm) from unsortable post-consumer WEEE stream. In order to have the most 141 

representative homogeneous sample for physico-chemical characterizations, a sampling 142 

method is necessary to overcome the heterogeneous constitution and size distribution of the 143 

tested batch. For this study, we developed a sampling method (see Fig. 2) based on Gy (1998) 144 

work and the XP CEN/TS 17188 standard (Afnor, 2018), and adapted from our research team 145 

previous work (Epsztein et al., 2014). 146 

2.3. Melt Processing and Characterization Methods 147 

2.3.1.  Twin-screw extrusion 148 

Extrusion experiments were carried out using a co-rotating twin-screw extruder Coperion 149 

ZSK18 (L/D = 40). The barrel temperature along the interpenetrate screws (feeding to die) 150 

was set at 190, 190, 200, 200, 200, 200, 200, 210, 210 and 210 °C with a screw speed of 250 151 

rpm. The obtained extrudates were pelletized after cooling. 152 

2.3.2.  Injection molding 153 
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Dog-bone specimens 1A ISO 527 type and impact bars (80 x 10 x 4 mm3) were injection 154 

molded using a Krauss Maffei EX80-380 injection molding extruder. The detailed processing 155 

parameters are summarized in Table S1.  156 

2.3.3.  Fourier-transform infrared spectroscopy (FTIR) 157 

Infrared spectra were collected in the wavenumber range 400–4000 cm-1 using a Fourier 158 

transform spectrometer Nicolet 380 DTGS in transmission mode for micro-ground samples, 159 

and ATR (attenuated total reflection) mode for bulk samples. Spectra were recorded at a 160 

resolution of 2 cm-1 and 128 scans. The pellet samples for the transmission mode were 161 

prepared by grinding micro-ground sample (~500 µm) and KBr powder with a ratio of 162 

10:100, and then pressing the mixture into pellets. 163 

2.3.4.  Differential scanning calorimetry (DSC) 164 

Differential scanning calorimeter analysis was carried out on ~7 mg representative sample 165 

using a Q100 TA Instrument under standardized conditions ISO 11357. Samples were 166 

equilibrated at -50 °C, ramped at a heating rate of 10 °C/min to 280 °C, cooled down to -50 167 

°C and re-heated to 280 °C at the same heating rate, under nitrogen atmosphere. The reported 168 

data represent the cooling and the second heating cycles for three replicates. 169 

2.3.5.  Thermogravimetric analysis (TGA) 170 

Thermal behavior of the studied samples was investigated on ~13 mg representative 171 

sample, following the ISO 11358 standard, using a TGA1 analyzer from Mettler Toledo. 172 

Tests were performed from 50 to 900 °C under nitrogen atmosphere (flow of 45 mL/min) at a 173 

heating rate of 10 °C/min. After 1 min isothermal at 900 °C under nitrogen, the atmosphere 174 

was switched to dry air and kept for 10 min at 900 °C. The repeatability of the measurement 175 

was evaluated on the basis of three replicates.  176 

2.3.6.  Energy dispersive X-ray fluorescence (XRF) 177 
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The XRF data were collected with a wavelength dispersive X-ray spectrometer PW2404-178 

DY 750 Philips equipped with a rhodium X-ray tube anode and operated at 2.4 kW power for 179 

all measurements using vacuum conditions. To investigate possible interferences, different 180 

scans were performed using a 27 mm collimator and five crystals: LiF 200, LiF 220, Ge, InSb 181 

and PX1. The XRF test specimens were obtained by compression molding the representative 182 

sample powder at 160 °C, under manual pressure of ∼15 bars. The reported values represent 183 

the average of three replicates. 184 

2.3.7.  Electron beam irradiation 185 

EB irradiation was performed on extruded pellets and micro-ground samples by Ionisos SA 186 

(France) using a commercial EB accelerator source of 60Co, under room temperature and air 187 

atmosphere. The tested irradiation doses (50 and 200 kGy) were controlled by varying the 188 

automatic conveyor speeds. Acceleration energy was set at 0.7 ± 0.2 MeV. 189 

2.3.8.  Tensile strength 190 

Tensile strength tests were carried out on injection molded dog-bone specimens 1A ISO 191 

527 type, according to ISO 527 standard, using MTS Criterion® 43 test machine. Samples 192 

were equilibrated at ~23 °C and ~50% relative humidity (RH) for at least 48h before testing 193 

them under the same environmental conditions. The reported values represent the average of 194 

ten replicates for tensile stress and tensile stains, and of five replicates for Young moduli. 195 

2.3.9.  Impact toughness 196 

Horizontal Charpy impact tests were carried out as per ISO 179 standard on unnotched 197 

injection molded sample bars, using ZWICK 5102.202 impact pendulum device. Samples 198 

were equilibrated at ~23 °C and ~50% RH for at least 48h before testing them under the same 199 

environmental conditions. The reported impact toughness values were calculated for ten 200 

replicates.  201 

3. Results and discussion  202 
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3.1. Composition of the studied unsortable WEEE batch 203 

Being aware of the composition and fraction size distribution (<70 mm) heterogeneity of 204 

the studied batch, a sampling method turned out to be necessary to obtain the most 205 

representative sample from the supplied big bag. Thus, we adapted a sampling method based 206 

on our research team previous work (Epsztein et al., 2014), as detailed in Fig. 2.  207 

 208 

Fig.2. Sampling method used in the present study  209 

The 500 kg batch was first spread out and divided into four quarters twice, and at each 210 

time, only two quarters were retained to finally obtain a 125 kg batch sample. After a manual 211 

sorting, aimed at removing residual metals, glass, paper…etc, the sample batch was ground to 212 

a particle size of ~20 mm, and three ~50 g samples were collected from the pallet box central 213 

horizontal axis using a sampling probe. The three collected samples were mixed, ground to a 214 

particle size of 2-4 mm, then to 500 µm. Finally, the ~150 g sample was divided using a 215 

rotating divider to obtain homogeneous representative sample fractions, of approximately 3 g, 216 

used for physico-chemical analysis. 217 

3.1.1.  Analysis of bulk samples 218 
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In order to quickly estimate the composition of the studied unsortable batch, 100 ground 219 

samples of ~20 mm size (Fig. 3a) were collected arbitrary from the ~120 kg pallet box (Fig. 220 

2) and characterized by attenuated total reflection Fourier-transform infrared spectroscopy 221 

(ATR-FTIR). The polymer nature corresponding to each plastic fraction was identified by 222 

comparing the recorded ATR-FTIR spectra to that of the Omnic software database. Fig. 3b 223 

depicts the sum of assigned spectral polymers gathered from the 100 analyzed samples.  224 

 225 

Fig. 3. a) 100 ground samples of ~20 mm size used to estimate b) the polymer composition, in 226 

%, of the studied unsortable batch using ATR-FTIR analysis. 227 

 228 

The composition heterogeneity of the batch under investigation is clearly seen in Fig. 3. 229 

The collected sample is mainly constituted of styrene-based polymers (~50 %) such as 230 

acrylonitrile-butadiene-styrene (ABS), polystyrene (PS), high impact polystyrene (HIPS), 231 

poly(styrene-co-acrylonitrile) (SAN) and poly(styrene-co-butadiene) (SB). Polypropylene 232 

(PP) and polycarbonate (PC) represent about 15 % each. Polyamide (PA), polyethylene (PE), 233 

polyvinyl chloride (PVC), poly(ethylene terephthalate) (PET) and poly(methyl methacrylate) 234 

(PMMA) are present in a very low quantity (i.e. 1-4 %). It is worth noting that the ~8 % of 235 

“other polymers” include unidentified polymers such as multi-layer plastics, paints and 236 

thermosets. This preliminary polymer identification (Fig. 3) allows to determine qualitatively 237 

the polymer composition in the batch. Although this identification cannot be considered as 238 
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representative of the batch, the obtained results agree well with the data reported by Maris et 239 

al. (2015). Similarly, other studies carried out in Germany (Dimitrakakis et al., 2009), and 240 

Portugal (Martinho et al., 2012) on post-consumer plastic waste batches derived from small 241 

EEE showed that ABS, PS/HIPS (~50-56 wt.%) and PP (~25-30 wt.%) account for at least 70 242 

wt.% of the total plastic weight, and that the weight percent of each polymer depends on the 243 

equipment type and WEEE categories (e.g. small household appliances, IT devices…). 244 

3.1.2.  Analysis of the batch representative sample 245 

Likewise, the representative sample was characterized using FTIR, in the transmission 246 

mode, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and energy 247 

dispersive X-ray fluorescence (XRF) to identify more reliably and quantitatively the 248 

composition of the studied batch before its melt processing and for further mechanical 249 

characterization. Through the different cited physico-chemical analysis, the following 250 

polymers, additives, charges and fillers were identified. 251 

 252 

3.1.2.1. Styrene-based polymers  253 

Table 1 presents the absorption bands observed on the FTIR transmission spectral 254 

signature (Fig. S1) and their assignment for the studied batch representative sample. It is 255 

clearly seen that the main screened constituents are styrene-based polymers. Indeed, the 256 

strong out-of-plane C-H bending bands at 697 and 757 cm-1, and the aromatic C-C stretching 257 

bands at 1452, 1493 and 1601 cm-1 are characteristic of the aromatic substitution pattern. 258 

Additionally, the two (out of four) aromatic combination bands in mono-substituted benzene 259 

(1879 and 1941 cm-1), usually observed for PS (Liang and Krimm, 1958; Munteanu and 260 

Vasile, 2005), confirm the presence of styrene pattern. The other two aromatic combination 261 
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bands (1745 et 1800 cm-1) might be hidden due to the band overlapping as a consequence of 262 

the complex composition of the studied batch.  263 

Table 1. Observed FTIR absorption bands and their assignment for the representative sample 264 

of the studied unsortable WEEE batch. 265 

Wavenumber 
(cm-1) 

Intensity Assignments Polymer type 

697 vs 
δ C-H aromatic  Styrene-based 

polymers 757 m 

1452 m 

ν C-C aromatic Styrene-based 

polymers 
1493 w 

1601 w 

1879 vw Aromatic combination bands in 

mono-substituted rings 
PS 1941 vw 

2236 vw ν C≡N ABS, SAN 

3025 w 
ν C-H aromatic Styrene-based 

polymers 3059 vw 

1640 w ν C=C of 1,2-vinyl butadiene 

ABS, HIPS, SB 909 w δ CH2 1,2-butadiene 
964 w δ CH2 trans-1,4-butadiene isomer 

1163 m ν C-O & ν C-C aromatic 

PC 
1193 m ν C-O & ν C-C aromatic 

1229 m ν C-O 

1772 w ν C=O 

1731 w ν C=O PET or PMMA 

1376 w δ CH3 PP 

2849 w 
ν CH2 polymer chains PE 

2917 m 

3298 vw ν ΝΗ or ν ΟΗ PA or degraded ABS 

respectively 

 vs: very strong; m: medium; w: weak; vw: very weak; ν: stretching vibrations; δ: bending vibrations 266 

 267 

On the other hand, the absorption peaks of butadiene pattern recorded at 967 and 909 cm-1 268 

are representative of ABS, SB and/or HIPS; these polymers are mainly characterized by C–H 269 



14 
 

deformation in trans-1,4-butadiene isomer and in 1,2-butadiene units at 965 and 910 cm-1 270 

respectively. The other butadiene characteristic band (i.e. 729 cm-1 for δ CH2 in cis-1,4-271 

butadiene) (Lacoste et al., 1996; Silas et al., 1959) could not be detected. Nevertheless, the 272 

peak at 1640 cm-1 reflects the stretching vibrations of the C=C interaction in the 1,2-butadiene 273 

group (Munteanu and Vasile, 2005). Adding to that, the stretching vibrations of the nitrile 274 

group (C≡N), typical for ABS and SAN, was observed at 2236 cm-1. 275 

The presence of styrene-based polymers in the studied batch is also supported by DSC 276 

(Fig. 4a). As it is clearly seen in Fig. 4a, a glass transition temperature (Tg) around 99°C, 277 

distinctive of ABS, PS, HIPS and SAN, was identified. 278 

3.1.2.2. Polyolefins 279 

The DSC thermograms (Fig. 4a) depict two distinctive endothermic peaks at ~129-133°C 280 

and ~162-165 °C, typical of PE and PP melting temperatures (Tm PE and Tm PP), 281 

respectively. Besides, the cooling exotherms in Fig. S2 display two single crystallization 282 

peaks at temperatures corresponding to PP (Tc = ~120-121 °C) and PE (Tc = ~144-146 °C). 283 

Moreover, compared to the PP crystals melting enthalpy (~5.9-8.3 J/g), that of PE (~0.3-2.7 284 

J/g) indicates a very low weight concentration of PE in the studied batch, which perfectly 285 

matches the FTIR data for bulk samples (Fig. 3b).  286 

Interestingly, a higher temperature melting peak next to the main PP endothermic peak was 287 

observed at ~175 °C for two replicates (Fig. 4a). It is not clear whether this extra melting peak 288 

is a consequence of different PP lamellar arrangements that may result from polymer 289 

oxidation phenomenon, or simply the presence of α-phase isotactic PP crystals (Huy et al., 290 

2004) subsequent to different crystallization conditions that may have occurred during the 291 

manufacture processes. 292 



15 
 

3.1.2.3. Other polymers 293 

Polyamides. The maximum absorption peak at ~3298 cm-1 (Table 1 and Fig. S1) could be 294 

assigned to stretching vibrations of NH bond, characteristic of polyamides. However, it has 295 

been shown that the degradation of ABS can lead to the OH moiety formation with a vibration 296 

band at ~3400 cm-1 (Li et al., 2017). Furthermore, the large melting peak at ~220°C (Fig. 4a) 297 

and the crystallization one at ~190°C (Fig. S2) can be attributed to PA6, PA610 and/or 298 

PA612. 299 

 300 
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Fig. 4. a) 2nd heating DSC thermograms, and b) TG and DTG curves for three replicates (R1, 301 

R2, R3) of unsortable WEEE representative sample. 302 

 303 

PC, PMMA, PET. The very low concentration of PMMA and PET in the studied batch 304 

(Fig. 3b) as well as the hiddenness of the PC Tg, covering the 145-150°C range, by other 305 

polymers thermal events (Fig. 4a and Fig. S2) make their detection by DSC impossible. 306 

Nonetheless, Fig. S1 and Table 1 exhibit several absorption peaks that may be associated with 307 

PC, PMMA or PET. Bands at 1772 cm-1, assigned to stretching vibrations of C=O bond, and 308 

the absorption peaks between 1128 and 1235 cm-1 (Fig. S1), corresponding to stretching 309 

vibrations of C-O bond, involve the presence of PC (Ghorbel et al., 2014). The band at 1731 310 

cm-1 can also be attributed to stretching vibrations of C=O interactions of the ester function in 311 

PET or PMMA (Ghorbel et al., 2014; Zhu and Kelley, 2005).  312 

Although the mentioned absorption peaks emphasize the presence of PC, PMMA and PET, 313 

the same functional groups can also be ascribed to the degradation of styrenic polymers, 314 

either via thermo- (Karahaliou and Tarantili, 2009; Vilaplana et al., 2006) or photo-oxidation 315 

(Gardette et al., 1995) mechanisms.   316 

PVC. The identification of PVC in the studied batch was achieved on the basis of TGA 317 

analysis. The first degradation observed in thermogravimetry (TG) and derivative 318 

thermogravimetry (DTG) curves at about 285°C (Fig. 4b) could be attributed to the presence 319 

of PVC and allows the estimation of ~4.1 ±1.4 wt. % of PVC in the sample. Indeed, it has 320 

been demonstrated that the degradation of PVC occurs in two stages (McNeill et al., 1995): i) 321 

the first one (250-360°C) corresponds to the dehydrochlorination and accounts for ~50 wt.% 322 

of the weight loss, and ii) the second one (360-500°C) is related to the polymer chains 323 

degradation. The latter accounts for ~25 wt.% weight loss. PVC content in the representative 324 

sample determined from TGA is twice as high as estimated by the ATR-FTIR analysis on the 325 
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100 plastic fractions (Fig. 3b). On the other hand, ~1.9 ± 0.4 wt.% of chlorine (Cl), coming 326 

mainly from PVC, was obtained from XRF analysis (Table 2). The over-estimated PVC 327 

concentration by TGA may be due to potential interactions between degradation products of 328 

the batch components that could enhance the dehydrochlorination rate of PVC, particularly in 329 

the presence of ABS and/or PET (Czégény et al., 2012). 330 

 331 

3.1.2.4. Additives, charges and fillers  332 

The complexity of the studied batch comes not only from the different types of polymers, 333 

as described above, but also from the numerous inorganic/organic additives commonly 334 

incorporated in plastic materials to improve their properties either mechanical, physico-335 

chemical, thermal, rheological or even esthetic. TGA analysis (Fig. 4b) showed 336 

approximately 8.0 ± 0.3% under nitrogen residue, confirming the presence of an inorganic 337 

phase. XRF analysis of the studied batch has allowed a reliable screening of its elemental 338 

composition (Table 2). The validity of the sampling method is demonstrated by the low 339 

standard deviation of the replicates. Several additive systems were identified as a result of the 340 

elements examination. 341 

Magnesium (Mg), aluminum (Al) and silicon (Si) are commonly used in the composition 342 

of mineral fillers, usually in the form of silicates such as talc (hydrated magnesium silicate, 343 

Mg3Si4O10(OH)2) or kaolin (hydrated aluminum silicate, Al2Si2O5(OH)4). Mg and Al 344 

elements can also be issued from the presence of hydrotalcite compounds (Mg6Al2CO3(OH)16, 345 

4(H2O)), used as a heat co-stabilizer for PVC (Bao et al., 2008). Calcium carbonate (CaCO3) 346 

is the main Ca-based molecule frequently used in plastic industry with the purpose to decrease 347 

the final cost of the material and increase its mechanical properties. Nonetheless, calcium 348 



18 
 

oxide (CaO) in combination with silicon dioxide (SiO2) and aluminum oxide (Al2O3), 349 

originated from fiberglass (Maris et al., 2015), should not be ignored.  350 

Table 2. Weight % of the different elements detected in the unsortable WEEE representative 351 

sample as determined by XRF. 352 

 353 

Elements 
Concentration (wt. %) 

Elements 
Concentration (wt. %) 

Average Error* Average Error* 

H 7.917 0.050 Ba 0.143 0.042 

C 82.366 0.665 S 0.112 0.015 

N 1.865 0.021 Fe 0.145 0.012 

O 2.175 0.192 Ni 0.011 0.001 

Ca 0.859 0.082 Cu 0.011 0.001 

Mg 0.342 0.056 Cr 0.014 0.002 

Si 0.646 0.046 Zn 0.072 0.004 

Al  0.152 0.135 Mn 0.002 0.000 

Cl 1.867 0.400 Sn 0.002 0.000 

Br 0.070 0.002 Pb 0.006 0.000 

Sb 0.114 0.021 Na 0.107 0.021 

Ti 0.571 0.065 K 0.035 0.003 

P 0.390 0.041 Sr 0.009 0.002 

 *The calculated error is based on three replicates 354 

The recorded concentration of total bromine (Br; 0.070 ± 0.002 wt.%) along with that of 355 

the other regulated elements such as lead (Pb; 0.006 wt.%) and chromium (Cr; 0.014 ± 0.002 356 

wt.%), complies with RoHS (Restriction of Hazardous Substances) regulation, hence allowing 357 

the recovery of the studied batch by means of mechanical recycling. Once again, the very 358 

small standard deviation reflects the reliability of the sampling method. It is worth mentioning 359 

that BFR-containing plastics were separated from the studied batch using an on-line X-ray 360 

detection as defined in the directive 2019/1021/EU (2019/1021/EU, 2019). 361 

Br, antimony (Sb) and phosphorus (P) indicate the presence of flame retardants (FR) in the 362 

studied batch. Sb, in the form of antimony trioxide (Sb2O3), is used as a synergic agent of 363 

BFR thereby enhancing the bromine release from BFR by forming Sb2Br3 (Grause et al., 364 

2010). Additionally, P-based FR such as phosphates, phosphites and melamine phosphates 365 

have been widely used in the last decades as value-added FR systems.  366 
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The small concentration of Zn (zinc) and Cr elements in the batch can be attributed to 367 

Ziegler-Natta and Philips catalysts used for polymerization process of PP and PE (Bichinho et 368 

al., 2005). Similarly, residual sodium persulfate (Na2S2O8), a water-soluble initiator, used in 369 

the emulsion polymerization processes (Kumar and Gupta, 2003), can explain the presence of 370 

sodium (Na) and sulfur (S). Sulphites, are another S-based molecule commonly found in 371 

plastic parts because of their hydroperoxide inhibition properties. 372 

The low Ti content (~0.57 ± 0.07 wt.%), originated from titanium dioxide (TiO2), is related 373 

to the fact that unsortable WEEE streams are mainly constituted of dark colored plastic 374 

fractions, whereas TiO2 is usually used as white pigment in PC/ABS blends (Taurino et al., 375 

2010).  376 

Iron (Fe), nickel (Ni), and copper (Cu) XRF signals, can be explained by the presence of 377 

residual metallic parts that have not been removed during the sorting steps. Furthermore, the 378 

Fe-based barium ferrite (BaFe12O19) is frequently found in electrical equipment operating at 379 

microwave/GHz frequencies due to its electrical properties (Pullar, 2012).  380 

The screening of the 500 Kg batch gives an interesting insight into the composition of a 381 

real unsortable post-consumer WEEE streams. The characterization of either bulk samples 382 

(~20 mm size) or batch representative samples has allowed a reliable quantification of the 383 

main polymers used in the manufacture of small EEE devices; styrene-based polymers (e.g. 384 

ABS, PS and HIPS), PP and PC account for more than 70% of the total organic components. 385 

The heterogeneity and complexity of the stream arise also from the detected inorganic/organic 386 

additives frequently used in the plastics industry. This phase accounts for 8 wt. % and 387 

includes calcium carbonate, mineral fillers, and fiberglass. More importantly, the recorded 388 

concentration of the RoHS restricted substances enables for mechanical recycling. 389 

3.2. Relevance of EB irradiation to mechanical properties of unsortable WEEE plastics 390 
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Given the complex composition of the studied batch, electron beam (EB) irradiation was 391 

considered as a means of compatibilization between the batch components. Indeed, 392 

processing a complex polymer blend may give rise to materials with poor mechanical 393 

properties as a consequence of polymers incompatibility and heterogeneity (Maris et al., 394 

2018). Irradiation of a complex polymer blend results in in-situ cross-linking reactions at the 395 

interface leading to polymer compatibilization (Sonnier et al., 2012). From a potential 396 

industrial application perspective, EB-based ionizing radiation was adopted. Indeed, EB 397 

technology is already used on an industrial scale for commercial purposes, does not generate 398 

nuclear waste, is characterized by its short processing time and complies with restrictions on 399 

volatile organic compounds emission (International Irradiation Association, 2011).  400 

In the present work, two experimental pathways were investigated; the first one has 401 

involved EB irradiation of micro-ground sample (< 500 µm particle size) prior to tween-screw 402 

extrusion step, hereafter denoted as irradiated powder, while the second one has dealt with 403 

irradiated extruded pellets, hereafter denoted as irradiated pellets. Non-irradiated pellets, 404 

extruded irradiated powder and irradiated pellets were then injection molded and 405 

mechanically characterized. Fig. 5 illustrates tensile strength and impact toughness results on 406 

irradiated unsortable WEEE samples as a function of irradiation dose and experimental 407 

procedure. The applied irradiation on powder has not a significant effect on the mentioned 408 

properties. Except for elastic moduli (Fig. 5a), the mechanical behavior of the investigated 409 

samples highlights irradiation dose and process dependency; stress at yield (Fig. 5b) of 410 

irradiated pellets decreases after irradiation, while the EB irradiation undertaken on powder 411 

does not show a significant evolution of the mentioned property. Additionally, the irradiation 412 

dose is with no noteworthy impact on the irradiated powder elongation at break (Fig. 5c) 413 

compared to that on the irradiated pellets, where a drop of the elongation at break was 414 

observed. Regarding the impact toughness (Fig. 5d), the EB irradiation led to a slight decrease 415 
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of the sample toughness median value regardless of the applied irradiation dose and the 416 

experimental procedure. Nevertheless the wide range of the boxplot limits (i.e. Min-Max) of 417 

non-irradiated material highlights the material heterogeneity that probably hides the real effect 418 

of EB irradiation. 419 

 420 

Fig. 5. a) Young modulus, b) stress at yield, c) strain at break and d) impact toughness for 421 

irradiated unsortable WEEE samples as a function of irradiation dose and experimental 422 

procedure (dog-bone specimens from irradiated powder or from irradiated pellets). 423 

 424 
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Based on these findings, it can be assumed that EB irradiation process does not really 425 

increase the adhesion through in-situ crosslinking and compatibilization between the different 426 

component phases of the investigated batch. Moreover, the decrease of elongation at break 427 

and impact toughness of the irradiated samples may result from a potential polymer chain 428 

degradation. In order to give more insight into this hypothesis, DSC analysis was carried out 429 

on injection molded bar specimens used for mechanical testing. The recorded DSC 430 

thermograms are displayed in Fig. 6. First, the heating DSC thermograms (Fig. 6a) of non-431 

irradiated bars exhibit phase transitions similar to those for representative samples (Fig. 4a); 432 

two distinctive endothermic melting peaks around ~127 °C (Tm PE) and ~164 °C (Tm PP), as 433 

well as a styrene-based polymers glass transition at ~99 °C. On the contrary, the 434 

crystallization of PE component occurs at a delayed temperature (~131 °C), closer to that of 435 

PP, for non-irradiated processed sample (Fig. 6b), than for non-processed representative 436 

sample (Fig. S2). These observations might be indicative of PE dissolution in PP matrix in the 437 

molten state (Blom et al., 1998). Besides, EB irradiation, particularly at 200 kGy, leads PP 438 

melting point to shift meaningfully to a lower temperature (Tm PP = ~154 °C) and PE melt 439 

enthalpy to decrease significantly (0.48 J/g for 200 kGy irradiated sample vs. 0.83 J/g for non-440 

irradiated sample). In addition, the EB irradiation process gives rise to a single slightly shifted 441 

exothermic peak (Fig. 6b), representative of simultaneous crystallization of PP and PE, 442 

whereas it shows no impact on Tg of the styrenic polymers. It should be noted that DSC 443 

analysis on bar samples injection molded from irradiated pellets (Fig. S3) exhibits a similar 444 

trend to that presented in Fig. 6 with a PE crystallization occurring later than that of PP 445 

resulting in a broader PP melt peak.  446 
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 447 

Fig. 6. DSC thermograms for bar specimens injection molded from irradiated then extruded 448 

powder at different irradiation dose (0, 50 and 200 kGy). a) 2nd heating cycle, and b) cooling 449 

cycle. 450 

 451 

It has been demonstrated for PE/PP blends that the depression of both melting temperature 452 

and crystallinity rate indicates the miscibility phenomena (Li et al., 2001), and that potential 453 

chemical interactions between macroradicals of irradiated PP and PE are favorable during 454 
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melt processing (Fel et al., 2016). However, it is worth pointing out that melt temperature 455 

decrease is also indicative of degraded polymers, and that crystallinity rate drop may be due 456 

to their crosslinking. Given the complex composition of the studied batch, DSC was not able 457 

to estimate the impact of irradiation on the other batch polymer components, that would have 458 

provided supporting explanations for the observed mechanical behavior of irradiated samples. 459 

Other methods such as electron paramagnetic resonance (EPR) and l,l-diphenyl-2-460 

picrylhydrazyl (DPPH) (unpublished results) failed to detect the persistence of macroradicals 461 

in irradiated samples. Several key assumptions can be made: (1) EPR spectra are difficult to 462 

interpret because of the complex batch composition; (2) The presence of Fe-based molecules 463 

gives rise to anisotropic EPR spectra as the sample position changes; (3) The remaining 464 

pigments in the batch hinder UV-absorbance of DPPH• radicals; (4) Residual antioxidants and 465 

free radical scavengers react with DPPH• radicals.  466 

Based on all the observations and discussion in this section, it can be hypothesized that upon 467 

irradiation, PP undergoes β-chain scissions followed by crosslinking reactions with irradiated-468 

PE during melt processing stages, which may explain the decrease in the elongation at break 469 

and impact toughness. On the other hand, although the irradiation may have led to free radical 470 

production, the subsequent in-situ crosslinking reactions were not efficient enough to allow 471 

compatibilization between the different polymer phases, and consequent mechanical 472 

performance improvement of the final material. This can be explained by the complex 473 

composition of the unsortable post-consumer WEEE stream and the presence of residual free 474 

radical scavengers.  475 

 476 

4. Conclusions 477 
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Mechanical recycling of plastics derived from post-consumer WEEE is an important waste 478 

management strategy. However, ~40% of this waste stream, named unsortable, are rejected 479 

from the classical NIR sorting lines as they don’t comply with the sorted plastic streams and 480 

also because of their dark color. For the first time, a comprehensive examination of a real 481 

unsortable WEEE fraction has been investigated in the present work. The screening of the 482 

studied batch composition, based on FTIR analysis of 100 plastic parts (~ 20 mm size) and 483 

physico-chemical characterization of representative samples, allowed a reliable quantification 484 

and identification of different polymer types; including mainly ~50 % styrenic polymers, ~15 485 

% PP, and ~15 % PC, and showed the existence of ~8 wt. % inorganic phase (calcium 486 

carbonate, talc and fiberglass). Most importantly, the concentration of total bromine, lead and 487 

chromium, in agreement with RoHS (Restriction of Hazardous Substances) regulation, gives 488 

evidence for the batch mechanical recycling. 489 

Given the heterogenous composition of the 500 kg batch under investigation, EB 490 

irradiation, as a means of compatibilization between the batch components, was investigated. 491 

The potential recycling of the studied batch was evaluated through mechanical properties as 492 

function of irradiation dose (50 and 200 kGy) and experimental procedure (irradiated powder 493 

and irradiated pellets). Unlike irradiated powder, a significant drop of the elongation at break 494 

and stress at yield was detected for irradiated pellets regardless of the applied dose. 495 

Nevertheless, the impact toughness property was found to decrease independently of the 496 

applied irradiation dose and the experimental procedure. DSC analysis have shown potential 497 

PP β-chain scissions followed by crosslinking reactions with irradiated-PE during melt 498 

processing stages. This study has provided evidence that the behavior difference between a 499 

EB-irradiated unsortable post-consumer WEEE stream and a EB-irradiated virgin polymers 500 

blend, reported in the literature, is due to the complex composition of the stream and the 501 

presence of residual free radical scavengers which hinder in-situ crosslinking reactions 502 
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leading to the compatibilization between the different polymer phases. The present study 503 

shows that mechanical recycling simulation based on virgin polymer blend or sorted polymer 504 

waste is not representative of real post-consumer unsortable streams. This work may spur 505 

further studies on other ways of compatibilization in order to improve mechanical properties 506 

and cost-effectiveness.  507 
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