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Abstract: Description of the physical behavior of electric guitars is still not very widespread in the
scientific literature. In particular, the physical models describing a nonlinear behavior of pickups
still requires some refinements. The study presented in this paper is focused on nonlinear modeling
of the pickups. Two main issues are raised. First, is the currently most used nonlinear model
(a Hammerstein model) sufficient for the complex nonlinear behavior of the pickup? In other words,
would a more complex model, such as a Generalized Hammerstein that can deal better with the
nonlinear memory, yield better results? The second troublesome issue is how to measure the nonlinear
behavior of a pickup correctly. A specific experimental set-up allowing for driving the pickup in
a controlled way (string displacement perpendicular to the pickup) and to separate the nonlinear
model of the pickup from other nonlinearities in the measurement chain is proposed. Thanks to this
experimental set-up, a Generalized Hammerstein model of the pickup is estimated for frequency
range 15–500 Hz and the results are compared with a simple Hammerstein model. A comparison
with experimental results shows that both models succeed in describing the pickup when used in
realistic conditions.

Keywords: guitar pickup; nonlinear systems; distortion

1. Introduction

Physical modeling and synthesis of musical instruments has been an active research field for
the last few decades [1,2] including a guitar and an electric guitar [3–9]. One of the most important
elements of an electric guitar is a pickup, a sensor that captures the string vibrations and translates
them into an electric signal [10]. It is basically composed of a set of permanent magnets surrounded by
an electric coil. A ferromagnetic string vibrating in the vicinity of the pickup results in a variation of
the magnetic flux through the coil. According to Faraday’s law, an electrical voltage is then induced
across the coil.

A few models of pickup are available in the literature. Some of them are based on integral
equations leading to the variation of magnetic flux at the coil location [11]. These models principally
show, first, that vertical oscillations of the guitar strings produce a stronger effect than horizontal ones
and, second, that there is a noticeable distortion of the electric signal generated by both oscillations.
An overview of the modeling issues related to magnetic pickups is available in [12]. It concerns effects
of both pickup position and pickup width on the pickup timbre, as well as the effect of the pickup

Appl. Sci. 2017, 7, 50; doi:10.3390/app7010050 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/journal/applsci


Appl. Sci. 2017, 7, 50 2 of 15

internal impedance. In [12], the magneto-electric conversion done by the pickup is modeled using
static nonlinearity followed by a simple derivative (Figure 1). The static nonlinearity represents the
nonlinear relationship between the string displacement and the magnetic flux, which can be evaluated
using computer simulations and implemented as an exponential or N-th order polynomial [13].
A slightly different but very powerful approach based on physical-laws and on the framework of port
Hamiltonian systems is used in [14,15] to model an electro-mechanical piano (including a pickup).

On the other hand, studies on nonlinear modeling have led to many nonparametric nonlinear
models, discussed in Section 2, that have evolved through the last few decades. One of them,
a Generalized Hammerstein model, has proved to be useful in modeling nonlinear systems with
no physical knowledge of the system [16–18].

The goal of this paper is to proceed with the identification of pickup linearities based on
a Generalized Hammerstein representation of the pickup. For this purpose, a specific experimental
set-up is used to drive the pickup in a controlled way, and a technique is carried out to get rid
of nonlinearities due to the driver. One of the aims of this study is to find out if it is meaningful,
or not, to use a simple Hammerstein structure given in Figure 1, as it is usually done in modeling
the pickup nonlinearities [11–13], or if a more complex model, such as the Generalized Hammerstein
one, is necessary. The answer is given through the measurement provided in Sections 4 and 5,
and a comparison between theoretical and experimental results in the case of a realistic use of the
pickup is given in Section 6.

d
dt

static NL
x(t) u(t)

Figure 1. Nonlinear system usually used to model nonlinearities of a guitar pickup [12].

2. Nonlinear Models

Study of a nonlinear physical system, such as a guitar pickup, usually begins with a basic model
based on a memory-less polynomial representation [11–13]. As demands for better physical description
increase, more and more complicated nonlinear models are proposed and used. The main criteria for
these models are low complexity together with a high ability to predict the systems output. If both
criteria are fulfilled, the model can be successfully used for simulation.

When dealing with modeling of nonlinear systems, two different methodological approaches are
usually considered. The first approach studies the physical causes of the nonlinear phenomena and
the model is derived purely from the physical laws governing the behavior of the system. These laws
can then be used for the derivation of a theoretical nonlinear model of the system [14]. In the second
approach, little, or even no physical properties are known. The system is said to be a black box and
a generic nonlinear model is used for nonlinear system identification. Among many methods available
in the literature [19], the class of Volterra-Series models and block-oriented models [20,21] have drawn
a particular attention in the field of audio, musical instruments, and digital effects [18,22–26].

Probably the best known block-oriented nonlinear model is the Hammerstein model combining
two elements in series: a static nonlinear system and a linear filter [27–29]. This kind of model has
been, up to today, applied to guitar pickups in [12,13]. The Hammerstein model is then often preferred
because of its simpler structure and lower computational cost.

On the other hand, the Volterra series representation is usually considered to be more effective but
less practical due to the highly complex calculation of multidimensional kernels [30–33]. A Generalized
Hammerstein model [16–18] represents a very good compromise between the complexity and the
efficacy. It is made up of N parallel branches, with each branch consisting of a linear filter Gn( f )
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preceded by an N-th order power static nonlinear function, for n = 1, N. The output u(t) of such
a model to any input x(t) is governed by the following equation

u(t) =
N

∑
n=1

x(t)n ∗ gn(t), (1)

where gn(t) is the inverse Fourier transform of Gn( f ) and where ∗ stands for convolution. Note that
the Generalized Hammerstein model is functionally equivalent to a Chebyshev polynomial-based
model [34] successfully applied in e.g., [35,36].

To estimate the filters Gn( f ), we need to estimate m Higher Harmonic Frequency Responses
(HHFRs) between the input x(t) and the output u(t) noted asH(x,u)

m ( f ), m referring to the number of
each HHFR. We use a procedure based on the Synchronized Swept-Sine technique [37].

3. Synchronized Swept-Sine Technique

The synchronized swept-sine is generated using [37]

x(t) = sin
[

2π f1L exp
(

t
L

)]
, (2)

where
L =

T

ln
(

f2
f1

) , (3)

and where f1 and f2 are initial and final frequency, respectively, and T is duration of the swept-sine.
Note that the definition of the exponential swept-sine (Equation (2)) does not contain the "−1" term
contrary to the usual definition [16,38]. The original definition [38] led to a good estimation of
amplitudes of Higher Harmonic Frequency Responses (HHFRs), but the phases of HHFRs have
been estimated poorly. A restriction of the parameters f1, f2, and T in order to synchronize the
swept-sine signal has been proposed in [16], avoiding the problem of poor phase estimation and
allowing an estimation of the filters Gn( f ) of the Generalized Hammerstein model. A similar approach
has been proposed in [17]. It has been shown, in [37], that in removing the "−1" term from the original
definition, the synchronized swept-sine becomes suitable for estimation of the HHFRs without any
need of correction or restriction of the parameters f1, f2, and T.

The method, originally developed by Angelo Farina [38], consists of de-convolving the measured
signals with a so-called inverse filter as

h(t) = F−1 {F [y(t)]X̃( f )
}

, (4)

where y(t) is the acquired response of the nonlinear system (displacement or voltage signal) to
the synchronized swept-sine. The Fourier transform of inverse filter X̃( f ) can be either calculated
numerically from the generated signal x(t), or an analytical formula derived in [37],

X̃( f ) = 2

√
f
L

exp
{
−j2π f L

[
1− ln

(
f
f1

)]
+ j

π

4

}
, (5)

can be used. The impulse response h(t) then consists of time-delayed higher harmonic impulse
responses, separated by time delays

∆tm = L ln(m), (6)

m being the order of the higher harmonic.
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Finally, to get the Higher Harmonic Frequency Responses (HHFRs), the time-delayed higher
harmonic impulse responses hm(t) are windowed from h(t) and Fourier Transformed to obtain

hm(t)
F←→ H(x,u)

m ( f ), (7)

x and u denoting input and output.

4. Measurement of the Pickup Nonlinearities

The first goal of this paper is to identify the pickup in terms of the Generalized Hammerstein
model (Figure 2). Since the pickup is an electromagnetic transducer that converts string vibration
into an electrical output signal, its experimental characterization is not straightforward. Usually,
when measuring a linear or a nonlinear device, excitation signal is a controlled one (impulses,
swept-sine, pseudo-random sequences) so that output signal can be used to identify the system
in terms of a frequency response function (FRF) for a linear system, or in terms of a set of describing
functions when dealing with a nonlinear system. For a pickup, the excitation signal is the displacement
of a plucked string exhibiting a multi-modal and non stationary behavior. Such an excitation is useful
for a study in real conditions [39] but can hardly be used to get an FRF or to identify nonlinearities.

G1(f)

G2(f)

G3(f)

...

GN (f)

(·)2

(·)3

...

(·)N

+
x(t)

x(t)

x2(t)

x3(t)

xN (t)

u(t)

Figure 2. Generalized Hammerstein model for identifying the nonlinearities of the pickup; x(t) and
u(t) represent the displacement of the guitar string and the output voltage of the pickup, respectively.

To control the string displacement, we use the system shown in Figure 3. A sample of a guitar
string (steel, low E-string, diameter 1.42 mm) is glued on a non-magnetic rigid support, itself fixed to
a shaker which imposes a string displacement perpendicular to the pickup [40]. The rigid connection
between the string sample, rigid support and the shaker ensures a piston-like motion. An mu-metal
shielding covers the shaker in order to limit its electromagnetic radiation. The pickup under test
(SSL-5 single-Coil pickup, Seymour Duncan, Santa Barbara, CA, USA) is set on a precision movement
device, which allows for adjusting the distance at rest d0 between the string and the magnet. For this
experiment, d0 is set to d0 = 5 mm, corresponding approximately to the distance set on a real guitar.
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a piece of guitar string
attached to the shaker

pick-up attached to a fixed support

Figure 3. Measurement device used to characterize the nonlinearities of the pickup. A sample of
a guitar string is glued on a non-magnetic rigid support, itself fixed to a shaker. An mu-metal shielding
covers the shaker in order to limit its electromagnetic radiation.

The shaker is driven by a Synchronized Swept Sine signal [37] so that the nonlinearities of the
whole system, that is, the shaker and the pickup in series can be easily identified using a Generalized
Hammerstein model [16].

To protect the shaker from a possible destruction due to excessive displacement or current, the
frequency range is furthermore limited to the span 15–500 Hz. The excitation signal is pre-filtered
using a linear filter so as to obtain a displacement whose amplitude is almost constant over the
frequency span. The peak amplitude is set here to 1 mm. The displacement of the string portion (that is,
the displacement of the shaker) is measured by means of a single-point vibrometer (OFV-503 and
OFV-505, Polytec, Irvine, CA, USA), pointing at a piece of reflective tape glued to the string support.
The electrical output of the pickup is then connected to an acquisition card that exhibits a high input
impedance (470 kΩ). Consequently, the measured output voltage corresponds to the open-circuit
voltage that does not take into account the effect of pickup output impedance.

The Higher Harmonic Frequency Responses (HHFRs) for both the string displacementH(x,s)
m ( f )

and for the pickup output voltageH(u,s)
m ( f ) calculated using the Synchronized Swept Sine method [37]

are given in Figure 4. The noise level of the measurement is visible on the first HHFR (blue line) at
frequencies higher than the highest excitation frequency (500 Hz), giving at least 60 dB signal-to-noise
ratio (SNR) for the displacement measurement and 80 dB SNR for the voltage measurement.

The fundamental harmonic of the string displacement (Figure 4a) is not flat despite the pre-filtering
and the second harmonic reaches −40 dB relative to fundamental harmonic. It is thus rather difficult,
or almost impossible, to estimate which part of the HHFRs of the pickup output voltage (Figure 4b) is
due to the pickup behavior and which part is due to the shaker behavior.

To overcome this problem, we use a technique presented in [41] and detailed in the Appendix A.
Thanks to this technique, a nonlinear system can be identified in terms of an N-th order Generalized
Hammerstein model (Figure 2), even if it is preceded by another unknown nonlinear system.
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Figure 4. First three Higher Harmonic Frequency Responses (HHFRs) of (a) displacement of the string
excited by the shaker and (b) the output voltage of the pickup.

For the pickup under test, a fifth order Generalized Hammerstein model, the magnitude values of
which are depicted in Figure 5, is identified using this technique. The order of the model is chosen
as a compromise between the sufficient number of branches of the Generalized Hammerstein model
(to be able to reproduce the nonlinear effect correctly) and the noise level.
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Figure 5. Magnitude values of the estimated filters Gn( f ) of the Generalized Hammerstein model
(Figure 2) of the pickup.
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5. Nonlinear Parametric Model of the Pickup

Observing the estimated filters of the Generalized Hammerstein model depicted in Figure 5,
one can note that the dependence on frequency for all filters is approximately 6 dB/oct. Such a slope
corresponds to j2π f in the frequency domain or to a simple derivative d/dt in the time domain.

It is thus tempting to fit all the filter responses Gn( f ) with a function αn j2π f in order to replace
each branch of the Generalized Hammerstein model by a multiplicative coefficient αn in series with
a derivative function d/dt. A fit of the first two filters G1( f ) and G2( f ) (magnitude and phase),
obtained using linear regression of absolute values within the frequency range 15-500 Hz, is depicted
in Figures 6 and 7. It is interesting to note that the estimated phases of both filters are very close to
π/2 within the whole frequency range.

Fixing the phase of all of the estimated filters Gn( f ) to π/2 and parameterizing the absolute value
by αn (resulting coefficient of the linear regression), we can write the following relation

u(t) =
N

∑
n=1

αn
d x(t)n

dt
=

d
dt

(
N

∑
n=1

αnx(t)n

)
. (8)

This relation being a time derivative of a Taylor series, we can simplify the Generalized
Hammerstein model to a Hammerstein model consisting of a static nonlinearity followed by a linear
filter (Figure 1). In this particular case, the static nonlinearity is represented by a simple Taylor series
with coefficients αn, and the linear filter is represented by a time domain derivative, as shown in
Figure 1. This result tends to confirm the model previously proposed by [12]. The fitted coefficients αn

for the pickup under test are given in Table 1, and the corresponding input–output characteristic is
depicted in Figure 8.
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model of the pickup under test (blue solid line) and the equivalent frequency response of the simplified
Hammerstein model followed by a differentiator (green dashed line).
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Table 1. Coefficients αn of the estimated parametric Hammerstein model.

α1 7.50× 10−2

α2 6.75× 10−3

α3 2.11× 10−3

α4 4.75× 10−4

α5 8.31× 10−4
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6. Model vs. Real Guitar-String Signal

To test the validity of the identified Hammerstein model, we set up a different experiment
corresponding to a realistic use of the pickup. For that purpose, we use a lab guitar prototype [40].
A guitar string is fixed on an wooden beam. The string is tuned as open low E ( f0 = 82 Hz). The pickup
under test is set on a mechanical arm on which some precision movement pieces are fixed. Thanks
to this system, the pickup position under the string can be adjusted along the three axes. For this
experiment, the pickup is set at 1/4 of the total length of the string corresponding approximately to
the neck position on a real guitar, and the distance at rest between the string and the pickup is set at
5 mm. A detail of the experiment is shown in Figure 9.

Figure 9. Picture of the second experiment in which the pickup is placed under a vibrating string.

The string is struck using an impact hammer. A single-point vibrometer (OFV-503 and OFV-505,
Polytec, Irvine, CA, USA) pointing at a piece of reflective tape glued to the string and located above the
pickup allows the measurement of the string displacement in the vertical plane. Temporal evolution
of both string displacement and pickup output voltage are recorded simultaneously and depicted in
Figures 10 and 11. A zoom on a few periods of both experimental signals is given for three different
time lags along the time-varying response. As expected, the string displacement is distorted just after
the excitation (Figure 10—zoom to t = 1.3 s). It becomes less and less distorted as the harmonics of
higher orders fade with time (Figure 10—zoom to t = 22 s). The output signal of the pickup exhibits
the same kind of behavior with time. One can notice that the output voltage is more distorted due to
pickup nonlinearities.

The displacement signal measured with the vibrometer is then used as the input of estimated
parametric Hammerstein model of the pickup and both the measured and the synthesized pickup
outputs are compared on the same graph (Figure 11). The difference between estimated and
experimental signals is plotted on Figure 11, showing that the model succeeds in describing the
nonlinear behavior of the pickup when used in realistic conditions.
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Figure 10. Recorded signals of the vibrating string.
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7. Discussion

The results presented in this paper show that a simple Hammerstein model seems to be sufficient
for the pickup modeling and that using a Generalized Hammerstein model is not necessary. However,
several hypotheses have been put forward, simplifying the problem that might be at the origin of small
differences between the measured and modeled pickup outputs compared in Figures 10 and 11.

First, the frequency range of the excitation signal is limited to 15–500 Hz due to the capacities of
the shaker. Using a larger frequency range might have been beneficial. The nonlinearities of the pickup
may differ at higher frequencies, and thus, in such a case, a complete Hammerstein Generalized model
might be useful. A supplementary study would be necessary to draw a meaningful conclusion.

Next, in the first experimental setup used for the model identification, the movement of the rigid
string attached to the shaker exhibits only z-axis polarization, whereas it is known that the string being
played by a guitar player exhibits rather an ellipsoid type motion in both y- and z-directions [42,43].
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A hammer-like impact, used in the second experiment for the synthesis, has been used to excite the
string in order to approach the z-axis motion of the string in the comparative measurements whose
results are provided in Figures 10 and 11. Note that, even if the real movement of the string is important
in both y- and z-directions [44,45], and it has been shown that the pickup behavior is mainly influenced
by the z-axis contribution [8,40]. Moreover, the piece of the rigid string attached to the shaker is of
finite length and does not exhibit any deformation compared to a string attached on the guitar.

Even though these phenomena have been neglected, the results presented in this paper show
a very good agreement between the output predicted by the model and the output obtained from the
experimental measurement.

8. Conclusions

Physical modeling of musical instruments is still a challenge for not only physicists, acousticians,
and instrument makers, but also for engineers from the digital audio community. An electric guitar is
not an exception.

This paper focuses on nonlinear modeling of a pickup of an electric guitar capturing vibrations
of ferromagnetic steel strings. Two main issues are raised: how we should proceed to measure the
nonlinear properties of the pickup and what model we should use. An experimental set-up, in which
a piece of steel string is attached to a shaker, is proposed. It allows for driving the pickup by shaker
vibrations in a controlled way (string displacement perpendicular to the pickup). The shaker is
driven by a Synchronized Swept Sine signal and a Generalized Hammerstein model of the pickup
is estimated. Next, a simple Hammerstein model, usually used to represent pickup nonlinearities,
is derived from the Generalized Hammerstein model and the validity of the Hammerstein model is
verified for a pickup operating in a realistic way with a string excited by a hammer-like impact. Even if
the experimental bench for model identification has a limited working frequency range (15–500 Hz),
the estimated Hammerstein model precisely predicts the signal output.

In future work, the model can be used to synthesize different kinds of existing pickups
(single coil pickups, humbuckers). However, two important questions need to be answered: is the
Hammerstein model sufficient for all the single coil pickups on the market, and, if yes, would their
corresponding coefficients αn differ? Is the conclusion of this work also valid for other types of
pickup such as humbuckers? Moreover, a focus on a larger frequency excitation range might bring
more insight on whether a Generalized Hammerstein model would be more beneficial over a simple
Hammerstein model.

The results of this study shows that the Generalized Hammerstein model does not bring
much more complementary information in a low-frequency range (15–500 Hz) and that the simple
Hammerstein model is a very good compromise between precision and complexity.

Acknowledgments: This research was funded by the Region Pays de la Loire within the Le Mans Acoustic Project.
The paper is an extended version of [46], and the winner of the best paper award.

Author Contributions: Antonin Novak, Leo Guadagnin, Bertrand Lihoreau, Pierrick Lotton, Emmanuel Brasseur,
and Laurent Simon conceived and designed the experiments; Antonin Novak performed the experiments,
Antonin Novak, Leo Guadagnin, Bertrand Lihoreau, Pierrick Lotton, Emmanuel Brasseur, and Laurent Simon
analyzed the data; and Antonin Novak wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Since the measurement technique described in this paper uses a shaker as the excitation device
to create the displacement of the guitar string, the nonlinearities caused by the shaker must be taken
into account. The problem is depicted in Figure A1 in which the first nonlinear system (NLS) (NL1)
represents the shaker and the second NLS (NL2) represents the pickup under test.
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NL1

G1(f)

G2(f)

G3(f)

...
GN (f)

(·)2

(·)3

...

(·)N

+
s(t) x(t)

x(t)

x2(t)

x3(t)

xN (t)

u(t)

NL2

Figure A1. Two dynamic nonlinear systems in series; the first one represents the shaker, and the second
one, represented by a Generalized Hammerstein model, is the pickup under test.

The excitation swept-sine signal s(t) (Equation (2)) is the input of the first NLS. The displacement
x(t) is the output of the first NLS and the input of the second NLS. The voltage u(t) is the output
of the second NLS. Consequently, u(t) may be seen as the output of the whole system for the input
signal s(t).

The method presented in [41] then allows the identification of the second NLS. The identification
of the system is equivalent to estimating the linear filters Gn( f ), n = 1, N, from the measured signals
x(t) and u(t). The identification process is based on the off-line estimation of both the HHFRsH(x,s)

m ( f )
between s(t) and x(t), and the HHFRs H(u,s)

m ( f ) between s(t) and u(t), for m = 1, M, M being the
total number of harmonics taken into account. We recall that, given an input signal a(t) and an output
signal b(t) of an NLS, the HHFR H(b,a)

m ( f ) may be seen as the contribution, in both amplitude and
phase, of the m-th harmonic at the output, for a sine at frequency f at the input, as

H(b,a)
m ( f ) = |H(b,a)

m ( f )|ejϕ(b,a)
m ( f ). (A1)

First, the HHFRsH(x,s)
m ( f ) andH(u,s)

m ( f ) are estimated using the synchronized swept sine method
described in Section 4. Next, the displacement signal x(t), already distorted by the shaker (NL1),
is taken to the powers of n and HHFRsH(xn ,s)

m ( f ) for n = 1, N are calculated.
The HHFRsH(u,s)

m ( f ) of the output signal u(t) result in the combination of all HHFRsH(xn ,s)
m ( f )

after filtering by filters Gn( f ). The relationship between the HHFRsH(xn ,s)
m ( f ),H(u,s)

m ( f ) and the linear
filters Gn( f ) can indeed be written in a matrix form as [41]


H(y,x)

1 ( f )
H(y,x)

2 ( f )
...

H(y,x)
M ( f )

 =


H(u,x)

1 ( f ) H(u2,x)
1 ( f ) · · · H(uN ,x)

1 ( f )

H(u,x)
2 ( f ) H(u2,x)

2 ( f ) · · · H(uN ,x)
2 ( f )

...
...

. . .
...

H(u,x)
M ( f ) H(u2,x)

M ( f ) · · · H(uN ,x)
M ( f )



×


G1( f )
G2( f )

...
GN( f )

 . (A2)
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Equation (A2) can then be solved for unknown Gn( f ) by using a square matrix inversion in
the case M = N, or by using a pseudo-inversion in the case M > N. The number of harmonics M
chosen for the estimation of HHFRs must be equal to or greater than the number of the branches N
of the Generalized Hammerstein model. The matrix (pseudo)-inversion must be computed for each
frequency f separately.
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