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Isabel González Vallejo,1,2 Geoffrey Gallé,1 Brice Arnaud,3 Shelley A. Scott,4 Max G. Lagally,4 Davide Boschetto,1
Pierre-Eugene Coulon,5 Giancarlo Rizza,5 Florent Houdellier,6 David Le Bolloc’h,2 and Jerome Faure1

1LOA, ENSTA ParisTech, CNRS, Ecole polytechnique, Univ. Paris-Saclay, Palaiseau, France
2LPS, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, 91405 Orsay, France
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We report on ultrafast electron diffraction on high quality single crystal silicon. The ultrafast
dynamics of the Bragg peaks exhibits a giant photo-induced response which can only be explained in
the framework of dynamical diffraction theory, taking into account multiple scattering of the probing
electrons in the sample. In particular, we show that lattice heating following photo-excitation can
cause an unexpected increase of the Bragg peak intensities, in contradiction with the well-known
Debye-Waller effect. We anticipate that multiple scattering should be systematically considered in
ultrafast electron diffraction on high quality crystals as it dominates the Bragg peak dynamics. In
addition, taking into account multiple scattering effects opens the way to quantitative studies of
non-equilibrium dynamics of defects in quasi-perfect crystals.

I. INTRODUCTION

The field of ultrafast dynamics in condensed matter
has been very active in the past decades. Its main moti-
vation is to gain new insight on the complex interplay be-
tween the various degrees of freedom in materials (charge,
lattice, spins) directly in the time domain. In particular,
ultrafast X-ray diffraction [1, 2] and ultrafast electron
diffraction (UED) [3–5] are ideal techniques for obtain-
ing valuable information on structural dynamics at the
atomic scale. The use of ultrafast electron diffraction in
pump-probe experiments has proven to be very efficient
for studying the dynamics of photo-induced phase tran-
sitions by measuring the relative changes of the diffrac-
tion pattern following photo-excitation [6–10]. Indeed,
in the case of a structural phase transition, interpret-
ing the dynamics of the diffraction pattern is relatively
straightforward: the change in the crystal symmetry can
be monitored through the appearance/disappearance of
Bragg peaks [7, 10]. However, a wealth of additional
information is contained in the diffraction pattern, e.g.
lattice heating can be estimated through the change of
the Bragg peak intensity due to the Debye-Waller ef-
fect. Quantitative analysis mostly relies on the use of
kinematical diffraction theory, which assumes that the
scattering potential of the crystal lattice is a small per-
turbation, so that the probing electrons undergo a single
elastic scattering event, leading to a weak diffracted in-
tensity compared to the incident electron beam. This
theory gives satisfactory results when applied to the case
of polycrystalline samples where the grain size is only
a few nanometers [10, 11]. It led to quasi-direct mea-
surements of the lattice temperature with sub-picosecond
resolution in several materials [5, 11]. However, as high
quality single crystal samples adapted to UED experi-

ments are becoming available, kinematical theory does
not appear sufficient to explain all experimental results.
Several UED studies on high quality crystals, such as
silicon [12] and graphite [13] have reported large photo-
induced changes of the Bragg peak intensity that cannot
be explained by kinematical theory. The authors pro-
posed that multiple scattering of the electrons must be
at play but no quantitative analysis was performed to
fully confirm this hypothesis.

In electron microscopy, multiple scattering is taken
into account in the framework of dynamical diffraction
theory [14, 15]. In high quality crystals, multiple scatter-
ing needs to be considered due to the very high elas-
tic scattering cross section of electrons. Despite this,
little attention has been given to these effects in time-
resolved electron diffraction experiments. To our knowl-
edge, multiple scattering was considered in detailed only
in [16] in a UED experiment in reflexion geometry de-
signed to study surface dynamics. In this paper, we show
that multiple scattering completely dominates the dy-
namics of the diffraction pattern in the commonly used
transmission geometry. The experiment is performed on
nano-membranes of monocrystalline silicon which is the
archetypal example of the perfect single crystal. In ad-
dition, the availability of the silicon scattering potential
enables a thorough and quantitative comparison between
experiment and theory, leading to the unambiguous con-
clusion that the observed dynamics is dominated by the
photo-induced changes of multiple scattering physics.

II. EXPERIMENTAL METHOD

The electron bunches are first generated by back-
illuminating a gold photo-cathode with a λ = 266 nm
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FIG. 1: Scheme of the experimental setup. The electron beam
is generated on the photo-cathode by the third harmonic of
the laser and accelerated in the DC gun followed by a solenoid.
After a certain time delay the pump arrives on the other side
of the sample. The resulting diffraction pattern is detected
with an MCP and imaged onto a CCD camera.

ultrashort laser pulse of < 60 fs duration. Electrons
are then accelerated in a DC gun, delivering acceler-
ating voltages up to 100 keV, and then focused by a
solenoid to a spot size of 150µm Full Width Half Max-
imum (FWHM) at the sample position. The charge of
the electron bunch beam is < 1 fC resulting in space
charge dominated bunches with a transverse coherence
length of ∼ 4 nm and < 300 fs duration, as estimated
using the GPT code [17]. An scheme of the experimental
setup is shown in Fig. 1. Unless stated otherwise, the
electron energy is 45 keV. The silicon sample is pumped
with a 35 fs pump laser pulse, with λ = 400 nm photons.
The incident fluence is 12 ± 1 mJ/cm2, over a 500µm
FWHM laser spot. The diffracted peaks are detected
with a MCP detector imaged onto a CCD camera. The
experiment is performed at 1 kHz repetition rate and
each diffraction image is obtained by accumulating over
5000 pulses. The silicon samples were thinned out from
a silicon on insulator wafer [18], resulting in a grid of
350 × 350µm free standing nano-membranes with [001]
orientation. The membrane thickness was measured us-
ing convergent beam electron diffraction [19] and esti-
mated to be 70± 2 nm.

III. RESULTS

We start by reviewing some properties of silicon and its
expected dynamical response following photo-excitation.
We measured the pump pulse absorption in the sample
to be 55 ± 5%. Thus, starting from an incident flu-
ence of Finc = 12 mJ/cm2, the absorbed fluence is es-
timated at Fabs = 6.5 mJ/cm2. The pump laser pulse
causes the excitation of electron-hole pairs and the den-
sity of excited electrons in the conduction band is given

by: nexc = Fabs/L~ω, i.e. nexc = 1.8 × 1021 cm−3 for
our experimental parameters. Excited carriers thermal-
ize via electron-electron scattering on the 100 fs time
scale [20] and form two subsystems comprising hot elec-
trons and holes. The electrons (holes) subsequently re-
lax to the bottom of the conduction band (top of the
valence band) through electron-phonon coupling on a pi-
cosecond timescale, causing lattice heating [11, 21]. Us-
ing ab initio calculations [22] for determining the quasi-
particle density of states of the valence and conduction
bands [23], as well as the specific heat Cp(T ) of sil-
icon, we were able to determine the lattice tempera-
ture after electron relaxation assuming that the num-
ber of electron-hole pairs stays constant during this part
of the dynamics. This gives a lattice temperature in-
crease of ∆T = 240 K. Additional delayed heating oc-
curs via electron-hole pair recombination across the gap.
At this excitation level, it is well-known that the dom-
inant mechanism is Auger recombination [24]. The dy-
namics of excited carrier is governed by the following
equation dnexc/dt = −(Ce + Ch)n3

exc, where Ce and Ch
are the Auger coefficients for electron and holes respec-
tively. Following Dziewior and Schmid [25] , we used
Ce + Ch = 3.8 × 10−31 cm6s−1, and we find that 90%
of the Auger recombination has occurred after 40 ps and
94% after 100 ps. Therefore, after 100 ps, we estimate a
temperature increase of ∆T = 460 K. At this point, the
system reaches a metastable state as heat diffusion occurs
on the microsecond time scale for our sample geometry.
In kinematical diffraction, lattice heating manifests it-
self by the decrease of the Bragg peak intensities accord-
ing to the Debye-Waller factor: Ihkl(T ) = Ihkl(0)e−2M ,
with 2M = 〈u2〉∆k2

hkl. Here, 〈u2〉 represents the rms dis-
placement of atoms around their equilibrium position and
∆khkl = 4π sin θhkl/λ, where λ is the electron de Broglie
wavelength. Using ab initio calculations [22, 23, 26] for
estimating the values of 〈u2〉, we find that the (220) peaks
should all decrease by 10% after lattice heating is com-
pleted: I220(800 K)/I220(300 K)− 1 = 0.9. This scenario
and the use of kinematical theory to interpret the de-
crease of the Bragg peak intensities was validated in a
UED experiment on polycrystalline silicon [11].

We now demonstrate that this interpretation does not
hold in the case of high quality single crystals. Typical
diffraction patterns from the silicon nano-membranes are
shown in Fig. 2. In a), the electron beam is oriented so
that it is parallel to the [001] direction: the diffraction
pattern is symmetric and the various (220) peaks have
similar intensity. The diffracted beam intensities is about
one order of magnitude lower compared to the intensity of
the transmitted electron beam (referred to as the 0-order
beam in the following). In contrast, in b) the sample
was tilted along the horizontal axis (represented by the
dashed black line) so that the (2-20) peak satisfies the
Bragg condition. The diffraction pattern is quite asym-
metric and remarkably, the 0-order and the (2-20) peak
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FIG. 2: a-b): Diffraction images from a [001] oriented sili-
con nano-membrane. a) The crystal is oriented such that the
electron beam is parallel to the [001] axis. b) The crystal is
tilted by the Bragg angle θ220 = 0.84◦ such that the Bragg
condition is satisfied for the (2-20) peak. c) Result of a pump-
probe scan showing the relative intensity changes of various
Bragg peaks ∆I/I. The incident fluence is 12 mJ/cm2

have similar intensities. This fact clearly contradicts the
basic hypothesis of kinematical diffraction theory which
states that the diffracted intensity is much lower than the
transmitted beam intensity. Fig. 2c shows the dynamics
of various Bragg peaks following photo-excitation at in-
cident fluence of 12 mJ/cm2. In this case, the sample was
oriented so that the (2-20) peak is slightly off Bragg. All
Bragg peaks exhibit similar dynamics: the relative inten-
sity ∆I/I starts with a sharp decrease on the picosecond
time scale. This is followed by a slower roll-off and fur-
ther decrease on the 10 ps time scale. According to the
above-mentioned scenario, the fast picosecond time scale
can be attributed to electron relaxation and lattice heat-
ing via electron phonon coupling while the slower time
scale can be attributed to delayed heating due to Auger
recombination. After tens of picoseconds, the Bragg peak
intensity is relatively flat and a quasi-steady state is es-
tablished that lasts hundreds of picoseconds.

These different time scales are consistent with previous
results [12], but a truly intriguing feature is the magni-
tude of the measured signal: the (2-20) peak decreases
by 40% while the 0-order peak increases by nearly 30%.
Even more surprisingly, we observed that the dynamics
of the Bragg peak is extremely sensitive to sample orien-
tation. In Fig. 3, we show the dynamics ∆I/I(t) for the
transmitted beam (a) and for the (2-20) peak (b) for five
different sample orientations. The results are striking as
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FIG. 3: Photo-induced dynamics for various sample orienta-
tions. The blue curve is obtained when the sample is exactly
at the Bragg angle; the other curves are obtained by tilting
the sample by δθ = 0.26◦. The incident fluence is 12 mJ/cm2.
Top: dynamics of the transmitted beam. Bottom: dynamics
of the (2-20) peak.

a 1◦ tilt can turn the intensity change of the (2-20) peak
from −40% to almost 60%. Therefore, we not only ob-
serve a giant photo-induced response in the Bragg peak
intensity but the sign of the response ∆I/I is determined
by sample orientation. It is also interesting to note that
the 0-order and the (2-20) peak have a complementary
behavior, indicating a possible coupling.

These observations are in complete contradiction with
the predictions of kinematical theory. In kinematical the-
ory, the 0-order should remain unchanged while the all
(220) peaks should decrease by less than 10%. Finally,
the magnitude of the intensity changes ∆I/I should be
independent on sample orientation.

In order to gain further insight on these large changes
of intensity, we measured the rocking curves of several
diffraction peaks. Figure 4 shows the rocking curve of the
(2-20) peak at equilibrium (i.e. at 300 K, blue curves) and
in the photo-excited state (red curves) taken 150 ps after
the arrival of the pump pulse, i.e. after thermalization
of the sample has occurred. Rocking curves are shown
at two different electron energies. We plot the Bragg
peak intensity I(s), where s is the amplitude of the de-
viation vector s = ∆k−g, and g is the lattice reciprocal
vector corresponding to the (2-20) peak. Figure 4 clearly
shows that the shape and magnitude of the rocking curve
changes upon photo-excitation. However, there is no an-
gular shift of the rocking curve upon photo excitation,
invalidating previous interpretations based on lattice ex-
pansion [13] or sample distortion [12]. In addition, the
results of Fig. 4 summarize and clarify the surprising fea-
tures of Fig. 3: for 45 keV electrons, the intensity change
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FIG. 4: Top: experimental rocking curves for the (2-20) peak
taken with 45 keV electrons, at equilibrium T = 300 K (blue
curve) and in the photo-excited state (red curve), taken at
t = 150 ps delay. Bottom: same but using 30 keV electrons as
a probe. The rocking curves were normalized relative to the
equilibrium case.

is positive at the Bragg angle, whereas it is negative for
most off-Bragg cases. For 30 keV electrons, the behav-
ior is quite different: here, the intensity change is always
negative after photo-excitation. The shape of these rock-
ing curves, by departing from the usual sin2 x/x2 line
shape of kinematical theory, indicates that dynamical ef-
fects are dominating the physics of electron diffraction,
even at equilibrium.

IV. DISCUSSION

The fact that the rocking curve changes with temper-
ature and electron energy can be understood quantita-
tively using a simplified version of dynamical diffraction
theory: the 2-beam theory where one considers only the
transmitted beam and one diffracted beam with intensity
Ig. In 2-beam theory, the diffracted intensity depends on
the thickness of the sample L and reads

Ig(s, L) = 1
V

sin2(seL/2)
(seξg)2 (1)

where se =
√
s2 + 1/ξ2

g is the amplitude of the effective
deviation vector and ξg is the extinction distance. The
extinction distance defines the shape of the rocking curve
and changes of ξg will modify the rocking curve.

At T = 0 K, the extinction distance reads ξg = 1
γλ

π~2

meUg

where me is the electron mass, γ = 1 + E/mec
2 is the

Lorentz factor of an electron with kinetic energy E. The
two beams are coupled through Ug, the Fourier compo-
nent of the crystal potential V (r) corresponding to recip-
rocal lattice vector g: V (r) =

∑
g Uge

ig·r. Clearly, the
extinction distance depends on electron energy via γλ,
explaining why the rocking curve changes with electron
energy. The temperature dependence can be accounted
for by formally replacing Ug by Uge

−M [27]. Conse-
quently, the extinction distance increases with temper-
ature [28] like ξg(T ) = ξg(0)eM . Evidently, a rise in
temperature causes an increase of ξg, implying changes
of the shape of the rocking curve.

We found that 2-beam theory does not allow us to
fit our experimental rocking curves and that additional
Bragg peaks need to be taken into account. This is
also apparent in the experimental data of Fig. 3: the
diffracted intensity is not conserved if one considers only
the 0-order and the (2-20) peak, indicating that more
diffracted beams need to be considered. Therefore, we
turned to a N-beam theory and solved the Howie-Whelan
equations [29]

∂φg

∂z
= isgφg +

∑
g′ 6=g

i

2ξg−g′
φg′ (2)

Here, φg is the amplitude of the diffraction peak g and
two peaks φg and φg′ are coupled through the extinction
distance ξg−g′ ∝ 1/Ug−g′ . Implementing this method re-
quires the detailed knowledge of the scattering potential.
Silicon data on the various Ug−g′ was taken from the
code JEMS [30]. In the experiment, we detect 12 diffrac-
tion peaks during a rocking curve scan but we found that
the N-beam theory converges for N > 24 and we present
results with N = 26 (more details can be found in the
appendix). Figure 5 a-b) shows the results of the cal-
culations for E = 45 keV electrons and 30 keV electrons
without considering absorption. The experimental trends
are well reproduced: the shapes of the calculated rocking
curves are similar to the experimental ones. In partic-
ular, the signs of the relative intensity change is repro-
duced: ∆I(s = 0)/I > 0 at 45 keV and ∆I(s = 0)/I < 0
at 30 keV. However, the experimental data in Fig.4 dis-
plays a large background and the diffracted intensity I(s)
oscillates but never cancels to zero, in contradiction with
dynamical diffraction calculations. Experimentally, the
background can be due to many factors, such as inelas-
tic scattering (on phonons, plasmons, defects...), surface
contamination or surface amorphization. Because of the
difficulty of modeling all these effects, we turn to a phe-
nomenological approach and model the background using
a simple gaussian distribution. We were able to obtain
a quantitative fit of the experimental data using the fol-
lowing function:

I(s) = AIdyn +Be−s
2/σ2
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FIG. 5: Results of N-beam dynamical diffraction theory with N = 26 beams: a) calculated rocking curves for the (2-20) peak in
the case of 45 keV electrons. The blue curve shows the result at T = 300 K and at T = 650 K (red curve), b) same calculations
but with 30 keV electrons. In figures c) and d), a gaussian background that was added to the N-beam calculations in order to
better fit the data. The rocking curves are normalized relative to the equilibrium case.

where Idyn is given by dynamical theory (no free param-
eters) and A, B and σ are free parameters allowing us
to fit the experimental data more accurately. While N-
beam theory reproduces all the trends of the experiment,
the data can be even better fitted by adding this gaussian
background to the results of the N-beam calculations as
shown in Fig. 5 c) and d). The photo-excited state was
best fitted considering a T = 650 K temperature. Re-
sults are represented by the red curves in Fig. 5, showing
excellent agreement with the measurements.

We conclude that the observed dynamics of the Bragg
peaks and in particular the behavior of ∆I/I can be fully
explained by lattice heating and dynamical diffraction
effects. In particular, we obtained the non-intuitive result
that depending on the electron energy and the sample
orientation, lattice heating can cause an increase of the
Bragg peak intensity, contrary to the well-known Debye-
Waller effect.

V. CONCLUSION

While this study was performed on silicon, we antici-
pate that such effects should be present in all materials
provided that the crystal quality is high and the thick-
ness comparable with the extinction distance. Indeed,
when L � 2πξg, multiple scattering can be neglected
and kinematic theory appears to be a valid approxima-

tion. Typical extinction distances are tens of nanometers
(2πξ220 = 56 nm for silicon at 45 keV), so that multiple
scattering and dynamical effects have to be considered as
soon as the sample thickness is larger than 1-10 nm, de-
pending on the material. In conclusion, we have shown
that multiple scattering effects play an important role
when UED experiments are performed on high quality
single crystals, consequently these effects should be al-
ways considered. Nonetheless, the quantitative interpre-
tation of UED experiments might become quite complex
as modeling multiple scattering requires prior knowledge
of the crystal scattering potential. Dynamical effects, in
turn, could potentially be used to obtain new informa-
tion on the dynamics of the crystal potential. Finally,
dynamical effects are also useful to visualize crystal de-
fects, such as dislocation or stacking faults [15]. There-
fore, they should enable a new type of experiments in
which the dynamics of defects following laser irradiation
can be studied using ultrafast electron imaging.
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Appendix: N-BEAM DYNAMICAL
DIFFRACTION THEORY

In dynamical theory, the main electron beam diffracts
into N−1 diffracted beams because of its interaction with
the crystal scattering potentiel. The crystal scattering
potential is developed into a Fourier series as

V (r) =
∑

g
Uge

ig·r (3)

where g are the lattice reciprocal vectors, and Ug are the
potential Fourier components corresponding to g. The
scattered wave function is also written as a Fourier se-
ries: |ψ〉 =

∑
g φg|k + g〉, where φg are the amplitude of

the scattered wave in diffraction peak corresponding to
vector g. Injecting these expressions into the Shrödinger
equation and solving in Fourier space, one obtains the
Howie-Whelan equations:

∂φg

∂z
= isgφg +

∑
g′ 6=g

i

2ξg−g′
φg′ (4)

where sg, the deviation error, depends on the crystal ori-
entation, and ξg−g′ = 1

λ
2~2

meUg
is the extinction distance.

The extinction distance is related to Ug−g′ which causes a
coupling of the two diffracted beams φg and φg′ because
〈k + g|V̂ |k + g′〉 = 〈k + g|Ug−g′e

i(g−g′)|k + g′〉 6= 0.
Note that for a weakly relativistic electron, the effect
of the relativistic mass increase can be included simply
by replacing me by γme where γ = 1 + E/mec

2 is the
electron Lorentz factor. The Howie-Whelan equations
describe the evolution of the scattered wave intensities
during propagation of the electron into the sample. This
system of N coupled differential equations can be written
in matrix form:

dΦ
dz

= iMΦ (5)

where Φ is a column vector of length N and M is a N×N
matrix that can be decomposed as

M =


0 0 0 . . .

0 sg1 0 · · ·

0 0 sg2 · · ·

...
...

. . .

+∆


0 U−g1 U−g2 U−g3 · · ·

Ug1 0 Ug1−g2 Ug1−g3 · · ·

Ug2 Ug2−g1 0 Ug2−g3 · · ·

...
...

. . .


with

∆ = γme

2π~2λ
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FIG. 6: Results of dynamical diffraction theory including N =
26 beams. a) Intensity of the (220) peak at the Bragg angle,
I220(s = 0) for varying sample thicknesses, assuming 45 keV
electrons. b) Intensity of the (220) peak at the Bragg angle,
I220(s = 0) for varying electron energy, assuming a 70 nm
thickness.

The left matrix is diagonal and its elements are the am-
plitudes of the deviation vectors for each diffraction peak
sg−g′ . The right matrix is composed of the Fourier am-
plitudes Ug−g′ . This is an eigenvalue problem and the
solution is found by diagonalizing matrix M . If D is the
diagonal matrix in the basis of eigenvectors and C is the
matrix for changing basis, we have M = CDC−1 and the
solution of the problem is given by

Φ(z) = CeiDzC−1Φ(0)

This general solution allows us to compute the ampli-
tude of the various diffracted peaks φg(L) at the output
of the crystal, z = L. This theory can be used pro-
vided that the crystal potential V (r) is precisely known.
In our case, we extracted the Ug matrix for the silicon
potential from the code JEMS. We modeled the experi-
ment assuming a 70 nm thickness and consideringN = 26
beams, including all (220), (400), (440), (620) peaks and
a few higher order peaks as well. Such a high number
of beams was necessary to ensure the convergence in the
shape of the (220) rocking curve. Note that there are no
free parameters in this model.

As a complement, we show in fig. 6 different non in-
tuitive behaviors of dynamical diffraction effects. Fig-
ure 6a) shows the evolution of the (220) peak at the Bragg
angle, s = 0, as a function of thickness. The diffracted in-
tensity oscillates along propagation in the sample which
is one of the main feature of dynamical diffraction. Inter-
estingly, the diffracted intensity in the high temperature
case (red curve) shows a different behavior, indicating
that the relative intensity changes are also expected to
change sign depending on the sample thickness. Note
that for small thicknesses, one recovers kinematical the-
ory and ∆I/I < 0, i.e. the diffracted intensity is smaller
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in the high temperature case. Figure 6b) shows a simi-
larly complex behavior when the electron energy is var-
ied. This indicates that the relative intensity ∆I/I have
varying amplitude and sign depending on the energy of
the probing electrons. We conclude that the ultrafast re-
sponse of the Bragg peak intensity is, in general, greatly
dependent on the sample thickness and the electron en-
ergy.
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[16] S. Schäfer, W. Liang, and A. H. Zewail, J. Chem. Phys.
135, 214201 (2011).

[17] www.pulsar.nl/gpt.
[18] S. A. Scott and M. G. Lagally, J. of Phys. D: App. Phys.

40, R75 (2007).
[19] F. S. Allen, Phil. Mag. A 43, 325 (1981).
[20] S. Jeong, H. Zacharias, and J. Bokor, Phys. Rev. B 54,

R17300 (1996).
[21] C.V. Shank, R.Yen, and C.Hirlimann, Phys. Rev. Lett.

50, 454 (1983).
[22] X. Gonze, B. Amadon, P. Anglade, J. Beuken, F. Bot-

tin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas,
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