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Modelling of sound propagation in a non-uniform lined duct

using a Multi-Modal Propagation Method

W.P. Bi, V. Pagneux�, D. Lafarge, Y. Aurégan

Laboratoire d’Acoustique de l’Université du Maine, UMR CNRS 6613, Av. O Messiaen,

F-72085 Le Mans Cedex 9, France

Liner non-uniformities, such as distributed impedances, may have a direct influence on the performance

of turbofan engine liners. A relevant problem to study these effects is that of sound propagation in a hard-

walled duct of circular cross-section, fitted with a region of non-uniform liner. Given the complex modal

input amplitudes at one end of the hard-walled duct, the problem is to compute the complex modal output

amplitudes at the other end. In the present paper, a Multi-Modal Propagation Method (MMPM) is

proposed to solve this problem in the absence of mean flow. For simplicity, the liner impedance is set

piecewise constant along the duct, while being arbitrarily variable along the circumference of each segment.

The principle of the method is to expand the sound pressure and axial velocity into double infinite series

using the rigid duct modal basis, and then to follow the projection coefficients evolution along the duct axis.

Scattering matrices are obtained for individual segments and then combined to construct a global scattering

matrix. It is numerically shown that the convergence rate of the infinite series is at least OðM�2Þ and

OðN�1:5Þ, where M and N refer to the maximum circumferential and radial mode orders, respectively.

Validation of the method is done in 2D by comparison with FEM. The present MMPM is shown to

deal with realistic turbofan engine configurations with spliced liners, up to relatively high reduced

wavenumbers K�50.

�Corresponding author. Fax: +33 2 43 83 35020.
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1. Introduction

In turbofan engine intakes, liners with longitudinal hard-walled splices are often used due to

technological constraints. In-flight measurements [1] have indicated that sound radiation can be

substantially modulated by the presence of splices. A relevant problem to study these effects is

that of sound propagation in a hard-walled duct of circular cross-section, fitted with a region of

non-uniform liner. The liner properties are assumed to be given by a distribution of locally

reacting impedances. Without significant loss of generality, the distribution may be assumed

axially segmented, i.e. the impedance is set piecewise constant along the duct, while being

arbitrarily variable along the circumference of each segment (see Fig. 1). Given the complex

modal input amplitudes at one end of the hard-walled duct, the problem is to compute the

complex modal output amplitudes at the other end. In this paper, a simple Multi-Modal

Propagation Method (MMPM) is proposed to solve this problem in the absence of flow.

In the presence of circumferential variations of the impedance (e.g. hard-walled splices), the

problem to solve is fully 3D. Several approaches to it have been considered in the literature.

Because the sound pressure and particle velocity field cannot be separated in the r2y plane, the

dispersion relation in one segment cannot be written explicitly, and it is not possible to use

classical root finding routines to determine the eigenmodes. Watson [2] used a hard-walled duct

mode expansion series to numerically evaluate the eigenmodes and axial wavenumbers. The

Galerkin method was employed to force the series to satisfy the true boundary condition in the

lined segment. The complex modal output amplitudes for a specified source distribution were then

obtained by applying a mode-matching technique at the discontinuity between rigid and lined

segments. Fuller [3,4] investigated the sound propagation and radiation in finite length of

circumferentially non-uniform lined ducts. Representing the circumferential admittance function

as a Fourier series and expanding the eigenmodes over the separable components adapted to the

cylindrical coordinates, he obtained the eigen-equation set to be solved. The axial wavenumbers in

the lined segment were then calculated by solving this set of equations using the method of Muller.

Regan and Eaton [5] used a three-dimensional Finite Element Method (FEM) to address the

problem of a longitudinally spliced liner. Scattering due to splices was clearly demonstrated in the

transmitted modal spectra with the appearance of circumferential modes with orders different

from the order of the excitation mode.

The MMPM we present here is a simple adaptation of the multimodal formulation or

projection method proposed by Pagneux et al. [6] to model sound propagation in varying cross-

section waveguides with rigid boundary conditions (see also Refs. [7–10] for other applications of

the method to wave propagation in bends and the determination of Lamb waves in

inhomogeneous elastic waveguides). In the absence of flow, the principle of the method is to

project the acoustic first-order equations of motion over the modal basis of hard-walled duct and

then to follow the evolution of the projection coefficients along the duct axis. Indeed, as a result of

the linearized motion equations and local impedance boundary conditions, the vector composed

of the pressure projections P obeys a second-order differential equation, P00 þ AP ¼ 0, with

piecewise constant, diagonal (hard-walled duct segment) or non-diagonal (lined duct segment)

matrix A. After truncation at a sufficient, fixed number of modes, the sound field may be

conveniently expressed in each individual segment in terms of the eigenvalues and eigenvectors of

matrix A. Individual scattering matrices are used to express the reflection and transmission
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coefficients of each segment, and then combined to obtain the global scattering matrix of the

multi-segment system.

Validation of the present MMPM including the effects of lined impedance in the boundary

conditions needs to be carefully done because the rigid duct modal basis does not satisfy the

true boundary conditions after truncating the mode expansion. Moreover, the non-uniformities

of lined impedance in axial and circumferential directions make the convergence behaviour

to be more involved. For 2D (axisymmetric) configuration, the lining being independent of y,

it is obvious that there are individual solutions p ¼ f ðr; zÞe�jmy. The true boundary conditions

will be approached only at the expense of a summation over the radial index n. On the contrary,

when the lining is circumferential non-uniform, the separation of variables r; z and y is no

longer possible. The true boundary conditions will be approached at the expense of a mixed

double summation over both indices m and n. Zero mean flow is assumed for simplicity here;

however, the method could be generalized to account for the presence of flow [11]. Questions

related to the nonlinear dependence of lining properties on sound pressure level will not

be addressed here (see e.g. Ref. [12] for a general review).

As compared to FEM codes, which involve spatial discretization in both the transverse and

longitudinal directions, the present MMPM involves only discretization in the transverse

directions (via the total number of modes selected in the calculation). This is a significant economy

which enables applying the method at quite high reduced wavenumbers. Indeed, by using the

MMPM we can calculate the noise propagation in the range of dimensionless wavenumber

K ¼ kRt50 (where k is the wavenumber and R the duct radius) in which K ¼ 20–50 is very

important but is very difficult with FEM. As compared to modal approaches, which involve

decomposing the field over the liner modes, the present MMPM involves only decomposing the

field over a fixed basis. The use of one fixed, a priori known basis, eliminates the necessity of

numerically doing mode matching at the interfaces between different segments. The eigenmodes

need not be calculated beforehand to solve the propagation problem, but they can be determined

if necessary, as hard-walled duct mode expansion series.

This paper is organized as follows. The mathematical details corresponding to the construction

of the matrix A from the equations of motion and boundary conditions, and the subsequent

construction of the scattering matrices, are given in Section 2 and Appendix A and B. Results of

the MMPM are presented in Section 3. The method is first validated in 2D by comparison with

FEM. In 3D, the accuracy of the method is tested on one configuration studied in Ref. [5], which

serves to illustrate the convergence with respect to the radial and circumferential maximum mode

orders used in the calculation. Finally, the ability of the method to treat realistic turbofan engine

intakes configurations is checked.

2. Multi-modal propagation method

2.1. Derivation of the equations

A segmented lined duct with arbitrary impedance variations along the circumference is depicted

in Fig. 1. Segments 0 and Lþ 1 are supposed to be rigid and semi-infinite. Linear and lossless
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sound propagation in air is assumed. With time dependence expðjotÞ omitted, the equation of

mass conservation combined with the equation of state, and the equation of momentum

conservation are written as

= � v ¼ � jo

r0c
2
0

p, (1)

jov ¼ � 1

r0
=p, (2)

where v is the particle velocity, p the acoustic pressure, and r0 and c0 the ambient density and

speed of sound in air. Pressures, velocities and lengths are, respectively, divided by r0c
2
0, c0 and R

(the duct radius) to reduce Eqs. (1)–(2) to the dimensionless form

= � v ¼ �jKp, (3)

�jKv ¼ =p, (4)

where K ¼ oR=c0 is the dimensionless wavenumber. This yields the 3D wave equation

r2
?pþ

q
2p

qz2
þ K2p ¼ 0, (5)

where

r2
? ¼ 1

r

q

qr
r
q

qr

� �

þ 1

r2
q
2

qy2
. (6)

The radial boundary condition is

qp

qr
¼ Yp at r ¼ 1, (7)

Fig. 1. Segmented lined duct with arbitrary impedance variations along the circumference.
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where Y ¼ �jKb0ðz; yÞ; here, b0ðz; yÞ is the liner admittance. Following Pagneux et al. [6], the

pressure p and axial velocity vz are expressed using infinite series

pðr; y; zÞ ¼
X

1

m¼�1

X

1

n¼0

PmnðzÞCmnðr; yÞ, (8)

vzðr; y; zÞ ¼
X

1

m¼�1

X

1

n¼0

VmnðzÞCmnðr; yÞ, (9)

where Pmn and Vmn are the modal coefficients. The projection functions Cmn,

Cmn ¼
1
ffiffiffiffiffiffiffiffiffiffiffi

pLmn

p e�jmy JmðamnrÞ
JmðamnÞ

, (10)

are the eigenfunctions of the hard-walled cylindrical circular duct which obey the transverse

Laplacian eigenproblem

1

r

q

qr
r
q

qr

� �

� 1

r2
m2

� �

Cmn ¼ �a2mnCmn, (11)

with hard-walled boundary condition

qCmn

qr
¼ 0 at r ¼ 1, (12)

and the orthogonality relation,
Z

Cmnðr; yÞC�
m0n0ðr; yÞdS ¼ dm;m0dn;n0 , (13)

where the star denotes the complex conjugate. The normalization coefficients Lmn are as follows:

Lmn ¼ 1� m2

a2mn

. (14)

The pressure and velocity fields p and vz can always be projected over the eigenfunctions Cmn

because the latter forms a complete basis of orthogonal functions. It can be noted that

a2mn ¼ K2 � K2
0z;mn, where K0z;mn are the normal mode axial wavenumbers of the hard-walled duct.

Following the matricial terminology, Eqs. (8) and (9) are written as

pðr; y; zÞ ¼ WTP, (15)

vzðr; y; zÞ ¼ WTV, (16)

where P, V and W are column vectors. The superscript ‘T’ indicates the transpose. Rewriting

Eqs. (3) and (4) with this terminology leads to

P0 ¼ �jKV, (17)

V0 ¼ �jK I� L
2

K2

� �

P� j

K
CP, (18)
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where the matrix C defined by

CðzÞ ¼
Z 2p

0

W
�ð1; yÞY ðz; yÞWTð1; yÞdy, (19)

represents (hard-walled) mode coupling due to the liner. The prime indicates the derivative along

the axial direction z and I refers to the identity matrix. L is a diagonal matrix with amn on the

diagonal. The detailed derivation of Eqs. (18)–(19) is given in Appendix A.

Now, considering that the admittance Y ðz; yÞ is piecewise constant along the z-axis, the two

first-order Eqs. (17)–(18) may be combined to yield the following evolution equation:

P00 þ AP ¼ 0, (20)

with piecewise constant matrix A given by

AðzÞ ¼ ðK2
I� L

2Þ þ CðzÞ. (21)

At the junctions z ¼ li between different segments, the continuity of the pressure and axial

velocity requires continuity of vectors P and P0 . In practice, the problem has to be truncated at a

suitable truncation number Nt which corresponds to the total number of components used to

represent the field, and A is an N t �N t matrix.

2.2. Coupling matrix C

From Eq. (21) the matrix A is the sum of two terms. The first diagonal term comes from using,

as our fundamental set of basis functions, the fixed hard-walled duct basis. Hard-walled duct

modes do not satisfy the wall boundary conditions, and thus the presence of the second coupling

term C, which may be viewed as the expression of intermodal scattering effects induced by the

lining on the hard-walled duct modes. The elements of C are expressed as

Cmn;m0n0 ¼
1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LmnLm0n0
p

Z 2p

0

Y ðyÞe�jðm0�mÞy dy, (22)

and, as such, are directly related to the coefficients of the Fourier series of Y ðyÞ. In the case of

uniform admittance, the only non-zero coupling terms are for modes of same circumferential

order m0 ¼ m. In the case of non-uniform periodic admittance (with NY periods within 2p),

additional coupling occurs between modes of different circumferential orders, such as

m�m0 ¼ �pNY , where p is an arbitrary integer. When the non-uniformities are caused by the

presence of longitudinal splices, a general expectation on the amplitude distribution of such

scattering may be obtained by considering the distribution of the Fourier coefficients
1
2p

R 2p

0
Y ðyÞe�jmy dy, where Y ðyÞ is considered to be equal to 1 at the lined parts and equal to

zero on the splices. An illustration for three splices of same dimensions, resp., small, intermediate

and large, is given in Fig. 2, where the above coefficients are reported as a function of m

(difference of circumferential mode orders in the scattering problem). Small splices are not

efficient to scatter the incident mode over modes of different circumferential mode orders:

scattering is concentrated on the incident circumferential mode order. Intermediate ones produce

a broader distribution over the different circumferential mode orders. Large ones produce a large

distribution of circumferential mode orders, however, of small amplitude.
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Fig. 2. Fourier series of the characteristic admittance function Y for 3 different spliced configurations: (a) d ¼ 0:15 rad,
(b) d ¼ p=6 rad and (c) d ¼ 1 rad.
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2.3. Scattering matrices

To construct the global scattering matrix of the segmented liner, we first express the scattering

matrix for the simple configuration depicted in Fig. 3. It consists of one single-lined segment

(l1ozol2) and two semi-infinite hard-walled ducts at both ends. The pressures of ingoing waves

projected on the hard-walled eigenfunction basis, A1 and B2, are related to the pressures of

outgoing waves, A2 and B1, by a scattering matrix S

A2

B1

 !

¼ S
A1

B2

 !

; where S ¼
T r

R t

� �

. (23)

A1, B1, A2 and B2 are continuous at those interfaces. This makes it very simple to construct the

global scattering matrix. The reflection and transmission matrices are easily identified by writing

the general field solution in the lined section and the continuity conditions at the interfaces. The

general solution of Eq. (20) is

P ¼ XDðzÞC1 þ XD
�1ðzÞC2, (24)

where C1 and C2 are amplitude vectors of dimension N t, X is the Nt �N t matrix whose columns

are the eigenvectors Xn of matrix A, and DðzÞ and D
�1ðzÞ are diagonal matrices with expð�jnnzÞ

and expðjnnzÞ, respectively, on the main diagonal, with nn ¼
ffiffiffiffiffi

dn

p
, dn being the eigenvalues of

matrix A. Before proceeding, it is convenient to rewrite Eq. (24), by redefining the amplitude

coefficients C1 and C2 as

P ¼ XDðz� l1ÞC1 þ XDðl2 � zÞC2. (25)

In the form of Eq. (25), numerical stability is ensured because the propagation matrices Dðz� l1Þ
and Dðl2 � zÞ have only positive arguments and contain no exponentially diverging terms due to

the evanescent modes.

z
z = l2z = l1

Y(θ)

A1

B1

A2

B2

Fig. 3. Single element, input/output amplitudes.
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The continuity of pressure and axial velocity leads to

A1 þ B1 ¼ XðC1 þ D1;2C2Þ,

K0ðA1 � B1Þ ¼ XKYðC1 � D1;2C2Þ,

A2 þ B2 ¼ XðD1;2C1 þ C2Þ,

K0ðA2 � B2Þ ¼ XKYðD1;2C1 � C2Þ, (26)

where D1;2 ¼ Dðl2 � l1Þ, and K0 and KY are the diagonal matrices with the axial wavenumbers on

diagonal in the rigid and lined sections (resp., the K0z;mn and dn). By denoting

F ¼ Xþ K
�1
0 XKY,

G ¼ X� K
�1
0 XKY,

Eq. (26) is reduced to

2A1 ¼ FC1 þGD1;2C2,

2B1 ¼ GC1 þ FD1;2C2,

2A2 ¼ FD1;2C1 þGC2,

2B2 ¼ GD1;2C1 þ FC2. (27)

The reflection and transmission matrices, which completely characterize the segmented liner, are

then given by

T ¼ t ¼ ðFD1;2 �GF
�1
GD1;2ÞðF�GD1;2F

�1
GD1;2Þ�1,

R ¼ r ¼ ðG� FD1;2F
�1
GD1;2ÞðF�GD1;2F

�1
GD1;2Þ�1. (28)

Then, knowing the scattering matrices of two different elements, the scattering matrix of the

compound element made by the juxtaposition of the two may be directly written by using a simple

composition law �, which is recalled in Appendix B. The global scattering matrix of the

segmented liner is then obtained by composing the scattering matrix of each segment Si defined by

Eq. (23) as follows:

Stot ¼ Sl1 � Sl2 � � � � � SlL . (29)

3. Results

3.1. Validation and convergence of the Multi-Modal Propagation Method

To validate the MMPM, we compare the results with those of FEM in Partial Differential

Equation (PDE) Toolbox of Matlab. The PDE Toolbox defines a 2D PDE problem with local

boundary conditions and provides the solution using an FEM technique. We consider an infinite

rigid rectangular duct with a uniform liner in the side y0 ¼ 0 along the x0 direction. A typical
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dimensionless lining admittance b0 ¼ 1þ j is chosen. For convenience to compare with the results

of FEM here, we use dimensionless length variables, x ¼ kx0 and y ¼ ky0, where k ¼ o=c. The
source plane is at xs ¼ 0 and the output plane is at xo ¼ 60. The dimensionless length of the liner

is L ¼ 10. The liner is at 25pxp35. The dimensionless height of the duct yL ¼ ky0L, which will be

taken at three different values (3, 14, 50), has the direct meaning of the dimensionless wavenumber

K (K ¼ 3; 14; 50). The configuration is shown in Fig. 4 for the special choice yL ¼ K ¼ 14. The

boundary conditions at the lining wall y ¼ 0, 25pxp35, for the FEM and the MMPM are

qp

qy
¼ �jð1þ jÞp. (30)

The boundary conditions at the rigid wall (y ¼ 0, 0pxo25, 35oxp60 and y ¼ K, 0pxp60) for

both the FEM and MMPM are

qp

qy
¼ 0. (31)

At the radiation plane x ¼ xo and the source plane x ¼ xs, we have to set local boundary

conditions,

qp

qx
þ gp ¼ q, (32)

(where g and q are arbitrary functions of y) in order that the problem can be solved in PDE

Toolbox of Matlab.

For the sake of simplicity, we chose the boundary condition at x ¼ xo as

qp

qx
þ jp ¼ 0, (33)

In MMPM language this is equivalent to imposing the condition V ¼ P at x ¼ xo. We refer to this

boundary condition as ‘artificial boundary condition’ in contrast to the exact radiation condition.

L=10

0

y

y
L
=14

o=60s=0

Fig. 4. Configuration of validation.
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Similarly, we chose the following boundary condition at x ¼ xs

qp

qx
� jp ¼ �2jCn. (34)

where Cn ¼ cosðnpy=yLÞ is the eigenfunction of the incident rigid mode n.

In MMPM language this is equivalent to imposing the ‘artificial boundary condition’

V ¼ 2I1 � P at x ¼ xs, where I1 refers to ðd1;n; d2;n; d3;n � � � ÞT, ‘T’ refers to transpose, d refers to

Kronecker delta and n is the order of the incident mode as above.

In what follows, results of sound pressure contours and profiles obtained by FEM will be

compared to those obtained with MMPM using the above ‘artificial boundary conditions’.

One first test (not shown in figures) is done for a dimensionless transverse width K ¼ 3. At such

low frequency, only the mode ð0; 0Þ propagates. The MMPM solution is in excellent agreement

with the FEM solution.

Two examples of increasing the frequency of calculation are presented. One is for dimensionless

wavenumber K ¼ 14, 5 propagating modes are cut-on, the first mode (n ¼ 0) is incident. 30 rigid

modes are used to assure the MMPM convergence. The other is for dimensionless wavenumber

K ¼ 50, 16 propagating modes are cut-on, the third mode (n ¼ 2) is incident. Sixty rigid modes

are used to assure the MMPM convergence. K ¼ 50 is approximately the maximum wavenumber

that can be calculated on a PC with PDE toolbox.

The contours of the pressure modulus computed by FEM and MMPM are firstly compared.

The patterns agree very well to show the MMPM achieving a correct result. Figs. 5 and 6 show

them for K ¼ 14.

Next, we plot on Fig. 7 the sound pressure profiles on one given section, x ¼ 29:86 for K ¼ 14

and 50. This section is in the lined part of the duct. At y=yL ¼ 0, the sound pressure satisfies the

0 10 20 30 40 50 60

-5

0

5

10

15

20

x

y

liner 

Fig. 5. Sound pressure contour by the FEM.
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Fig. 6. Sound pressure contour by MMPM with ‘artificial boundary condition’.
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Fig. 7. The transverse profile of sound pressure modulus at x ¼ 29:86, for K ¼ 14 (top) and K ¼ 50 (bottom); at

y=yL ¼ 0, the sound pressure satisfies the lining impedance boundary condition, and at y=yL ¼ 1, the boundary

condition is rigid. ‘�’, FEM; ‘��’, MMPM with ‘artificial boundary conditions’.
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lining impedance boundary condition, and at y=yL ¼ 1, the boundary condition is rigid. The two

calculations are close, showing that the MMPM is working. When we zoom in near the liner, there

appears a small layer in which the pressure slope quickly goes to zero. This is an effect due to

truncating the series at a finite number of components.

The axial profiles of sound pressure modulus and phases are shown in Figs. 8 and 9 for K ¼ 14

and 50, respectively. The values of sound pressure are chosen at y ¼ 0:64, which is relatively close

to the liner. The MMPM shows good agreement with the FEM solution.

For the 3D case, we compare the results of the MMPM with those of FEM given in Ref. [5]. As

discussed above, a spliced liner with intermediate size of splices will efficiently scatter one incident

mode on modes of different circumferential orders. Configuration 4 in Ref. [5], which is sketched

in the present Fig. 10, is one example of a such spliced liner. This configuration is defined by

a lined section of length L ¼ 2a, where a is the duct radius, two splices of angle c ¼ 0:75 rad,
a dimensionless wavenumber equal to K ¼ 6:8 and an admittance parameter given by

Y ¼ 2:247� 2:566j. Output modal amplitudes of the propagative modes for input mode ðm; nÞ ¼
ð1; 0Þ are given in Fig. 11 (resp., [5], Fig. 12). In this calculation the circumferential maximum

modal order m is taken equal to 16, and 20 radial modes are taken into account. (This includes all

propagative and some of the evanescent modes.) The results have the same global shape as those

in Ref. [5]; however, some discrepancies in the values occur.

Indications on the convergence of the MMPM results are given in Fig. 12, where M and N are

circumferential and radial truncation mode orders, respectively. Let us denote by p the variable

output pressure field calculated when using variable values of M and N, and by pref the output

pressure field calculated when using reference maximum values of the truncation numbers

0 10 20 30 40 50 60
0

0.5

1

1.5

FEM
MMPM

0 10 20 30 40 50 60
0

0.5

1

1.5

FEM
MMPM

y=0.64, K=14 

a
b
s
 (

p
)

x

y=0.64, K=50 

a
b
s
 (

p
)

x

Fig. 8. The axial profiles of sound pressure modulus at y ¼ 0:64, near liner, for K ¼ 14 (top) and K ¼ 50 (bottom);

‘�’, FEM; ‘��’, MMPM with ‘artificial boundary conditions’.
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ðMref ;Nref Þ. Then, we define an error indicator � as

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R

s
kp� prefk2 dS
R

s
kprefk2 dS

s

. (35)

To study the convergence of the method with respect to the circumferential modal order, we set

ðMref ;Nref Þ ¼ ð75; 20Þ and plot in Fig. 12 the values of log10 �ðM; 20Þ with M varying in the range

0 10 20 30 40 50 60
-4

-2

0

2

4

0 10 20 30 40 50 60
-4

-2

0

2

4

x

a
n
g
le

 (
p
)

x

a
n
g
le

 (
p
)

Fig. 9. The axial profiles of sound pressure phase at y ¼ 0:64, near liner, for K ¼ 14 (top) and K ¼ 50 (bottom);

‘�’, FEM; ‘��’, MMPM with ‘artificial boundary conditions’.

Y=0
ψ

L

2a

Fig. 10. Test configuration with 2 splices. c ¼ 0:75 rad , L=a ¼ 2, K ¼ 6:8 and Y ¼ 2:247� 2:566j.
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1–60. To study the convergence of the method with respect to the radial modal order, we set

ðMref ;Nref Þ ¼ ð16; 80Þ and plot in Fig. 12 the values of log10 �ð16;NÞ with N varying in the range

1–60. The decay rate of the error indicator � versus M or N is estimated in an intermediate range
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Fig. 11. Modulus of transmitted sound pressure modal amplitudes for incident mode ðm; nÞ ¼ ð1; 0Þ.
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Fig. 12. MMPM errors log10 � versus truncation numbers M and N. ‘�’ denotes N ¼ 20 fixed, M variable (1� 60),
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of values of numbersM or N. The values of eitherM or N are sufficiently large to yield a pertinent

estimate of this decay rate, and sufficiently small to avoid the bias due to the finite values of the

reference values Mref or Nref . The first type of variations, indicated with symbol ‘o’, show that the

decay rate of the error is at least OðM�2Þ. The second type of variations, indicated with symbol

‘+’, illustrates a slower decay rate of the error versus N. The latter is found to be OðN�1:5Þ. These
decay rates are obtained for large enough M or N, meaning that the error passes the initial

transition parts and has a uniform comportment. Values of M and N for the transition obviously

depend on the particulars of the configuration (such as, frequency, nature of the incident field and

liner impedance).

In general, we may say that this method has good convergence properties in circumferential

direction. When the impedance variations versus y are smooth, say ZðyÞ ¼ sin y, this method will

converge more rapidly. Convergence properties in radial direction are weaker, because the

expansion basis functions do not meet the wanted impedance boundary conditions. To be

represented by the superposition of hard-walled duct basis functions, the latter boundary

conditions require considering a large number of components of different radial numbers.

Nevertheless, in the example studied, we expect on the basis of Fig. 12 that our results of Fig. 11

have a relative precision on the order of 3%, which seem to indicate that the discrepancies

between our results and those of Ref. [5] are not to be attributed to the MMPM truncation errors.

3.2. Effect of circumferential non-uniform lining

In this section, we illustrate the ability of the MMPM to treat realistic turbofan engine intakes

configurations.

The first example is to show the effects of hard-walled longitudinal splices. The sound power

transmission loss of the liner (�10 log10W o=W i), with or without hard-walled splices, is plotted

for two different, well-attenuated modes in Fig. 13. The parameters of the configuration are from

Ref. [5]. We consider a one segment liner with two hard-walled splices diametrically opposed

and given by an angle of 0:15 rad. The reduced wavenumber and impedance are K ¼ 20 and

Z=rc ¼ 2� j, respectively. Modes ð17; 0Þ and (13,0) are incident. The mode ð17; 0Þ is the last

propagating mode in the hard-walled duct. In general, in the turbofan engine, the lining

admittance and the splices angles are not large. Thus, the modes coupling effects introduced by

the presence of splices are small, because the components m ¼ 1; 2 . . . of the Fourier

transformation of Y ðyÞ are small compared to the term m ¼ 0. In general, it is expected that

these couplings will have a small effect on the attenuation of the liner. Fig. 13 presents precisely

one exception to this, due to the highly attenuated nature of the field. When the incident mode is

highly attenuated, which is especially the case of the (near cut-off) mode ð17; 0Þ, the small

scattering due to the presence of splices will produce lower order components, much less

attenuated, that are important to consider if one wishes to predict correctly the value of the

transmitted power through the lined segment. In this case, even if the additional scattering due to

the splices is small, the resulting output power may be much higher for the spliced configuration

than for the uniform configuration. This effect remains noticeable for the mode (13,0), which is

also relatively highly attenuated in the uniform configuration.

To assess the calculating capability of our method, two examples are presented. The first one is

mode scattering induced by turbofan spliced intake liner at BPF. For this example, the following

16



is assumed: incident ‘rotor-alone’ mode m ¼ 26, dimensionless wavenumber K ¼ 31:26, 2 hard-

walled diametrically opposed splices with angles p=60, lining impedance Z=rc ¼ 2� j, lining

length L=R ¼ 0:48. Mode scattering is shown in Fig. 14. Only even m-modes are coupled to the

two hard-walled splices. Although modes ð�28; 0Þ are coupled, a large number of lower-order
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Fig. 13. The penalty effects of longitudinal splices at high frequencies, for highly attenuated modes are transmission

loss versus the dimensionless lining length L=R. The configuration parameters are K ¼ 20, Z=rc ¼ 2� j and

c ¼ 0:15 rad: ‘�’, 2 splices, input mode ð17; 0Þ; ‘::’, no splice, input mode ð17; 0Þ; ‘��’, 2 splices, input mode ð13; 0Þ;
‘�:’, no splice, input mode ð13; 0Þ.

Fig. 14. Mode scattering induced by turbofan spliced intake liner at BPF. The parameters are incident ‘rotor-alone’

mode m ¼ 26, K ¼ 31:26, 2 splices with angles p=60, lining impedance Z=rc ¼ 2� j and lining length L=R ¼ 0:48.
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modes is excited and the performance of the liner decreases. After calculating the total in-duct

transmitted energy flux, it is shown that there is about 6 dB less attenuation with splices than

without splices.

The configuration of a more difficult example is as shown in Fig. 15. The lining includes two

axial segments with the same length L ¼ 0:275=R, R ¼ 0:865m. The first segment is uniform with

impedance Z0=rc ¼ 0:5� 0:2j, the second segment includes four equal-sized, uniform circumfer-

ential segments with impedance Zi=rc (i ¼ 1� 4) given by 1:2� 1:7j, 1:2� 3j, 1:2� 1:5j and
1:2� 0:2j, respectively. The reduced frequency is K ¼ 46:5; 565 modes propagate. Mode ð26; 0Þ is
incident. In this configuration, we have both a very high reduced wavenumber and a non-uniform

lining. This example may be very difficult to treat with other methods such as FEM. To the

knowledge of the authors, no results for 3D liners at such high frequencies have been published.

The modal transmission loss at the exit plane (defined as �10 log10Wmn=W i) is shown in Fig. 16.

This figure shows that the predominant modes (the modes which have the least transmission loss)

Z0 Z2

Z3

Z1
Z4

Fig. 15. Configuration of two segment liner.

Fig. 16. Modal transmission loss of the above configuration.
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at the exit plane are essentially modes m ¼ 26 and n ¼ 0; 1; 2; 3. Modes m ¼ 23; 24; 25; 27; 28; 29,
whose m-orders of modes are close to m ¼ 26, are excited a little stronger than the others.

It is shown that for this configuration without rigid splices, although the impedance at the

second segment is circumferential non-uniform, the circumferential modes coupling is not

strong.

4. Conclusion

An MMPM is validated to study sound propagation in a hard-walled circular cylindrical duct

lined with non-uniform impedance in the absence of flow. The liner is piecewise constant along the

duct and may arbitrarily vary along the circumference. The multimodal equations governing the

components of the pressure and velocity projected on the hard-walled duct modes then show that

their components obey a constant coefficient second-order differential matrix equation P00 þ
AP ¼ 0 in each segment. The sound field, taking into account the coupling between hard-walled

duct modes, is easily expressed in terms of the eigenvalues and eigenfunctions of matrix A after

truncation at a sufficient number of components. Mode-scattering effects because of the

peripherally non-uniform impedance are clearly expressed in the Fourier transform of liner

admittance Y. It is numerically shown that the convergence rate of the infinite series is at least

OðM�2Þ and OðN�1:5Þ, where M and N refer to the maximum circumferential and radial mode

orders, respectively.

Simple matrix calculations yield the scattering matrix of one liner segment. The global

scattering matrix is then easily obtained by the method of Furnell and Bies [13]. The great

advantage of this method, in contrast to the FEM code, is that no discretization in the

longitudinal direction is necessary. Much less memory is then required. Consequently, this

method enables us to compute properties at quite high frequencies ðK�50Þ.
Numerical calculations indicate that peripherally non-uniform liners have negligible modes

scattering effects for typical configurations in turbofan engine, provided the overall power output

considered is not governed by special, well-attenuated modes. For such modes, the presence of

hard-walled splices may have a great penalty effect.
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Appendix A. Derivation of Eqs. (18)–(19)

Eq. (3) is rewritten as

qvz

qz
¼ �jKp� =? � v? ¼ �jKpþ 1

jK
r2

?p. (A.1)
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The term r2
?p is projected on the basis W� using Eqs. (7), (11) and (12),

Z

r2
?pC

�
mn dS ¼

Z

pr2
?C

�
mn dS þ

I

C�
mn

qp

qr
� p

qC�
mn

qr

� �

dC

¼
Z

pð�a2mnÞC�
mn dS þ

I

C�
mnð1; yÞYpdC

¼ � a2mnPmn þ
Z 2p

0

C�
mnð1; yÞYWTð1; yÞPdy. ðA:2Þ

Using Eq. (A.2), the projection of Eq. (A.1) leads to Eqs. (18)–(19).

Appendix B. Composition of the scattering matrices

The scattering matrices of two adjacent segments (see Fig. 17) are defined by

A2

B1

 !

¼ S1

A1

B2

 !

; where S1 ¼
T1 r1

R1 t1

" #

(B.1)

and

A3

B2

 !

¼ S2

A2

B3

 !

; where S2 ¼
T2 r2

R2 t2

" #

. (B.2)

Following Furnell and Bies [13], the scattering matrix of the two segments is given by

A3

B1

 !

¼ S12

A1

B3

 !

; where S12 ¼ S1 � S2 ¼
T12 r12

R12 t12

" #

. (B.3)
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Fig. 17. Diagrammatic representation of two segments of lined duct.
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The elements of the matrix S12 are given by

T12 ¼ T2ET1; t12 ¼ t1Ft2,

R12 ¼ R1 þ t1FR2T1; r12 ¼ r2 þ T2Er1t2,

E ¼ ðI� r1R2Þ�1; F ¼ ðI� R2r1Þ�1, (B.4)

I being the identity matrix.
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