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The high-frequency behavior of the fluid velocity patterns for smooth and corrugated pore channels
is studied. The classical approach of Johnsobal.[J. Fluid Mech.176, 379 (1987] for smooth
geometries is obtained in different manners, thus clarifying differences with Sheng anfiRthysu

Rev. Lett.61, 1591 (1988] and Avellaneda and Torquaf®hys. Fluids A3, 2529 (1991)]. For
wedge-shaped pore geometries, the classical approach is modified by a nonanalytic extension
proposed by Achdou and AvellanediRhys. Fluids A4, 2561 (1992]. The dependency of the
nonanalytic extension on the apex angle of the wedge was derived. Precise numerical computations
for various apex angles in two-dimensional channels confirmed this theoretical dependency, which
is somewhat different from the original Achdou and Avellaneda predictions. Moreover, it was found
that the contribution of the singularities does not alter the parameters of the classical theory by
Johnsoret al. © 2003 American Institute of Physic§DOI: 10.1063/1.1571545

I. INTRODUCTION 7, of the length scaleg§Fk, and é. Herekg is the stationary

) . Darcy permeability, andr is the formation factor, a nondi-
The problem of fluid flow through porous media is of

_mensional parameter that is related to the effective electrical

paramount importance in many technological areas. In airagnqyctivity of the porous medium saturated with a conduc-

filled sound absorbing media, a precise prediction of soun%ve fluid. The viscous skin depth= 21/ w. It was conse-
absorptl_on versus frequency is needidq.the oil industry, quently postulated thak(w) satisfies a universally valid
exploration wells are probed by acoustic tools and reservmgca"ng function

properties are delineated from the recorded wave tfaltee
dynamic permeabilitk(w), and the dynamic tortuosity(w)
are important properties to describe the macroscopic flow k(w)=Kkqf
through porous media subjected to an oscillatory pressure

gradient. Here, the term macroscopic refers to a length scal
L that is much larger than any pore saeHerelL is defined
as characteristic wavelength being the product of the flui
sound speed, and an intrinsic viscous relaxation tiraé/ v,
wherev is the kinematic viscosity of the pore flutc. Intro-
ducing an exp@t) dependence for the fluid pressyreand
the macroscopic fluid velocity, k(w) and a(w) are defined

Fk
5—;’) . &)

LFhis also means that a characteristic frequeagy: v/Fkq

d:an be defined where the viscous forces and the inertia forces
are of the same order of magnitude. Experimental work by

Auriault et al,” Charlaixet al.® and Smeulderst al2 show

very good agreement of such theory on a wide variety of

porous samples. A detailed theoretical analysis, however,
showed that the structure functidrof (3) must also depend

by on the ratiom,=6/A, where A is a pore volume-to-pore
nd . surface ratio weighted according to potential th€oGur-
WU=—V[3, (1) prisingly, for a wide variety of morphologiesr; and
were found not to be independent, i.e., their product was
iwpra(w)0=—Vp. (27 found to be\/1/8, at least approximately. These morpholo-

gies had in common that they were smooth on the pore scale,
In these two expressions; is the fluid viscosity,p; is the i.e., the pore surface had bounded curvature. The possibility
fluid density, andyp is the porosity. These relations take into of departure from the structure functidn for corrugated
account, in an averaged sense, the fluid motion that takesorphologies was investigated by several authors such as
place in the pore structure, so thiw) and«(w) depend on  Kosteket al.,’ Smeulder=t al,'° Firdaouset al.** and Cor-
the morphology of the pore space. Johnsoml* and later tis and Smeulder¥ It appeared that high values faf;
Sheng and Zhotand Zhou and Sherfyargued that the tran- X 7, could be reached for special cases, but these investiga-
sition from low-frequency viscous behavior to high- tions still did not consider any comparison over the fre-
frequency inertia behavior must be determined by the ratiquency domain. In other words, only the assumption that

1070-6631/2003/15(6)/1766/10/$20.00 1766 © 2003 American Institute of Physics
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X my~/1/18 was invalidated for some cases, but the strucintroducing the scaled velocity= 79/§ expressed in &)
ture functionf could still be fully correct, if we rewrite it as and the scaled pressupe= p/§ expressed in m, the unsteady

a function of two parameters: Stokes problem may be written as
(Fko Fko) ioV/v=—Vp+V¥N+e (79
k(w)=kof , . 4
(0)=kq A (4) V=0, o
In a paper by Achdou and Avellanefihowever, departures V=0, on the pore walls, (70
from (4) were observed for microgeometries consisting of
corrugated tubes. For high frequencies, they observed a P: compact. (7d)

slower convergence &f(w) to its asymptotic limit than pre-  The solution to this problem can be expressed as a sum of
dicted from universality theory. A nonanalytic correction to normal modes#

the structure functiort4) was proposed. Our aim in this pa-

per is to study this nonanalytic correction factor. From mi-  _ _ . On

crostructure, the dynamic permeability and tortuosity rela- V“’“’)‘nzl b Win(r) l+iwo,/v’ (83
tions will be derived. Then, analyzing in detail the fluid .

velocity pattern in the bulk fluid and the boundary layer, the — _ _

classical Johnsoet al* high-frequency limit for smooth ge- p(r,w)—ngl b Qn(r) l+iwoylv + (). (8b)

ometries will be obtained in different manners, making ap- ) ) . ) i
parent the discrepancy with the Sheng and Zheeatment, Here, the dimensionless vector eigenfunctidigs satisfy

and clarifying the asymptotic boundary layer analysis pro- 1
posed by Avellaneda and TorqudfoFor microgeometries —Vz‘l’n=0—(‘1’n—VQn), (93
consisting of corrugated tubes, this leads to a somewhat dif- .
ferent high-frequency correction than proposed by Achdou V-W¥, =0, (9b)

and Avellaneda® Furthermore, the theoretical predictions
will be numerically evaluated for two-dimensional channels
that have wedge-shaped asperities. Q,: compact (9d)

Wv,=0, on the pore walls, (90

and the parameters,, expressed in A are the inverse
eigenvalues of the Stokes operator. They determine the vis-
Il. OSCILLATING STOKES FLOW cous relaxation time® ,=o,/v corresponding to purely
flamped mode§= o, W,e”"n as a solution to the homoge-
neous unsteady Stokes problem, i.e., with the external exci-
tation termg=0 in (5). The functionsQ,,, which are non-
iwp¥=—Vp+ ypV20+ge, (5) zero in general, have dimensions of length and determine the
corresponding compact pressufes Qe Yn. The largest
wheree is the unit vector €,,e,,e,), andg is a spatially  valueo, is obviously of orde(a?) and the parameters, ,
uniform oscillating source term, which is expressed insorted such thatr,.;<o,, accumulate to 0 when—.
Nm~3. In Achdou and Avellanedd, § is an external oscil-  Using the conditiong9), it can be verified that the eigen-
latory pressure gradient, which also appears quite naturally functions W are orthogonal. They are complete in the sub-
the conventional technique of homogenization is used. Zhodpace of the square integrable divergence-free fields having a
and Sheng,Smeulderst al,’ and Lafargeet al* denote this  zero normal component on the pore walls. Furthermore, they
externally applied pressure gradieaiV,p,. Indeed, the ac- are chosen orthonormal,
tual pressure in the fluid can be viewed as the sum of its
local mean valuepy=(p) and its deviatoric parp=p i VW _dV=6 (10)
—(p), where() denotes averaging over the pore fluid vol- V¢ Jy, " " nm
umeV;. The local mean valup, varies at the macroscopic . . . .- .
Iengthfscald_, thus its gradientomay be considered a spatiaIThe dimensionless expansion coefficiebsare defined as
constant inV;. The deviatoric parp varies at the pore scale 1
a and is a compact field of zero mean value. This means that, bn:\Tf v
on average, it does not increase or decrease in the direction
of e. It is fluctuating at the microscopic level because of theNOW substituting(8a) and (8b) in the Stokes equatio(va)
pore geometry, but it does not change from place to plac@nd using(9a), we see that7a) is satisfied if
when averages are considered. For periodic microstructures, =
the compact character @f is expressed by periodic bound- 2 b,W,=e— V. (12)
ary conditions. Furthermore, it can be obtained from homog- =1

enization theory that, because of the scale separatien,  Note that there is a unique solutid® @ to the following
the fluid is locally incompressible, electric problem:

Considering the unsteady Stokes equation for the flui
velocity fieldv, we may write

W, -edV. (12)

V-0=0. (6) E=e-Vo, (133
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V-E=0, (13p  which follows directly from(13a after integrating by parts
and using the compact character of the fields. Thus, we also
E-n=0, on the pore walls, (130 have
: kK(w
®: compact, (130) ( )=<T/-E). (20

wheren is the unit outward normal from the pore region. In ¢

particular, the identity>,_,b,W,=E holds. The fieldE, = The velocity response of the fluid to the source téecan
which solves the corresponding electrical conduction probalso be defined in analogy with the response of an ideal fluid:
lem for a porous medium filled with a conducting fluid and
having an insulating solid phase, can be interpreted as th
scaled electric field, i.e., the local electric field divided by thewherea(w) is the frequency-dependent, complex-valued tor-
applied macroscopic potential gradient. Decompositi8®  tuosity,
is referred to by Avellaneda and Torqu¥tas the so-called

Hodge decomposition. We notice that there is a direct rela- ()= vé )
tion to the tortuosity factor.,, that determines the effective fok(w)
electric conductivity of the porous medium. Applying the |t may be verified that the following energetic representation
unit electric fielde, the microscopic current in the saturating of «(w) is valid:

fluid is j=oE, whereo; is the fluid electric conductivity. W) b (V)

e pra(w)ioU=ge, (21

(22)

The macroscopic curredt= ¢(j) then obeys a macroscopic (@)= e — —— 23
Ohm’s lawJ= oese, With oes=do¢/a.., and (W)«(V*) o (W)(V*) "
1 (E-E) where* denotes complex conjugation. The proof is given in

aw:m— W (14)  Appendix A. Using homogenization theory, this result was
also obtained by Smeuldees al?® Physically speaking, this
We assumed unidirectional or isotropic pore space so that tH&sult expresses the condition that the work performed by the
tortuosity is a scalar. After multiplyingl2) by e and aver- external force per unit time is equal to the rate of change of
aging, the identity the kinetic energy plus the dissipated energy per unit time.
The real part 0f23) is related to the kinetic energy, and the
- , 1 imaginary part is related to the mean rate of energy dissipa-
> bi=— 15  tion
n=1 Ao :
In the forthcoming, we will be mainly concerned with
immediately follows. the high-frequency limiwa?/ v— of the dynamic perme-
On the macrolevel, Darcy’s law describes the linear re-bijlity and tortuosity. In this limit, the denominators (h8)
sponse of the macroscopic velocliyto the source ternye: may be replaced by the factareo,/v up to high values of
n, thus showing thak(w)—v¢/iwa.,, according to(15).
’7_‘1’0:@9, (169  'ndeed, assuming that the viscous teFriv is negligibly
k(w) small compared to the inertial term {ia), the Stokes prob-
. lem (7) degenerates into the electric or ideal fluid problem
wherek(«) is the frequency-dependent, complex-valued dy-; 5 " 5™ /i o, Substitution of this result fd7 in (17)

namic permeability. This relation is the counterpart of the S : .

° P ; Y P .or (20) again yields the above leading behaviorkgiv) at
classical Darcy’s law for steady-state flow, and reduces to Iﬁi h frequencies, while substitution if22) shows that the
for —0. In general, the dynamic permeability is a second—cogrres gndin résult for the dynamic tortuosity dgw)
rank tensor that reduces to a scalar in the case of unidirec- P 9 y y o
tional, isotropic, or simple-cubic microstructures. In this
case, the macroscopic flow is in the same direction as the

” . A Ill. HIGH-FREQUENCY VELOCITY PATTERN IN
source ternge, which means that=(¥-e)e. From(16), we  g\moo0TH GEOMETRIES
now easily find that

Ao .

We now examine the precise limit of the Stokes problem

k(w) e (7) for e/la—0, wheree is the complex viscous skin depth
o (V-e). (17
parameter,
Substitution of(8a) yields a series expansion f&fw): e=\vliw=(1-1)6/2. (24

Writing the pressur in the formp=q+® [see(8b)] and
(18  substituting in(7a), we get
V=e?(E-V{+ V). (25
Taking the curl of(25), we obtain the diffusion equation for
the vorticity, VXV—g2V2VXV=0. Following Johnson

et al,* we note that in the limit of high frequencies the vis-
(w-e)=(w-E), (19 cous skin depth=2|e| eventually becomes much smaller

k(w)zi bﬁa’n
¢ =1 ltiwo, v’
Another form of (17) is particularly useful. For any

divergence-free vector field that has zero normal compo-
nents on the interface, there is the identity
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than any characteristic pore siae Any vorticity generated which varies at scala and is zero on the pore walls, may be
at the pore walls decays to zero as one moves away distanceplaced by its first-order term{(JE;z/dB)z-o. Equation
of the orders from the wall into the bulk of the pore. Thus, (30) is easily integrated to yield

the LaplacianV?v= — VXV XV, vanishes in the bulk fluid,

_ -¢

except for a boundary layer of thicknegsnear the pore ﬂzs(%)f_ﬂ;) i (31)
walls. It follows that outside this boundary layer, the fluid I 1-e Ip B=0
motion is that of potential flow, with We conclude that outside the boundary layer, the perturbed

v:vngz(E_va)_ (26) electric field is of the form
It will be seen below that the presence of the pressure gra- ¥ 1~ &Ns (32
dient term—V7q is a smallO(e/a) correction to the leading whereN is the unique solution of the problem:
O(1) flow patternE that appears because smadrmal com- N: gradient of a compact field, (333

ponentsof the velocity are created at the virtual interface
between the bulk potential flow region and the viscous V-N=0, (33b
boundary layer. Clearly, such normal components would not

exist in straight channels for obvious symmetry reasons, and . :(
must therefore be related to the curvature of the pore walls.

The tangentialcomponents of the velocity in the boundary
layer can be directly evaluated to leading order in terms o
the E field only. Indeed, sinceS is arbitrary small at high
enough frequencies, the walls of the pore appear to be flatin  (E-N)=0. (34
the region where the tangential velocity goes from 0 at th
pore wall to the values?E in the pore region. Thus, the
tangential components of the velocity may be written to lead
ing order*®

JEg
B

1\,/\/e note that sincél is a compact field, the perturbed field
eN is orthogonal tcE in an averaged sense:

) , on the pore walls. (330
B=0

®This can be seen from the same reasoning used to obtain
(19): becausee is divergence-free and has zero normal com-
ponents on the interfac€34) follows after integrating by
parts and using the compact character of the fields. Explicit
V=e2E(r,)(1—e #l), (27)  expressions for the velocity fields inside and outside the

boundary layer result immediately. Inside the boundary layer
whereg is a local coordinate measured from the pore wall atye find, using(28a, (28¢), and(31)

positionr,, into the bulk of the porer —r,,= — 8n. SinceE

varies at the pore scal> 4, no distinction is _to be made V=e2(1—e FP)E(r,) + &8 1_(1+ E e Ble
betweenr andr,, in (27). Thus, we may combin&6) and €
(27) and consider the velocity field, including leading-
. : IEg
order tangential and normal components, as the solution of x| —2 n, (359
the problem, P B=0
Y=o (r)(E—VII), (283 and outside the boundary layer we have, udi2@), (29b),
and(32)
V=0, (28b) V=82[E(r)+eN(r)]. (35D
o(n=e*(1-e F), (280  As mentioned previously, small normal components of the

velocity are induced in the boundary layer, and these act as a
source for the additional ideal fluid flow®N in the bulk.
Note that, thoughN is an ideal fluid flow, it is related to the

where we have introduced a compact fiéld which is re-
lated toq and defined as

VII=(1-e P*)~1vqg, (299  Viscous nature of the fluid. This flow is orthogonal to the
. main flow £°E, and has nonvanishing mean value. This pre-
in the boundary layer, and cise representation of the velocity pattern, which, however,

e does not include higher-order boundary layer tangential
Vi=va, (299 terms O(e%/a) in (358 and higher-order bulk terms

outside. The fieldv then solves the electrical conduction O(s*/a?) in (35b), is used in the next section to clarify the

problem for a porous medium having an insulating solidalgebra involved in the high-frequency behavior of the dy-

phase and filled with a conducting fluid of conductiviter). ~ namic permeability and tortuosity.

Current conservation gives

IV. HIGH-FREQUENCY PERMEABILITY AND
—V-(oVII)+E-Vo=0. (300 TORTUOSITY

In the limit e/a—0, only derivatives normal to the pore As suggested in the previous section by the analysis of
walls need to be considered in the boundary layer and it ishe velocity field for materials with bounded curvature of the

convenient to introduce the stretched coordingteB/e to  pore surface interface, the high-frequency development of
express the fact that is a function of¢ only. In addition, the  the dynamic permeability and tortuosity may be written in

normal component of the unperturbed electric fidld, successive powers of the viscous skin depth parameter:
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a(w)=a,(1+Ce+De?+--+), (369  This is an important result, which allows us to compare ear-
lier results from literature. As it holds that
k(w) &? ) )
——=—[1-Ce+(C*=D)e“+--]. (36b) JEg
¢ as f cp—ds:f E-V®dS (41)
s, 9B Sp

Three equivalent determinations of tBeparameter will
now be considered, using eith@r?7), (20), or (23). The first  (see Appendix B we may write that
is a new derivation that supplements in the proper manner [<E2dS
the incomplete determination by Sheng and ZAdine sec- _c_'S
ond is equivalent to the original arguments by Johnson A fvade'

etal,* and the third was employed by Avellaneda and . ) )
where we have used 3a. This is the classical expression of

Torquato®* though they did not capture all the details in- A ! ,
volved. The third method is the simplest one, and will also?hnsoret al,” who were the first to define the length-scale

be applied in Sec. VI to capture some of the effects related tfarametert as the weighted pore volumé()-to-pore sur-
the presence of sharp edges in the pore wall geometry. W@C€ Sp) ratio. For tube flowA equals the tube radius.

will show that in that case the set of equatidBé) is modi- Equation(42) can also be obtained using the following
fied as follows: energetic arguments. Fro(86a we derive that, to the lead-

ing order in the high-frequency limit,

(42)

a(w)=a,(1+Ce+Cie"+--+), (379

) Ima(w)_ C5 43
k - /7 -~
%:Z_(l_CS_Cj_SWJ{‘"‘), (37b) REa(a)) 2

On the other hand, fronf23), we have that

with the same inverse lengt as before and the exponemt > e o
Ima(w) 6 (V-VV*)

(1<w<2) related to the apex angle of the edges.

. _ _ =t (44)
To proceed now in the most direct manner, we substitute Rea(w) 2 (VV*)
(35a and_(35b) into (17). Integrating the velocity field in the This means that we may write
whole fluid volume, we have
= im 6TV 45
f v-edv=32f E'edV—szf e FleE-edV T 0Ty 49
\% \Y BL

f f
SubstitutingV~v* ~E, and V&*~—Ee #=" [see (27)],
+83f N-edV, (88)  and performing the integrals immediately yiel@#2). Note
" that because of the Laplacian in the numerator, there is no
where the subscripts BL and IF denote integration over théntegration in the bulk but only a boundary layer contribu-
boundary layer and the ideal fluid region, respectively. Notdion. Note also that there is no first-order contribution of the
that we have not written the negligible contribution of the perturbed potential floveN to the denominator due to the
normal components of the velocity in the boundary layer.orthogonality with the unperturbed flo.
Such a contribution would be associated with the condbant Finally, another method to obtai@®2) is to use(20).
in (368 and(36b) and is meaningless due to the higher-orderFrom (36b) we have that
tangential term&(e3/a) not written in(353 and the higher- a0 3
order bulk terms?(e*/a?) not written in(35b). The bound- i Rek(w) :13(1) _ V2 (1) (46)
ary layer contribution reduces exactly to a boundary integral 5,0 ¢ V2 Qx\ @ Aa.\o)
—s3fspE-edS that is performed on the boundary walls.
Moreover, extending with negligible error the volume of in-
tegration in the last term dB8) to be that of the whole fluid, 312
and using the orthogonality proper{®4), this last term is C= lim ‘/7%(;) Re(V-E). (47)
written ase®[y, V®-NdV. Integrating by parts, it can also ola=0
be written as a boundary integral on the pore walls, nameljNow, substituting the velocity pattei(35), there is no bulk

Thus, from(20) it follows that

e2[s ®N-ndS. We thus obtain the result contribution from the perturbed potential flow’N that is
° ) orthogonal toE. There is also no bulk contribution from the
@: 8—(1—C8+"‘) (39) unperturbed leading-order teriE that is purely imaginary.
¢ .y ’ There is only a simple boundary layer contribution to evalu-
with ate, which again leads t@2).
In literature other expressions far can be found. The
Ao JEg expression obtained by Sheng and Zhand Zhou and
=V s, Ee-®75|dS Sheng was as follows:

-1,

(E ¢&Eﬁ)ds/f E2dV 40 E—@ (49)
(BT b Fav 40 =
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We notice that this is only the first term {40). The origin of  101°

the incompleteness is the use of the “linear” averdd@)

without taking into account the bulk contribution from the 10!

small perturbed potential field®N. The same expression

(48) can be found in Prid8 in the context of electrokinetic  10-2

effects for sound propagation in a porous medium saturatec

with a conductive fluid. Avellaneda and TorquHteried to 1073

clarify the discrepancy betweéd?2) and(48) by considering

higher-order terms in the boundary layer calculation sug-10- | ; : ; oy

gested by Sheng and ZhduHowever, the missing contribu- ; Relk

tion is a bulk term and their boundary layer analysis was still ;-5 L— Y A A -

incomplete. 0.01 0.1 1 10 100 1000
To illustrate our dynamic permeability analysis, we will

first consider two straightforward models for porous mediariG. 1. Dynamic permeability for tube flodashed ling and slit flow

that are wellknown in literature. Next, the effect of the per-(solid line).

turbed bulk contribution will be demonstrated in the case of

corrugated pore channels.

2

Also, this expression is in agreement wi#6), because for

slit flow M = 3. The real and imaginary parts of the dynamic

V. NONCORRUGATED PORE CHANNELS permeability for both the tube model and the slit model are

plotted in Fig. 1. We notice that there are only minor differ-

ences between both models. For low frequencies, the real

The tube radius iR. The number density of tubes is repre- part of the dynqmic permeability approgches the stationary
Darcy permeability, whereas the imaginary part tends to

sented by the porosityp. When the fluid flow is oriented For hiah f ies. the i . t of the d .
along the cylinder axis of the tubes, it was already shown byzero. or nigh frequencies, In€ Imaginary part ol thé dynamic

As a model for porous media, Bidtdiscussed an en-
semble of parallel identical cylindrical tubes within a solid.

. permeability shows a- 1/ dependency for both the tube
Zwikker and Kostetf that and the slit model, whereas for the real part&e*2 behav-
o) k(w) 8 2J3,(i%%) ior can be discerned. We also notice that the rollover from
(@)= ko ixk2\T ikdo(i%%))" (49 low-frequency viscous behavior to high-frequency inertia be-

, havior is observed ab~ . indeed.
where k=R w/v is the so-called Womersley number, and ¢

Jo andJ; are Bessel functions of the zeroth and first order.

Poiseuille flow prescribes that,=3¢R?. This means that VI CORRUGATED PORE CHANNELS

the characteristic frequenay,= v¢/kqa., is equal to 8/R? We noticed in Sec. IV that the bulk contribution from the
in this case, and=\8w/w,. For high frequencies, it fol- small perturbed fiel&:*N has to be taken into account in
lows directly from(49) that'’ order to describe correctly the velocity field for materials
) with bounded curvature of the pore surface interface. The
A i _ 1-i effect of this contribution can elegantly be illustrated in the
lim k=—=|1- —/|, (50 .
s lw 2@ case of corrugated pore channels, where we will show that

the use of(17) instead of(20) yields erroneous predictions

where we have introduced= w/w.. This expression is in o\ in (378 and (37b). We will therefore investigate the
agreement witt{46), which is most conveniently shown by iy ence of wedge-shaped surface asperities on  high-

writing (46) as lim,_..k=3/M@ %% whereM is the so-  frequency permeability. The two-dimensional periodic geom-

called shape factor: etry considered is depicted in Fig. 2. The wedge is defined by
M =8Koa../ pA2=8Fky/A?, (51) its apexangley. Introducing cylindrical coordinates 6, we
o _ o set the originr=0 on the apeXP; of the wedge and count
which is identical to 1 in this case. the angled from one side of the wedge. The singular poten-

Another model that was discussed by Blatonsists of i) field E(r, ) is given by®
an ensemble of identical two-dimensional sligit opening

2R) within a solid. When the flow is oriented along the slit ~ Er=Anr""*cosng, (54)
layers, it can be shown that E,=—Anr" !sinng (55)

T 3 ta”“”””) whereA i litude f = (27—

K(w)= - 1— _ 52 ereA is an amplitude factor ang<n= /(27— y)<1.

. '_2( ik 62 Introducing the dimensionless stretched boundary layer vari-
Here we find thak,=1¢$R?, so that for this configuration aPlep=Tr/e, we find that
w.=3v/R?, and k= \3w/w.. The high-frequency limit is E,=Ane" 1p" tcosno=0(c" 1), (56)
now given by I .

Ey=—Ang" *p" " tsinnd=0(e"" ). (57
lim k= é( 1— 1__:> ] (53) To evaluate the high-frequency limit of the permeability,
w0 w 6w we will consider the limit of the real part ¢20):
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—v v v v— The contributions of the wedges (68) due to the nonplane
“near”-type boundary layers is now shown to produce cor-
(2 2h)L rection terms between the second and the third ter(36n
‘ A A ‘ as indicated in37).

We consider Stokes equatidnb),
V—e’VAN=g2(E— V7)), (59

P, P, in the “near”-region around the tip. In the flat-surface case,
the gradient- VG was a small correction with an extra factor
& compared td. The pressure gradient termV{ describes
the modification of the inertial solid—fluid reaction force due
to the viscous effects. Its averaged valye V@) will be
smaller, in magnitude, than the external unit foeceThus,
using the estimaté56)—(57) we may conclude that, to the
leading order¥=O(¢""1). Now performing the integral in
(58) around the tip of the wedge, we find that

B (6o Ble (6o
ReJ' f V-EdV= Re(azf f v-Epdadp)
0JO 0 0

=Rd 20(e?")]=ReO(£?"*?). (60)

P, P, From (58) and (60) we thus find that
Rek
im (w) —Re((£2M2), (61)
egla—0 ¢

FIG. 2. Geometry of two-dimensional pore chanfiep) and of the periodic

cell (bottom. Comparing with(37b) yields that
2
w=2n= . (62)
_ Rek(w) ~ 2m—y
s/ILTo ) _S/ILTO Re(V-E). (58 In a paper by Achdou and Avellanetfaan analogous rea-

_ o . o soning was followed for the problem of corrugated pore
The integral may be split in the bulk fluid contribution from channels. However, they did not multiply the velocity fi&ld
the potential flow region and the boundary layer contribu-py the electric fieldE in (60), thus obtaining arO(e"*3)
tion. The general argument leading to the decompos(@h  dependence leading tow=n+1 [see Achdou and
in the bulk fluid was not concerned with any detailed calcu-ayellanedal® Eq. (E7)]. However, when the linear average
lation of what actually happens in the boundary layer. Simi-(17) s employed, it is not possible to evaluate the high-
larly, the orthogonality property-(E-VG)=0 between the frequency limit of the permeability by only considering what

“ground state” field E and the perturbed fiele- Vq is es-  happens in the boundary layer. There is a missing contribu-
sentially due to the compact character of the pressuredield tjon from the perturbed potential flow in the bulk. The sig-
and is not concerned with the specific distribution of thiSpjficant difference between60) and the Achdou and
field. This is why there is, as before, no contribution8)  Avellaneda® result shows that in the case of wedges the bulk
from the potential flow region. We only have the to evaluatecontribution dominates the boundary layer contribution,
the boundary layer contribution. The boundary layer may bgyhereas in the bounded curvature case both contributions

divided in two different parts. “Far” from the tip of the \ere of the same order. These findings will now be substan-
wedges, the boundary layer will have the usual flat-surfacgated numerically.

profile. “Near” the tip of the wedges, the boundary layer

profile will be significantly different from the flat-surface VIl NUMERICAL COMPUTATIONS
profile. The pertinent length scale giving these notions of
“far” and “near” is obviously the diffusion length of the Numerical computations were performed on the periodic
vorticity, i.e., the viscous skin depth=\2v/w. LetL,, be  polygon P;---P, depicted in Fig. 2. The periodic cell
the separation between the tips of the wedges along the pof®, PsP¢P; is a square with sidels,,. The apex angle of the
surface(see Fig. 2. Clearly, asd/L,, goes to zero, the region wedge isy, and its height ishL,,, thus leaving a channel

of extents along the pore surface where the boundary layeiopening (2-2h)L,, (see Fig. 2 Numerical results are pre-

is of the nonplane “near”-type is small compared to the sented for varyingy whereh is set 0.5, and for varying,
region of extent,,, where the boundary layer has the usualwhere tany/2 is set 0.5. Taking the pressure gradient in the
flat-surface profile. As will be verified below, the leading horizontal direction, the Stokes problé€i#) was solved using
correction —Ce in the development$36) is not affected. a finite-element code based on a Uzawa decomposition
Here we assumed that the apex angis strictly larger than method. A Dirichlet-type boundary condition was prescribed
zero, so that the Johnsenal* A parameter remains defined. at the pore wallsV= 0. The solution to the Stokes problem is
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findings are in agreement with those of Achdou and
Avellaneda® who reported that the presence of a wedge in
the flow channel induces a nonanalytic dependence on the
viscous skin deptld= \2v/w, and a slower convergence of
Kk(w) to its asymptotic limit than predicted b{46). They
subsequently argue that the high-frequency behavior should
be described as the combination of the asymptotic expansion
(46) for laminar boundary layers and the contribution of the
singularity as described ba7b):

1071 E
1072
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1074

Reff] "o,
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100

f tan+y/2 :%0.1 ]

1078 ———

0.01 0.1 1 1000

~ 1
lim Rek(w)= ENaf ¥T1+C P wW] (63

w—

£

FIG. 3. Real and imaginary parts of the dynamic permeability foryf@n
=0.5 (top), and tany/2=0.1 (bottom). In both figuresh=0.5. The circles
and dots represent the numerical results. Both clasgsmdid lineg and
improved (dashed lineshigh-frequency approximations for A are plot-
ted.

or alternatively,

~ 1 1
im &%?Rek(w)= 5 M+ 5 C WM, (64)
where C; is a numerical constant and the exponentis
related to the wedge angle The shape facto is defined

approximated by means of; finite elements and by using N (51). In Sec. VI it is derived thatv=2n=27/(2m— )
the variational formulation of the problem. To ensure accu!S€€(62)], whereas Achdou and Avellanédaarrived atw

racy, we have used an iterative automatic method, i.e., thg 1+ n=(37—7)/(2m—y). We notice that foIC,=0, we
solution is computed on thi, mesh, next ara posteriori  INd back the asymptotic behaviot6). Our numerical com-
estimate of the error is computed, and finally the mesh iputations now offgr the possibility of d_etermlnmg the values
locally refined accordingly by means of a Delaunay tech-°f W and alsoM independently. In Fig. 4, we plotted the
nique developed by Rebay.Successful use of this refine- derivatives] ®*?Rek(w)]/d® against on a double logarith-
ment method on sharp-edged wedges was reported byic scale for various apex angles This derivative was
Firdaousset al** Once the flow field is know, the dynamic computed by means of a three-point centered finite differ-
permeability is computed using.7). ence method. We notice that for high frequencies, these
Two typical results are shown in Fig. 3, where the realcurves become straight lines, which is in agreement with
and imaginary parts of the dynamic permeability are plotted64). Linear regression now yields the slopgl —w)—1 of
for tany/2=0.5 and for tan/2=0.1. In both casesh the curve, and the valufC,(1—w)\M. Consequently, the
—0.5. The high-frequency approximatiodyM@ %2 is  value of 5C;M in (64) is also known, andVl can be ob-
drawn as straight lines in both plots. An improved high-tained from linear regression @*?Rek(w) vs &2~
frequency approximation is also drawalashed ling which  The results are given in Table I, and Figs. 5 and 6.
will be discussed hereafter. The parametdrand o, were We notice that the present theory is only slightly under-
computed independently, as discussed by Cortis andstimating the numerical results far, whereas the Achdou
Smeulders? We notice that for both apex angles thel/@  and Avellaned® predictions give a considerable overestima-
dependency for the imaginary part of the dynamic permetion of the computations. Also in the limiting case of knife-
ability is preserved for high frequencies. For the real part ofedge singularities ¥=0), there is a good agreement be-
the dynamic permeability, however, significant departuresween the computations and the present theory. We also
from the predicteds\/M @~ %2 behavior are found. Appar- notice that theM values are reasonably close to the theoret-
ently, these discrepancies become more significant foical value M =8Fk,/A?. This suggests that this definition
smaller apex angle, i.e., for sharper ed¢@=e Fig. 3 These for M is also correct in the case of surface roughness, and
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TABLE I. Dependencies of the exponemtand the scaling parametist on 100.00 3
the wedge apex angle for constanth=0.5. ]
w M : H H b
theory i —e— i
tan Achdou and computations | e |
y/2 ~ Computations Theory Avellaneda  Computations Theory 5 10,00 |- Ngemfoommmeepooomendoe oo S S S .
0.0 1.001 1.000 1.500 992.74 o ]
0.1 1.036 1.033 1.516 32.42 35.412 1
0.2 1.088 1.067 1.534 6.86 9.461 1
0.3 1.145 1.102 1.551 3.47 4.765 i
0.4 1.174 1.138 1.569 2.55 3.012 1.00
0.5 1.220 1.173 1.587 1.92 2.182 0 01 02 03 04 05 06 07 08 09 1
0.6 1.240 1.208 1.604 1.62 1.722 tan-y/2
0.7 1.273 1.241 1.621 1.39 1.430
0.8 1.305 1.274 1.637 1.22 1.254 FIG. 6. Dependence of the shape fadtbron the wedge apex anghefor
0.9 1.358 1.304 1.652 1.09 1.131 h=05.

that the contribution of the singularities can indeed be cap-

VIIl. CONCLUSIONS

We analyzed in detail the high-frequency fluid velocity

tured in a nonanalytic extension of the existing theory with-patterns in the bulk fluid and the boundary layer for smooth
out affecting the parameters of such theory. The obtainednd corrugated geometries. The classical Johnsoal’

results forw and M are substituted in the high-frequency high-frequency limit for smooth geometries was obtained in
correction(63), which is plotted in Fig. 3. As expected, we different manners, thus clarifying the discrepancy with the

find excellent agreement.

Sheng and Zhoutreatment and the Torquafoapproach.

The effect of the channel opening was checked by varyTwo different contributions to the dynamic permeability are
ing the intrusion heighh, while keeping tan/2=0.5. Ob-
viously this should not affect the value fav, which only
depends on the apex angle From (62) we find that the

now apparent. One comes from the boundary layer near the
pore walls; another comes from a perturbed potential flow in
the bulk, induced in a nontrivial geometry by the presence of

theoretical value is 1.173. The computations are summarizetthe boundary layer. This understanding has been applied to
in Table 1l. We notice that for small wedge heights, the com-derive the correct form of the leading higher-order terms that
putations deviate from theory, because the effect of the flagre present in corrugated pore channels. Such terms are es-
wall is predominant over the effect of the singularity. On thesential to obtain the correct high-frequency behavior of the
other hand, for very small openings, the results also deviatdynamic permeability when sharp edges are present. In such
from theory since the presence of the opposite wedge dissases the bulk contribution dominates the contribution from
turbs the flow field with respect to the assumptions made irthe boundary layer, which causes a slower convergence of
Sec. VI. We notice that good results are obtained Hior k(w) to its asymptotic limit than predicted from the classical
=0.5, which is the value we used for the computations intheory by Johnsoret al* We numerically investigated the

Table I. dependency of the high-frequency behavior on the wedge
angle in corrugated channels. For various angles, we com-
puted the dynamic permeability by means of a precise finite
element solver for the Stokes’ flow. The effect of varying
channel opening was investigated separately. The form of the
leading higher-order terms was validated by our numerical
results. Moreover, we found that the contribution of the
wedge singularities does not affect the original parameters of
the Johnsoret al? theory.

1.4+
; o
o TABLE II. Dependence of the exponent on the wedge height for con-

o ° stanty (tany/2=0.5). The theoretical value is 1.173.

12} . w

° theory h Computations

- 0.1 1.430
1 s ‘ ‘ . 0.2 1.347
0 02 04 06 08 1 0.3 1.216
0.4 1.235
tan y/2 05 1.220
0.6 1.241
FIG. 5. Dependence of the exponamton the wedge apex angte for h 0.7 1.267

=0.5. The circles represent the numerical computations.
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APPENDIX A: ENERGETIC REPRESENTATION OF
THE DYNAMIC TORTUOSITY

Here we derive the relatiof23) using the eigenmode
formalism. First we define the notation:

~ On Al
Un_1+iwan/V’ (A1)
and the mean symbol
IXl= 2 b3y (A2)
Then(18) and(22) read as
k(o)
5 =7l (A3)
and
14
a(w)=—=. (A4)
lo][ Ty
From (A4) we write
B i s
fo [[ElloR]”

where* denotes complex conjugation. Combini@p) with
the identity

w
[Cra Bt CRCA RN CACAE AP (A6)
we get
5053l v 15053/ ol A7)

io [z

where the form 0f23) may be recognized. Usin@a), it is
easy to verify that

(V)-e=|al (A8)
and

(V) =[[enah - (A9)
Using (9a), we finally verify that

— (V- V&) =|5,05 o). (A10)
APPENDIX B: PROOF OF THE IDENTITY (41)

We want to prove the identity

f E-V(I)dS=f (I)g—E’BdS (B1)

S, s, 9B

It holds that

E-VO=V-(ED), (B2)

becausévV-E=0. We may now introduce the Gauss coordi-
natesx, on the curved surfac§,, where u=1,28. Any
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L V-(Ed)dS= L[EMCD]’MdS

= Jsp[E‘q)]'idS+ LP[EBd)]ﬁdS, (B3)

where the subscript comma is used for the derivative,iand
runs over 1,2 only. Due to the compact character of the field
®, the third integral iNB3) is zero, so that we find frortB2)
and(B3) that

—dS+

fsp B Lp (;_Zﬁds

BecauseE;=0 onS,, we obtain the desired result.

P
E-VddS= f (B4)

E
B
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