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The high-frequency behavior of the fluid velocity patterns for smooth and corrugated pore channels
is studied. The classical approach of Johnsonet al. @J. Fluid Mech.176, 379 ~1987!# for smooth
geometries is obtained in different manners, thus clarifying differences with Sheng and Zhou@Phys.
Rev. Lett.61, 1591 ~1988!# and Avellaneda and Torquato@Phys. Fluids A3, 2529 ~1991!#. For
wedge-shaped pore geometries, the classical approach is modified by a nonanalytic extension
proposed by Achdou and Avellaneda@Phys. Fluids A4, 2561 ~1992!#. The dependency of the
nonanalytic extension on the apex angle of the wedge was derived. Precise numerical computations
for various apex angles in two-dimensional channels confirmed this theoretical dependency, which
is somewhat different from the original Achdou and Avellaneda predictions. Moreover, it was found
that the contribution of the singularities does not alter the parameters of the classical theory by
Johnsonet al. © 2003 American Institute of Physics.@DOI: 10.1063/1.1571545#

I. INTRODUCTION

The problem of fluid flow through porous media is of
paramount importance in many technological areas. In air-
filled sound absorbing media, a precise prediction of sound
absorption versus frequency is needed.1 In the oil industry,
exploration wells are probed by acoustic tools and reservoir
properties are delineated from the recorded wave trains.2 The
dynamic permeabilityk(v), and the dynamic tortuositya~v!
are important properties to describe the macroscopic flow
through porous media subjected to an oscillatory pressure
gradient. Here, the term macroscopic refers to a length scale
L that is much larger than any pore sizea. HereL is defined
as characteristic wavelength being the product of the fluid
sound speedc, and an intrinsic viscous relaxation timea2/n,
wheren is the kinematic viscosity of the pore fluid.1,3 Intro-
ducing an exp(ivt) dependence for the fluid pressurep and
the macroscopic fluid velocityU, k(v) anda~v! are defined
by

hf

k~v!
Û52“ p̂, ~1!

ivr fa~v!Û52“ p̂. ~2!

In these two expressions,h is the fluid viscosity,r f is the
fluid density, andf is the porosity. These relations take into
account, in an averaged sense, the fluid motion that takes
place in the pore structure, so thatk(v) anda~v! depend on
the morphology of the pore space. Johnsonet al.4 and later
Sheng and Zhou5 and Zhou and Sheng,6 argued that the tran-
sition from low-frequency viscous behavior to high-
frequency inertia behavior must be determined by the ratio

p1 of the length scalesAFk0 andd. Herek0 is the stationary
Darcy permeability, andF is the formation factor, a nondi-
mensional parameter that is related to the effective electrical
conductivity of the porous medium saturated with a conduc-
tive fluid. The viscous skin depthd5A2n/v. It was conse-
quently postulated thatk(v) satisfies a universally valid
scaling function,

k~v!5k0f S Fk0

d2 D . ~3!

This also means that a characteristic frequencyvc5n/Fk0

can be defined where the viscous forces and the inertia forces
are of the same order of magnitude. Experimental work by
Auriault et al.,7 Charlaixet al.,8 and Smeulderset al.3 show
very good agreement of such theory on a wide variety of
porous samples. A detailed theoretical analysis, however,
showed that the structure functionf of ~3! must also depend
on the ratiop25d/L, where L is a pore volume-to-pore
surface ratio weighted according to potential theory.4 Sur-
prisingly, for a wide variety of morphologies,p1 and p2

were found not to be independent, i.e., their product was
found to beA1/8, at least approximately. These morpholo-
gies had in common that they were smooth on the pore scale,
i.e., the pore surface had bounded curvature. The possibility
of departure from the structure functionf for corrugated
morphologies was investigated by several authors such as
Kosteket al.,9 Smeulderset al.,10 Firdaousset al.,11 and Cor-
tis and Smeulders.12 It appeared that high values forp1

3p2 could be reached for special cases, but these investiga-
tions still did not consider any comparison over the fre-
quency domain. In other words, only the assumption that
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p13p2'A1/8 was invalidated for some cases, but the struc-
ture functionf could still be fully correct, if we rewrite it as
a function of two parameters:3,4

k~v!5k0f S Fk0

d2 ,
Fk0

L2 D . ~4!

In a paper by Achdou and Avellaneda,13 however, departures
from ~4! were observed for microgeometries consisting of
corrugated tubes. For high frequencies, they observed a
slower convergence ofk(v) to its asymptotic limit than pre-
dicted from universality theory. A nonanalytic correction to
the structure function~4! was proposed. Our aim in this pa-
per is to study this nonanalytic correction factor. From mi-
crostructure, the dynamic permeability and tortuosity rela-
tions will be derived. Then, analyzing in detail the fluid
velocity pattern in the bulk fluid and the boundary layer, the
classical Johnsonet al.4 high-frequency limit for smooth ge-
ometries will be obtained in different manners, making ap-
parent the discrepancy with the Sheng and Zhou5 treatment,
and clarifying the asymptotic boundary layer analysis pro-
posed by Avellaneda and Torquato.14 For microgeometries
consisting of corrugated tubes, this leads to a somewhat dif-
ferent high-frequency correction than proposed by Achdou
and Avellaneda.13 Furthermore, the theoretical predictions
will be numerically evaluated for two-dimensional channels
that have wedge-shaped asperities.

II. OSCILLATING STOKES FLOW

Considering the unsteady Stokes equation for the fluid
velocity field v, we may write

ivr f v̂52“ p̂1h¹2v̂1ĝe, ~5!

wheree is the unit vector (ex ,ey ,ez), and ĝ is a spatially
uniform oscillating source term, which is expressed in
N m23. In Achdou and Avellaneda,13 ĝ is an external oscil-
latory pressure gradient, which also appears quite naturally if
the conventional technique of homogenization is used. Zhou
and Sheng,6 Smeulderset al.,3 and Lafargeet al.1 denote this
externally applied pressure gradient2“xp0 . Indeed, the ac-
tual pressurep in the fluid can be viewed as the sum of its
local mean valuep05^p& and its deviatoric partp̂5p
2^p&, where^ & denotes averaging over the pore fluid vol-
umeVf . The local mean valuep0 varies at the macroscopic
length scaleL, thus its gradient may be considered a spatial
constant inVf . The deviatoric partp̂ varies at the pore scale
a and is a compact field of zero mean value. This means that,
on average, it does not increase or decrease in the direction
of e. It is fluctuating at the microscopic level because of the
pore geometry, but it does not change from place to place
when averages are considered. For periodic microstructures,
the compact character ofp̂ is expressed by periodic bound-
ary conditions. Furthermore, it can be obtained from homog-
enization theory that, because of the scale separationL@a,
the fluid is locally incompressible,

“"v̂50. ~6!

Introducing the scaled velocityṽ5h v̂/ĝ expressed in m2,
and the scaled pressurep̃5 p̂/ĝ expressed in m, the unsteady
Stokes problem may be written as

iv ṽ/n52“ p̃1¹2ṽ1e, ~7a!

“"ṽ50, ~7b!

ṽ50, on the pore walls, ~7c!

p̃: compact. ~7d!

The solution to this problem can be expressed as a sum of
normal modes:14

ṽ~r ,v!5 (
n51

`

bnCn~r !
sn

11 ivsn /n
, ~8a!

p̃~r ,v!5 (
n51

`

bnQn~r !
1

11 ivsn /n
1F~r !. ~8b!

Here, the dimensionless vector eigenfunctionsCn satisfy

2¹2Cn5
1

sn
~Cn2“Qn!, ~9a!

“"Cn50, ~9b!

Cn50, on the pore walls, ~9c!

Qn : compact, ~9d!

and the parameterssn , expressed in m2, are the inverse
eigenvalues of the Stokes operator. They determine the vis-
cous relaxation timesQn5sn /n corresponding to purely
damped modesṽ5snCne2t/Qn as a solution to the homoge-
neous unsteady Stokes problem, i.e., with the external exci-
tation termĝ50 in ~5!. The functionsQn , which are non-
zero in general, have dimensions of length and determine the
corresponding compact pressuresp̃5Qne2t/Qn. The largest
values1 is obviously of orderO(a2) and the parameterssn ,
sorted such thatsn11,sn , accumulate to 0 whenn→`.
Using the conditions~9!, it can be verified that the eigen-
functionsC are orthogonal. They are complete in the sub-
space of the square integrable divergence-free fields having a
zero normal component on the pore walls. Furthermore, they
are chosen orthonormal,

1

Vf
E

Vf

Cn"CmdV5dnm . ~10!

The dimensionless expansion coefficientsbn are defined as

bn5
1

Vf
E

Vf

Cn"edV. ~11!

Now substituting~8a! and ~8b! in the Stokes equation~7a!
and using~9a!, we see that~7a! is satisfied if

(
n51

`

bnCn5e2“F. ~12!

Note that there is a unique solutionE, F to the following
electric problem:

E5e2“F, ~13a!
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“"E50, ~13b!

E"n50, on the pore walls, ~13c!

F: compact, ~13d!

wheren is the unit outward normal from the pore region. In
particular, the identity(n51

` bnCn5E holds. The fieldE,
which solves the corresponding electrical conduction prob-
lem for a porous medium filled with a conducting fluid and
having an insulating solid phase, can be interpreted as the
scaled electric field, i.e., the local electric field divided by the
applied macroscopic potential gradient. Decomposition~13a!
is referred to by Avellaneda and Torquato14 as the so-called
Hodge decomposition. We notice that there is a direct rela-
tion to the tortuosity factora` that determines the effective
electric conductivity of the porous medium. Applying the
unit electric fielde, the microscopic current in the saturating
fluid is j5s fE, wheres f is the fluid electric conductivity.
The macroscopic currentJ5f^ j & then obeys a macroscopic
Ohm’s lawJ5seffe, with seff5fsf /a` , and

a`5
1

^E&"e
5

^E"E&

^E&"^E&
. ~14!

We assumed unidirectional or isotropic pore space so that the
tortuosity is a scalar. After multiplying~12! by e and aver-
aging, the identity

(
n51

`

bn
25

1

a`
~15!

immediately follows.
On the macrolevel, Darcy’s law describes the linear re-

sponse of the macroscopic velocityÛ to the source termĝe:

hf

k~v!
Û5ĝe, ~16!

wherek(v) is the frequency-dependent, complex-valued dy-
namic permeability. This relation is the counterpart of the
classical Darcy’s law for steady-state flow, and reduces to it
for v→0. In general, the dynamic permeability is a second-
rank tensor that reduces to a scalar in the case of unidirec-
tional, isotropic, or simple-cubic microstructures. In this
case, the macroscopic flowÛ is in the same direction as the
source termĝe, which means thatÛ5^v̂"e&e. From~16!, we
now easily find that

k~v!

f
5^ṽ"e&. ~17!

Substitution of~8a! yields a series expansion fork(v):

k~v!

f
5 (

n51

` bn
2sn

11 ivsn /n
. ~18!

Another form of ~17! is particularly useful. For any
divergence-free vector fieldw that has zero normal compo-
nents on the interface, there is the identity

^w"e&5^w"E&, ~19!

which follows directly from~13a! after integrating by parts
and using the compact character of the fields. Thus, we also
have

k~v!

f
5^ṽ"E&. ~20!

The velocity response of the fluid to the source termĝe can
also be defined in analogy with the response of an ideal fluid:

r fa~v!ivÛ5ĝe, ~21!

wherea~v! is the frequency-dependent, complex-valued tor-
tuosity,

a~v!5
nf

ivk~v!
. ~22!

It may be verified that the following energetic representation
of a~v! is valid:

a~v!5
^ṽ"ṽ* &

^ ṽ&"^ṽ* &
2

n

iv

^ ṽ"¹2ṽ* &

^ṽ&"^ ṽ* &
, ~23!

where* denotes complex conjugation. The proof is given in
Appendix A. Using homogenization theory, this result was
also obtained by Smeulderset al.3 Physically speaking, this
result expresses the condition that the work performed by the
external force per unit time is equal to the rate of change of
the kinetic energy plus the dissipated energy per unit time.
The real part of~23! is related to the kinetic energy, and the
imaginary part is related to the mean rate of energy dissipa-
tion.

In the forthcoming, we will be mainly concerned with
the high-frequency limitva2/n→` of the dynamic perme-
ability and tortuosity. In this limit, the denominators in~18!
may be replaced by the factorsivsn /n up to high values of
n, thus showing thatk(v)→nf/ iva` , according to~15!.
Indeed, assuming that the viscous term¹2ṽ is negligibly
small compared to the inertial term in~7a!, the Stokes prob-
lem ~7! degenerates into the electric or ideal fluid problem
~13!, andṽ→En/ iv. Substitution of this result forṽ in ~17!
or ~20! again yields the above leading behavior ofk(v) at
high frequencies, while substitution in~22! shows that the
corresponding result for the dynamic tortuosity isa(v)
→a` .

III. HIGH-FREQUENCY VELOCITY PATTERN IN
SMOOTH GEOMETRIES

We now examine the precise limit of the Stokes problem
~7! for «/a→0, where« is the complex viscous skin depth
parameter,

«5An/ iv5~12 i !d/2. ~24!

Writing the pressurep̃ in the form p̃5q̃1F @see~8b!# and
substituting in~7a!, we get

ṽ5«2~E2“q̃1¹2ṽ!. ~25!

Taking the curl of~25!, we obtain the diffusion equation for
the vorticity, “Ãṽ2«2¹2

“Ãṽ50. Following Johnson
et al.,4 we note that in the limit of high frequencies the vis-
cous skin depthd52u«u eventually becomes much smaller
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than any characteristic pore sizea. Any vorticity generated
at the pore walls decays to zero as one moves away distances
of the orderd from the wall into the bulk of the pore. Thus,
the Laplacian¹2ṽ52“Ã“Ãṽ, vanishes in the bulk fluid,
except for a boundary layer of thicknessd near the pore
walls. It follows that outside this boundary layer, the fluid
motion is that of potential flow, with

ṽ5 ṽp5«2~E2“q̃!. ~26!

It will be seen below that the presence of the pressure gra-
dient term2“q̃ is a smallO(«/a) correction to the leading
O~1! flow patternE that appears because smallnormal com-
ponentsof the velocity are created at the virtual interface
between the bulk potential flow region and the viscous
boundary layer. Clearly, such normal components would not
exist in straight channels for obvious symmetry reasons, and
must therefore be related to the curvature of the pore walls.
The tangentialcomponents of the velocity in the boundary
layer can be directly evaluated to leading order in terms of
the E field only. Indeed, sinced is arbitrary small at high
enough frequencies, the walls of the pore appear to be flat in
the region where the tangential velocity goes from 0 at the
pore wall to the value«2E in the pore region. Thus, the
tangential components of the velocity may be written to lead-
ing order,15

ṽ5«2E~rw!~12e2b/«!, ~27!

whereb is a local coordinate measured from the pore wall at
positionrw into the bulk of the pore:r2rw52bn. SinceE
varies at the pore scalea@d, no distinction is to be made
betweenr and rw in ~27!. Thus, we may combine~26! and
~27! and consider the velocity fieldṽ, including leading-
order tangential and normal components, as the solution of
the problem,

ṽ5s~r !~E2“P!, ~28a!

“"ṽ50, ~28b!

s~r !5«2~12e2b/«!, ~28c!

where we have introduced a compact fieldP, which is re-
lated toq̃ and defined as

“P5~12e2b/«!21
“q̃, ~29a!

in the boundary layer, and

“P5“q̃, ~29b!

outside. The fieldṽ then solves the electrical conduction
problem for a porous medium having an insulating solid
phase and filled with a conducting fluid of conductivitys~r !.
Current conservation gives

2“"~s“P!1E"“s50. ~30!

In the limit «/a→0, only derivatives normal to the pore
walls need to be considered in the boundary layer and it is
convenient to introduce the stretched coordinatez5b/« to
express the fact thats is a function ofz only. In addition, the
normal component of the unperturbed electric fieldEb ,

which varies at scalea and is zero on the pore walls, may be
replaced by its first-order term«z(]Eb /]b)b50 . Equation
~30! is easily integrated to yield

]P

]b
5«S 12~11z!e2z

12e2z D S ]Eb

]b D
b50

. ~31!

We conclude that outside the boundary layer, the perturbed
electric field is of the form

2“P5«N, ~32!

whereN is the unique solution of the problem:

N: gradient of a compact field, ~33a!

“"N50, ~33b!

N"n5S ]Eb

]b D
b50

, on the pore walls. ~33c!

We note that sinceP is a compact field, the perturbed field
«N is orthogonal toE in an averaged sense:

^E"N&50. ~34!

This can be seen from the same reasoning used to obtain
~19!: becauseE is divergence-free and has zero normal com-
ponents on the interface,~34! follows after integrating by
parts and using the compact character of the fields. Explicit
expressions for the velocity fields inside and outside the
boundary layer result immediately. Inside the boundary layer
we find, using~28a!, ~28c!, and~31!

ṽ5«2~12e2b/«!E~rw!1«3F12S 11
b

« De2b/«G
3S ]Eb

]b D
b50

n, ~35a!

and outside the boundary layer we have, using~26!, ~29b!,
and ~32!

ṽ5«2@E~r !1«N~r !#. ~35b!

As mentioned previously, small normal components of the
velocity are induced in the boundary layer, and these act as a
source for the additional ideal fluid flow«3N in the bulk.
Note that, thoughN is an ideal fluid flow, it is related to the
viscous nature of the fluid. This flow is orthogonal to the
main flow«2E, and has nonvanishing mean value. This pre-
cise representation of the velocity pattern, which, however,
does not include higher-order boundary layer tangential
terms O(«3/a) in ~35a! and higher-order bulk terms
O(«4/a2) in ~35b!, is used in the next section to clarify the
algebra involved in the high-frequency behavior of the dy-
namic permeability and tortuosity.

IV. HIGH-FREQUENCY PERMEABILITY AND
TORTUOSITY

As suggested in the previous section by the analysis of
the velocity field for materials with bounded curvature of the
pore surface interface, the high-frequency development of
the dynamic permeability and tortuosity may be written in
successive powers of the viscous skin depth parameter:
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a~v!5a`~11C«1D«21¯ !, ~36a!

k~v!

f
5

«2

a`
@12C«1~C22D !«21¯#. ~36b!

Three equivalent determinations of theC parameter will
now be considered, using either~17!, ~20!, or ~23!. The first
is a new derivation that supplements in the proper manner
the incomplete determination by Sheng and Zhou.5 The sec-
ond is equivalent to the original arguments by Johnson
et al.,4 and the third was employed by Avellaneda and
Torquato,14 though they did not capture all the details in-
volved. The third method is the simplest one, and will also
be applied in Sec. VI to capture some of the effects related to
the presence of sharp edges in the pore wall geometry. We
will show that in that case the set of equations~36! is modi-
fied as follows:

a~v!5a`~11C«1C1«w1¯ !, ~37a!

k~v!

f
5

«2

a`
~12C«2C1«w1¯ !, ~37b!

with the same inverse lengthC as before and the exponentw
(1,w,2) related to the apex angle of the edges.

To proceed now in the most direct manner, we substitute
~35a! and~35b! into ~17!. Integrating the velocity field in the
whole fluid volume, we have

E
Vf

ṽ"edV5«2E
Vf

E"edV2«2E
BL

e2b/«E"edV

1«3E
IF

N"edV, ~38!

where the subscripts BL and IF denote integration over the
boundary layer and the ideal fluid region, respectively. Note
that we have not written the negligible contribution of the
normal components of the velocity in the boundary layer.
Such a contribution would be associated with the constantD
in ~36a! and~36b! and is meaningless due to the higher-order
tangential termsO(«3/a) not written in~35a! and the higher-
order bulk termsO(«4/a2) not written in~35b!. The bound-
ary layer contribution reduces exactly to a boundary integral
2«3*Sp

E"edS that is performed on the boundary walls.
Moreover, extending with negligible error the volume of in-
tegration in the last term of~38! to be that of the whole fluid,
and using the orthogonality property~34!, this last term is
written as«3*Vf

“F"NdV. Integrating by parts, it can also
be written as a boundary integral on the pore walls, namely
«3*Sp

FN"ndS. We thus obtain the result

k~v!

f
5

«2

a`
~12C«1¯ !, ~39!

with

C5
a`

Vf
E

Sp

S E"e2F
]Eb

]b DdS

5E
Sp

S E"e2F
]Eb

]b DdSY E
Vf

E2dV. ~40!

This is an important result, which allows us to compare ear-
lier results from literature. As it holds that

E
Sp

F
]Eb

]b
dS5E

Sp

E"“FdS ~41!

~see Appendix B!, we may write that

C5
2

L
5

*Sp
E2dS

*Vf
E2dV

, ~42!

where we have used~13a!. This is the classical expression of
Johnsonet al.,4 who were the first to define the length-scale
parameterL as the weighted pore volume (Vf)-to-pore sur-
face (Sp) ratio. For tube flow,L equals the tube radius.

Equation~42! can also be obtained using the following
energetic arguments. From~36a! we derive that, to the lead-
ing order in the high-frequency limit,

Im a~v!

Rea~v!
52C

d

2
. ~43!

On the other hand, from~23!, we have that

Im a~v!

Rea~v!
5

d2

2

^ ṽ"¹2ṽ* &

^ṽ"ṽ* &
. ~44!

This means that we may write

C5 lim
d/a→0

d
^ṽ"¹2ṽ* &

^ṽ"ṽ* &
. ~45!

Substituting ṽ' ṽ* 'E, and ¹2ṽ* '2Ee2b/«* @see ~27!#,
and performing the integrals immediately yields~42!. Note
that because of the Laplacian in the numerator, there is no
integration in the bulk but only a boundary layer contribu-
tion. Note also that there is no first-order contribution of the
perturbed potential flow«N to the denominator due to the
orthogonality with the unperturbed flowE.

Finally, another method to obtain~42! is to use~20!.
From ~36b! we have that

lim
d/a→0

Rek~v!

f
5

1

&

C

a`
S n

v D 3/2

5
&

La`
S n

v D 3/2

. ~46!

Thus, from~20! it follows that

C5 lim
d/a→0

&a`S v

n D 3/2

Rê ṽ"E&. ~47!

Now, substituting the velocity pattern~35!, there is no bulk
contribution from the perturbed potential flow«3N that is
orthogonal toE. There is also no bulk contribution from the
unperturbed leading-order term«2E that is purely imaginary.
There is only a simple boundary layer contribution to evalu-
ate, which again leads to~42!.

In literature other expressions forL can be found. The
expression obtained by Sheng and Zhou5 and Zhou and
Sheng6 was as follows:

2

L
5

*Sp
E"edS

*Vf
E2dV

. ~48!
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We notice that this is only the first term in~40!. The origin of
the incompleteness is the use of the ‘‘linear’’ average~17!
without taking into account the bulk contribution from the
small perturbed potential field«3N. The same expression
~48! can be found in Pride16 in the context of electrokinetic
effects for sound propagation in a porous medium saturated
with a conductive fluid. Avellaneda and Torquato14 tried to
clarify the discrepancy between~42! and~48! by considering
higher-order terms in the boundary layer calculation sug-
gested by Sheng and Zhou.5 However, the missing contribu-
tion is a bulk term and their boundary layer analysis was still
incomplete.

To illustrate our dynamic permeability analysis, we will
first consider two straightforward models for porous media
that are wellknown in literature. Next, the effect of the per-
turbed bulk contribution will be demonstrated in the case of
corrugated pore channels.

V. NONCORRUGATED PORE CHANNELS

As a model for porous media, Biot17 discussed an en-
semble of parallel identical cylindrical tubes within a solid.
The tube radius isR. The number density of tubes is repre-
sented by the porosityf. When the fluid flow is oriented
along the cylinder axis of the tubes, it was already shown by
Zwikker and Kosten18 that

k̃~v!5
k~v!

k0
5

8

ik2 S 12
2J1~ i 3/2k!

i 3/2kJ0~ i 3/2k! D , ~49!

wherek5RAv/n is the so-called Womersley number, and
J0 andJ1 are Bessel functions of the zeroth and first order.
Poiseuille flow prescribes thatk05 1

8fR2. This means that
the characteristic frequencyvc5nf/k0a` is equal to 8n/R2

in this case, andk5A8v/vc. For high frequencies, it fol-
lows directly from~49! that17

lim
v→`

k̃5
1

i ṽ S 12
12 i

2Aṽ
D , ~50!

where we have introducedṽ5v/vc . This expression is in
agreement with~46!, which is most conveniently shown by
writing ~46! as limv→` k̃5 1

2AM ṽ23/2, whereM is the so-
called shape factor:

M58k0a` /fL258Fk0 /L2, ~51!

which is identical to 1 in this case.
Another model that was discussed by Biot17 consists of

an ensemble of identical two-dimensional slits~slit opening
2R) within a solid. When the flow is oriented along the slit
layers, it can be shown that

k̃~v!5
3

ik2 S 12
tanh~ i 1/2k!

i 1/2k D . ~52!

Here we find thatk05 1
3fR2, so that for this configuration

vc53n/R2, and k5A3v/vc. The high-frequency limit is
now given by

lim
v→`

k̃5
1

i ṽ S 12
12 i

A6ṽ
D . ~53!

Also, this expression is in agreement with~46!, because for
slit flow M5 2

3. The real and imaginary parts of the dynamic
permeability for both the tube model and the slit model are
plotted in Fig. 1. We notice that there are only minor differ-
ences between both models. For low frequencies, the real
part of the dynamic permeability approaches the stationary
Darcy permeability, whereas the imaginary part tends to
zero. For high frequencies, the imaginary part of the dynamic
permeability shows a21/ṽ dependency for both the tube
and the slit model, whereas for the real part theṽ23/2 behav-
ior can be discerned. We also notice that the rollover from
low-frequency viscous behavior to high-frequency inertia be-
havior is observed atv'vc indeed.

VI. CORRUGATED PORE CHANNELS

We noticed in Sec. IV that the bulk contribution from the
small perturbed field«3N has to be taken into account in
order to describe correctly the velocity field for materials
with bounded curvature of the pore surface interface. The
effect of this contribution can elegantly be illustrated in the
case of corrugated pore channels, where we will show that
the use of~17! instead of~20! yields erroneous predictions
for w in ~37a! and ~37b!. We will therefore investigate the
influence of wedge-shaped surface asperities on high-
frequency permeability. The two-dimensional periodic geom-
etry considered is depicted in Fig. 2. The wedge is defined by
its apex angleg. Introducing cylindrical coordinatesr , u, we
set the originr 50 on the apexP3 of the wedge and count
the angleu from one side of the wedge. The singular poten-
tial field E(r ,u) is given by15

Er5Anrn21 cosnu, ~54!

Eu52Anrn21 sinnu, ~55!

whereA is an amplitude factor and12,n5p/(2p2g),1.
Introducing the dimensionless stretched boundary layer vari-
abler5r /«, we find that

Er5An«n21rn21 cosnu5O~«n21!, ~56!

Eu52An«n21rn21 sinnu5O~«n21!. ~57!

To evaluate the high-frequency limit of the permeability,
we will consider the limit of the real part of~20!:

FIG. 1. Dynamic permeability for tube flow~dashed line! and slit flow
~solid line!.
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lim
«/a→0

Rek~v!

f
5 lim

«/a→0
Rê ṽ"E&. ~58!

The integral may be split in the bulk fluid contribution from
the potential flow region and the boundary layer contribu-
tion. The general argument leading to the decomposition~26!
in the bulk fluid was not concerned with any detailed calcu-
lation of what actually happens in the boundary layer. Simi-
larly, the orthogonality property2^E"“q̃&50 between the
‘‘ground state’’ field E and the perturbed field2“q̃ is es-
sentially due to the compact character of the pressure fieldq̃
and is not concerned with the specific distribution of this
field. This is why there is, as before, no contribution to~58!
from the potential flow region. We only have the to evaluate
the boundary layer contribution. The boundary layer may be
divided in two different parts. ‘‘Far’’ from the tip of the
wedges, the boundary layer will have the usual flat-surface
profile. ‘‘Near’’ the tip of the wedges, the boundary layer
profile will be significantly different from the flat-surface
profile. The pertinent length scale giving these notions of
‘‘far’’ and ‘‘near’’ is obviously the diffusion length of the
vorticity, i.e., the viscous skin depthd5A2n/v. Let Lw be
the separation between the tips of the wedges along the pore
surface~see Fig. 2!. Clearly, asd/Lw goes to zero, the region
of extentd along the pore surface where the boundary layer
is of the nonplane ‘‘near’’-type is small compared to the
region of extentLw , where the boundary layer has the usual
flat-surface profile. As will be verified below, the leading
correction2C« in the developments~36! is not affected.
Here we assumed that the apex angleg is strictly larger than
zero, so that the Johnsonet al.4 L parameter remains defined.

The contributions of the wedges to~58! due to the nonplane
‘‘near’’-type boundary layers is now shown to produce cor-
rection terms between the second and the third term in~36!,
as indicated in~37!.

We consider Stokes equation~25!,

ṽ2«2¹2ṽ5«2~E2“q̃!, ~59!

in the ‘‘near’’-region around the tip. In the flat-surface case,
the gradient2“q̃ was a small correction with an extra factor
« compared toE. The pressure gradient term2“q̃ describes
the modification of the inertial solid–fluid reaction force due
to the viscous effects. Its averaged value^2“q̃& will be
smaller, in magnitude, than the external unit forcee. Thus,
using the estimate~56!–~57! we may conclude that, to the
leading order,ṽ5O(«n11). Now performing the integral in
~58! around the tip of the wedge, we find that

ReE
0

bE
0

u0
ṽ"EdV5ReS «2E

0

b/«E
0

u0
ṽ"Erdudr D

5Re@«2O~«2n!#5ReO~«2n12!. ~60!

From ~58! and ~60! we thus find that

lim
«/a→0

Rek~v!

f
5ReO~«2n12!. ~61!

Comparing with~37b! yields that

w52n5
2p

2p2g
. ~62!

In a paper by Achdou and Avellaneda,13 an analogous rea-
soning was followed for the problem of corrugated pore
channels. However, they did not multiply the velocity fieldṽ
by the electric fieldE in ~60!, thus obtaining anO(«n13)
dependence leading tow5n11 @see Achdou and
Avellaneda,13 Eq. ~E7!#. However, when the linear average
~17! is employed, it is not possible to evaluate the high-
frequency limit of the permeability by only considering what
happens in the boundary layer. There is a missing contribu-
tion from the perturbed potential flow in the bulk. The sig-
nificant difference between~60! and the Achdou and
Avellaneda13 result shows that in the case of wedges the bulk
contribution dominates the boundary layer contribution,
whereas in the bounded curvature case both contributions
were of the same order. These findings will now be substan-
tiated numerically.

VII. NUMERICAL COMPUTATIONS

Numerical computations were performed on the periodic
polygon P1¯P7 , depicted in Fig. 2. The periodic cell
P1P5P6P7 is a square with sidesLw . The apex angle of the
wedge isg, and its height ishLw , thus leaving a channel
opening (222h)Lw ~see Fig. 2!. Numerical results are pre-
sented for varyingg whereh is set 0.5, and for varyingh,
where tang/2 is set 0.5. Taking the pressure gradient in the
horizontal direction, the Stokes problem~7! was solved using
a finite-element code based on a Uzawa decomposition
method. A Dirichlet-type boundary condition was prescribed
at the pore walls:ṽ50. The solution to the Stokes problem is

FIG. 2. Geometry of two-dimensional pore channel~top! and of the periodic
cell ~bottom!.
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approximated by means ofN1 finite elements and by using
the variational formulation of the problem. To ensure accu-
racy, we have used an iterative automatic method, i.e., the
solution is computed on theN1 mesh, next ana posteriori
estimate of the error is computed, and finally the mesh is
locally refined accordingly by means of a Delaunay tech-
nique developed by Rebay.20 Successful use of this refine-
ment method on sharp-edged wedges was reported by
Firdaousset al.11 Once the flow field is know, the dynamic
permeability is computed using~17!.

Two typical results are shown in Fig. 3, where the real
and imaginary parts of the dynamic permeability are plotted
for tang/250.5 and for tang/250.1. In both cases,h
50.5. The high-frequency approximation12AM ṽ23/2 is
drawn as straight lines in both plots. An improved high-
frequency approximation is also drawn~dashed line!, which
will be discussed hereafter. The parametersM andvc were
computed independently, as discussed by Cortis and
Smeulders.12 We notice that for both apex angles the21/ṽ
dependency for the imaginary part of the dynamic perme-
ability is preserved for high frequencies. For the real part of
the dynamic permeability, however, significant departures
from the predicted1

2AM ṽ23/2 behavior are found. Appar-
ently, these discrepancies become more significant for
smaller apex angle, i.e., for sharper edges~see Fig. 3!. These

findings are in agreement with those of Achdou and
Avellaneda,13 who reported that the presence of a wedge in
the flow channel induces a nonanalytic dependence on the
viscous skin depthd5A2n/v, and a slower convergence of
k̃(v) to its asymptotic limit than predicted by~46!. They
subsequently argue that the high-frequency behavior should
be described as the combination of the asymptotic expansion
~46! for laminar boundary layers and the contribution of the
singularity as described by~37b!:

lim
v→`

Rek̃~v!5
1

2
AM ṽ2 3/2@11C1ṽ~1/2!(12w)#, ~63!

or alternatively,

lim
v→`

ṽ3/2Rek̃~v!5
1

2
AM1

1

2
C1ṽ~1/2!(12w)AM , ~64!

where C1 is a numerical constant and the exponentw is
related to the wedge angleg. The shape factorM is defined
in ~51!. In Sec. VI it is derived thatw52n52p/(2p2g)
@see ~62!#, whereas Achdou and Avellaneda13 arrived atw
511n5(3p2g)/(2p2g). We notice that forC150, we
find back the asymptotic behavior~46!. Our numerical com-
putations now offer the possibility of determining the values
of w and alsoM independently. In Fig. 4, we plotted the
derivative]@ṽ3/2Rek̃(v)#/]ṽ againstṽ on a double logarith-
mic scale for various apex anglesg. This derivative was
computed by means of a three-point centered finite differ-
ence method. We notice that for high frequencies, these
curves become straight lines, which is in agreement with
~64!. Linear regression now yields the slope1

2(12w)21 of
the curve, and the value14C1(12w)AM . Consequently, the
value of 1

2C1AM in ~64! is also known, andM can be ob-
tained from linear regression ofṽ3/2Rek̃(v) vs ṽ (1/2)(12w).
The results are given in Table I, and Figs. 5 and 6.

We notice that the present theory is only slightly under-
estimating the numerical results forw, whereas the Achdou
and Avellaneda13 predictions give a considerable overestima-
tion of the computations. Also in the limiting case of knife-
edge singularities (g50), there is a good agreement be-
tween the computations and the present theory. We also
notice that theM values are reasonably close to the theoret-
ical value M58Fk0 /L2. This suggests that this definition
for M is also correct in the case of surface roughness, and

FIG. 3. Real and imaginary parts of the dynamic permeability for tang/2
50.5 ~top!, and tang/250.1 ~bottom!. In both figuresh50.5. The circles
and dots represent the numerical results. Both classical~solid lines! and

improved~dashed lines! high-frequency approximations for Re@k̃# are plot-
ted.

FIG. 4. Regression lines to determine the exponentw.

1773Phys. Fluids, Vol. 15, No. 6, June 2003 Influence of pore roughness



that the contribution of the singularities can indeed be cap-
tured in a nonanalytic extension of the existing theory with-
out affecting the parameters of such theory. The obtained
results forw and M are substituted in the high-frequency
correction~63!, which is plotted in Fig. 3. As expected, we
find excellent agreement.

The effect of the channel opening was checked by vary-
ing the intrusion heighth, while keeping tang/250.5. Ob-
viously this should not affect the value forw, which only
depends on the apex angleg. From ~62! we find that the
theoretical value is 1.173. The computations are summarized
in Table II. We notice that for small wedge heights, the com-
putations deviate from theory, because the effect of the flat
wall is predominant over the effect of the singularity. On the
other hand, for very small openings, the results also deviate
from theory since the presence of the opposite wedge dis-
turbs the flow field with respect to the assumptions made in
Sec. VI. We notice that good results are obtained forh
50.5, which is the value we used for the computations in
Table I.

VIII. CONCLUSIONS

We analyzed in detail the high-frequency fluid velocity
patterns in the bulk fluid and the boundary layer for smooth
and corrugated geometries. The classical Johnsonet al.4

high-frequency limit for smooth geometries was obtained in
different manners, thus clarifying the discrepancy with the
Sheng and Zhou5 treatment and the Torquato14 approach.
Two different contributions to the dynamic permeability are
now apparent. One comes from the boundary layer near the
pore walls; another comes from a perturbed potential flow in
the bulk, induced in a nontrivial geometry by the presence of
the boundary layer. This understanding has been applied to
derive the correct form of the leading higher-order terms that
are present in corrugated pore channels. Such terms are es-
sential to obtain the correct high-frequency behavior of the
dynamic permeability when sharp edges are present. In such
cases the bulk contribution dominates the contribution from
the boundary layer, which causes a slower convergence of
k(v) to its asymptotic limit than predicted from the classical
theory by Johnsonet al.4 We numerically investigated the
dependency of the high-frequency behavior on the wedge
angle in corrugated channels. For various angles, we com-
puted the dynamic permeability by means of a precise finite
element solver for the Stokes’ flow. The effect of varying
channel opening was investigated separately. The form of the
leading higher-order terms was validated by our numerical
results. Moreover, we found that the contribution of the
wedge singularities does not affect the original parameters of
the Johnsonet al.4 theory.

FIG. 6. Dependence of the shape factorM on the wedge apex angleg for
h50.5.

TABLE I. Dependencies of the exponentw and the scaling parameterM on
the wedge apex angleg for constanth50.5.

tan
g/2

w M

Computations Theory
Achdou and
Avellaneda Computations Theory

0.0 1.001 1.000 1.500 992.74 `
0.1 1.036 1.033 1.516 32.42 35.412
0.2 1.088 1.067 1.534 6.86 9.461
0.3 1.145 1.102 1.551 3.47 4.765
0.4 1.174 1.138 1.569 2.55 3.012
0.5 1.220 1.173 1.587 1.92 2.182
0.6 1.240 1.208 1.604 1.62 1.722
0.7 1.273 1.241 1.621 1.39 1.430
0.8 1.305 1.274 1.637 1.22 1.254
0.9 1.358 1.304 1.652 1.09 1.131

FIG. 5. Dependence of the exponentw on the wedge apex angleg for h
50.5. The circles represent the numerical computations.

TABLE II. Dependence of the exponentw on the wedge heighth for con-
stantg (tang/250.5). The theoretical value is 1.173.

w
h Computations

0.1 1.430
0.2 1.347
0.3 1.216
0.4 1.235
0.5 1.220
0.6 1.241
0.7 1.267
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APPENDIX A: ENERGETIC REPRESENTATION OF
THE DYNAMIC TORTUOSITY

Here we derive the relation~23! using the eigenmode
formalism. First we define the notation:

s̃n5
sn

11 ivsn /n
, ~A1!

and the mean symbol

iXni5 (
n51

`

bn
2Xn . ~A2!

Then ~18! and ~22! read as

k~v!

f
5is̃ni , ~A3!

and

a~v!5
n

ivis̃ni . ~A4!

From ~A4! we write

a~v!5
n

iv

is̃n* i
is̃niis̃n* i

, ~A5!

where* denotes complex conjugation. Combining~A5! with
the identity

is̃n* i5
iv

n
is̃ns̃n* i1is̃ns̃n* /sni , ~A6!

we get

a~v!5
is̃ns̃n* i

is̃niis̃n* i
1

n

iv

is̃ns̃n* /sni
is̃niis̃n* i

, ~A7!

where the form of~23! may be recognized. Using~8a!, it is
easy to verify that

^ṽ&"e5is̃ni ~A8!

and

^ṽ"ṽ* &5is̃ns̃n* i . ~A9!

Using ~9a!, we finally verify that

2^ṽ•¹2ṽ* &5is̃ns̃n* /sni . ~A10!

APPENDIX B: PROOF OF THE IDENTITY „41…

We want to prove the identity

E
Sp

E"“FdS5E
Sp

F
]Eb

]b
dS. ~B1!

It holds that

E"“F5“"~EF!, ~B2!

because“"E50. We may now introduce the Gauss coordi-
natesxm on the curved surfaceSp , wherem51,2,b. Any
tensor in the conventional Euclidian coordinates may be ex-
pressed in thexm system:19

E
Sp

“"~EF!dS5E
Sp

@EmF# ,mdS

5E
Sp

@EiF# ,idS1E
Sp

@EbF# ,bdS, ~B3!

where the subscript comma is used for the derivative, andi
runs over 1,2 only. Due to the compact character of the field
F, the third integral in~B3! is zero, so that we find from~B2!
and ~B3! that

E
Sp

E"“FdS5E
Sp

Eb

]F

]b
dS1E

Sp

F
]Eb

]b
dS. ~B4!

BecauseEb50 on Sp , we obtain the desired result.
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