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B. BROUARD, D. LAFARGE AND J.-F. ALLARD
Laboratoire d'Acoustique associé au CNRS, URA 0090, Faculté des Sciences du Mans, Avenue 

Olivier Messiaen, BP 424 61906 Le Mans Cedex France

A general method of modelling acoustic fields in stratified media which include elastic
solid, fluid and porous layers is presented. The simplicity and the versatility of the method
is illustrated with several examples.

1. INTRODUCTION

Sound propagation of plane waves in layers of fluid and elastic solid can be modelled by
using transfer matrices [1, 2]. A similar representation has been developed for the case of
porous materials having an elastic frame [3]. Configurations including plates, impervious
screens and layers of air and of porous media have also been studied [4, 5]. In these cases,
the surface impedance was predicted for configurations with an impervious backing at the
rear face, and the transmission coefficient for configurations with a semi-infinite layer of
air at the rear face. These combinations of materials are generally non-locally reacting, and
their behaviour more or less depends on the dimensions and the boundary conditions at
the edges. Nevertheless, interesting trends can be obtained from modelling of infinite
samples subjected to incident plane waves. Using the transfer matrices related to each layer
considerably simplifies the modelling, but accounting for the properties of the acoustic field
at the boundaries of the different layers remains difficult. It is shown in the following
sections that a simple standard form of representation can be carried out for a large variety
of stratified materials, if interface matrices carrying sufficient information concerning the
acoustic field at the boundaries between the layers are used.

2. PROPAGATION THROUGH A STRATIFIED MATERIAL CONSIDERED AS A
LINEAR BLACK BOX

A stratified material is represented in Figures 1(a) and (b). A plane wave impinges upon
the material at an angle of incidence u, on the left-hand side of Figure 1(a), and on the
right-hand side in Figure 1(b). At the right-hand side in Figure 1(a), the material is in

contact with a semi-infinite layer of air, and the acoustic field reduces to a progressive

wave. In Figure 1(b), the same condition exists at the left-hand side. In order to simplify
the notations, the pressure amplitude of the incident wave is unity in Figures 1(a) and 1(b)
and the amplitudes of the transmitted waves are Tb and Ta . These coefficients are the
transmission coefficients in opposite directions. The pressure amplitudes Ra and Rb are the

reflection coefficients at each side. Invariance with respect to translations along x1 is

required in order that there exist well-defined reflection and transmission coefficients.
Translational invariance in the normal direction x3 will also be assumed for each layer,
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Figure 1. Stratified materials in air. A plane wave impinges upon the material at (a) the left-hand side and
(b) the right-hand side.

so that a simple and well-known transfer matrix describes the propagation in a given layer
(the purpose of the present paper is not to derive the more complex transfer matrices that
would describe depth-dependent layers).

Let p(A), p(B), v f
3(A), v f

3(B) be the pressures and the x3 components of velocity at A
and B. The same linear equation relates (p(A), v f

3(A)) to (p(B), v f
3(B)) in Figures 1(a) and

(b). In matrix form, this equation can be written as

0p(A)
v f

3(A)1=0ac b
d10p(B)

v f
3(B)1, (1)

which becomes

2 1+Ra

(1−Ra )
cos u

Zc 3=0ac b
d12Tb

Tb
cos u

Zc 3,
2 Ta

−Ta
cos u

Zc 3=0ac b
d12 1+Rb

(Rb −1)
cos u

Zc 3, (2, 3)

where Zc is the characteristic impedance of air. From equations (2) and (3), the following

expressions can be obtained for Ta and Tb :

Tb =
2Z−1

c cos u

c+ dZ−1
d cos u+Z−1

c cos u(a+ bZ−1
c cos u)

, Ta =(ad− bc)Tb . (4, 5)

It has been shown [1] that

ad− bc=1 (6)

for stratified materials including fluid and viscoelastic layers, and porous layers in the
context of Biot theory. The transmission coefficients Ta and Tb are equal, and equation

(6) indicates that the linear black box is reciprocal.

Given the properties of the internal layers, the coefficients a, b, c and d are uniquely
determined by the angular frequency v and projection k1 of the wave number parallel to

the surface:

a= a(v, k1), b= b(v, k1), etc, . . . , (7)
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and k1 is given by

k1 =(v/c) sin u, (8)

where c is the adiabatic speed of sound in air. It may be noticed that uniform mean flow,

parallel to the x1 direction, can be present in either one or both of the semi-infinite layers

of air, with only minor changes in the above algebra, provided that the properties of the

linear black box are unaffected. This is briefly discussed in the Appendix. Changes are as

follows.

Clearly, the same projection k1 arises in the different layers, but, in presence of a mean

flow V, equation (8) becomes

k1 =
v

c
sin u

1+ (V/c) sin u
. (9)

Thus, the angle u is different in the two semi-infinite layers if the mean flow V is not the

same. The characteristic impedance, however, is independent of V. Consequently,
equations (2) and (3) still apply with, possibly, two distinct values of u, say ua and ub , and
the coefficients a, b, c and d are obtained by setting in equation (7) the value of k1 given
in equation (9) (determined with either the index a or b on V and u). Evidently, equation
(6) still holds since the values of v and k1 are arbitrary. The new versions of equations

(4) and (5) are given in the Appendix.
A general method of calculating Ra , Rb and Ta =Tb =T, is given in the following

sections for the case where no mean flow is present. As outlined above and in the
Appendix, generalization to the case of uniform external flow would not be difficult, if one
ignores penetration effects and the boundary layers at the front and rear surfaces. Uniform
mean flow inside an internal layer of air could also be considered (with the same
simplifying hypothesis). However, it is likely to be the case that between two plane
boundaries the steady flow to be introduced is of the Poiseuille type. The properties of
the layer would not be invariant in the normal direction, and as noted previously, such
depth-dependent layers will not be considered.

3. THE MATRIX REPRESENTATION OF PLANE ACOUSTIC FIELDS IN
LAYERED MEDIA

3.1.     ,     

Several layers of a stratified material are represented in Figure 2. The stratified material
is in contact with air at both faces, and the acoustic field is created by an incident plane

Figure 2. Several layers in contact in a stratified material.
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wave at the left-hand side of the stratified material. The plane of incidence is the plane

x1, x3, and u is the angle of incidence. The x1 component k1 of the wavenumber vector

in each layer is given by

k1 = k sin u, (10)

where k is the wavenumber in air. Let vs
3(M), vs

1(M) be the x3 and x1 velocity components

of the solid at M (in the case of an elastic solid, or of the frame of a porous material).

Similarly, let v f
3(M), v f

1(M) be the x3 and x1 velocity components of the fluid at M (in the

case of a fluid, or of the fluid in a porous material). In the examples to be studied, the

fluid will be air. Let ss
33, ss

13 and sf
33, sf

13 be the normal and the tangential stresses. The

stresses are related to forces acting per unit area of material. In a fluid, they become

sf
13 =0, sf

33 =−p, (11, 12)

where p is the pressure. In a porous medium, equation (12) becomes

sf
33 =−Fp, (13)

where F is the porosity. If the layer is a fluid layer, the acoustic field is determined
everywhere when a pair (p(M), v f

3(M)) is known. A 2×2 matrix relates the pressure and
the x3 velocity component at the right- and left-hand sides of the layer (M2 and M1 for
the first layer of the stratified material of Figure 2): i.e.,

Vf(M1)= [Tf]Vf(M2), (14)

where

Vf(M2)= [p(M2), v f
3(M2)]T. (15)

In equation (15), the superscript T indicates the transposition line:column. The elements
of [Tf] are

Tf
11 =cos k3L, Tf

12 =(vr/k3)j sin k3L,

Tf
21 =(k3/vr)j sin k3L, Tf

22 =cos k3l, (16)

where r is the density, L the thickness of the layer, and the symbol j represents z−1.
The x3 component k3 of the wavenumber vector in the fluid is given by

k3 =(k2
f − k2

1)
1/2, (17)

where kf is the wavenumber in the fluid.
Similar matrices exist for elastic solid layers [2]. The difference with the previous case

is that two kinds of waves, rotational and dilatational, can propagate in the medium, and
four quantities are needed to characterize the acoustic field. If the first layer in Figure 2

is an elastic solid layer, two vectors Vs(M1) and Vs(M2) are related by a 4×4 transfer

matrix [Ts]: i.e.,

Vs(M1)= [Ts]Vs(M2), (18)

where

Vs(M)= [vs
1, vs

3, ss
33, ss

13]
T. (19)

The elements of [Ts] have been calculated by Folds and Loggins [2] for the time

dependence exp(−jvt), a permutation of Vs(M1) and Vs(M2) in equation (18) and a

different numbering of the components of Vs.
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In the context of Biot theory [6], three different kinds of waves can propagate in a porous

material. The transfer matrix [Tp] is a 6×6 matrix, given in reference [3], and the vectors

Vp(M) related to this matrix are given by

Vp(M)= [vs
1, vs

3, v f
3, ss

33, ss
13, sf

33]
T. (20)

3.2.  

For the two layers 1 and 2 in contact, as represented in Figure 2, the points M2 and

M3 are close to each other at each side of the boundary. The interface matrices relate the

acoustic fields at M2 and M3, the relation depending on the nature of the two layers.

For two fluids, the boundary conditions are

Vf(M2)=Vf(M3). (21)

Two interface matrices [If,f ] and [Jf,f ] exist, such that

[If,f ]Vf(M2)+ [Jf,f ]Vf(M3)=0. (22)

[If,f ] and [Jf,f ] must be opposite, and [If,f ] can be any diagonal matrix, the 2×2 unit matrix
for instance.

For two solids, equation (21) is rewritten as

Vs(M2)=Vs(M3). (23)

The matrices [Is,s ] and [Js,s ] are opposite, and [Is,s ] can be the 4×4 matrix.
For two porous layers, the boundary conditions, as given in reference [7], are

ss
13(M2)= ss

13(M3), sf
33(M2)+ ss

33(M2)= s f
33(M3)+ ss

33(M3), (24, 25)

vs
1(M2)= vs

1(M3), vs
3(M2)= vs

3(M3), (26, 27)

F1(v f
3(M2)− vs

3(M2))=F2(v f
3(M3)− vs

3(M3)), sf
33(M2)/F1 = sf

33(M3)/F2, (28, 29)

where F1 and F2 are the porosities at M2 and M3. Equation (22) can be rewritten as

[Ip,p ]Vp(M2)+ [Jp,p ]Vp(M3)=0, (30)

where [Ip,p ] is the 6×6 unit matrix, and [Jp,p ] is given by

1 0 0 0 0 0

0 1 0 0 0 0

0 1−f2/F1 F2/F1 0 0 0
[Jp,p ]=−G

G

G

G

G

K

k

0 0 0 1 0 (1−F1/F2)
G
G

G

G

G

L

l

. (31)

0 0 0 0 1 0

0 0 0 0 0 F1/F2

For a fluid and a solid, the boundary conditions are

−p(M2)= ss
33(M3), 0= ss

13(M3), v f
3(M2)= v s

3(M3). (32–34)

Equations (32)–(34) can be rewritten as

[If,s ]Vf(M2)+ [Jf,s ]Vs(M3)=0, (35)

where

[If,s ]= &010 −1
0

0 ', [Jf,s ]= &000 1
0

0

0

1

0

0

0
1'. (36, 37)
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For a fluid and a porous layer, the boundary conditions are

v f
3(M2)= (1−F2)vs

3(M3)+F2v f
3(M3), −F2p(M2)= sf

33(M3), (38, 39)

−(1−F2)p(M2)= ss
33(M3), 0= ss

13(M3). (40, 41)

These equations can be rewritten as

[If,p ]Vf(M2)+ [Jf,p ]Vp(M3)=0, (42)

where

0 −1 0 (1−F2) F2 0 0 0

f2 0 0 0 0 0 0 1
[If,p ]=G

G

G

K

k

(1−F2) 0
G
G

G

L

l

, [Jf,p ]=G
G

G

K

k

0 0 0 1 0 0
G
G

G

L

l

. (43, 44)

0 0 0 0 0 0 1 0

For an elastic solid and a porous layer, the boundary conditions are

vs
3(M2)= vs

2(M3)= vf
3(M3), vs

1(M2)= vs
1(M3), (45, 46)

ss
13(M2)= ss

13(M3), ss
33(M2)= sf

33(M3)+ ss
33(M3). (47, 48)

These equations can be rewritten as

[Is,p ]Vs(M2)+ [Js,p ]Vp(M3)=0, (49)

where

1 0 0 0 1 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0

[Is,p ]=−G
G

G

G

G

K

k

0 1 0 0 G
G

G

G

G

L

l

, [Js,p ]=+G
G

G

G

G

K

k

0 0 1 0 0 0G
G

G

G

G

L

l

. (50, 51)

0 0 1 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 1 1

The interface matrices [Ip,s ], [Jp,s ], [Ip,f ], [Jp,f ] and [Is,f ], [Js,f ], can easily be obtained from the
previous equations.

3.3.       

Let V(M1), V(M2), . . . , V(M2n ) be the vectors which define the acoustic field at the

boundaries of the layers in Figure 2. It may be noticed that a simple product of transfer
and interface matrices cannot generally be used to calculate the transfer matrix of equation

(1), because non-square interface matrices appear on the left-hand sides of equations (35),
(42) and (49). These vectors are related by the following equations:

[Ii,1]V(A)+ [Ji,1][T(1)]V(M2)=0, [I1,2]V(M2)+ [J1,2][T(2)]V(M4)=0,

[In,o]V(M2n )+ [Jn,o]V(B)=0. (52–54)

This set of equations can be rewritten as

[D]VD =0, (55)

where

VD =[p(A), vf(A), V(M2), . . . , V(M2n ), p(B), vf(B)]T. (56)
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Acoustic propagation in the stratified material of Figure 2 is completely defined by

equations (52)–(54), but more information is needed to define the acoustic field. For

example, if the layer of air at the right-hand side of the material is semi-infinite, the

impedance at B is given by

Zb = p(B)/vf
3(B)=Zc /cos u. (57)

and equation (55) becomes

$ [D]

0 · · · 0 −1 Zb%VD =[D']VD =0. (58)

Other simple conditions, for example a layer of air of finite thickness instead of a

semi-infinite layer, can easily be introduced in the same way. Let N be the dimension of

VD . The matrix [D] has N−2 lines. It is related to the fact that the acoustic field is

completely determined if, and only if, a supplementary condition is added to equation (58);
for example, the pressure amplitude at A. The impedance Za of the layered material of

Figure 1(a) (incident field at the left-hand side of the material) can be calculated by adding
to the set defined by equation (58) the equation

p(A)−Zavf
3(A)=0. (59)

The determinant of the matrix [D0] given by

[D0]=&−1

0

Za

· · ·

0
[D]
0

· · ·

−1

0

Zb', (60)

is equal to zero, the ZA is given by

Za =−=D'1 =/=D'2 =, (61)

where =D'1 = (resp. =D'2 =) is the determinant of the matrix [D'], the first column (resp. the
second column) having been removed. The calculation of Zb for the case of an incident
plane wave impinging upon the right-hand side of the stratified material (Figure 1(b)) is
very similar.

The calculation of the transmission coefficient T can be carried out in the following way.
The set of equations defined by the matrix equation (58) can be completed, instead of by

equation (59), by the equation

p(A)[T/(1+Ra )]− p(B)=0. (62)

The determinant of this new set of equations is equal to zero and T is given by

T=+(1+Ra )=D'N−1=/=D'1 =, (63)

where =D'N−1= is the determinant of [D'], the (N−1)th column having been removed.

It may be noticed that the proposed method is very general. More complicated stratified
materials can be considered, including anisotropic layers or composite layers. The relevant

assumption is that of linear propagation through each layer, and the boundaries between
the layers.

The modelling described in this section is relatively straightforward, and has been
implemented in a general program which can also be used to predict the surface impedance

of stratified materials bonded on to a rigid backing. Two very different illustrations, which
show the versatility of the program, are given in the following sections.
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Figure 3. A viscoelastic material (2) covered by a thin aluminium layer (3) is bonded onto a plate of aluminium (1).

4. FIRST EXAMPLE

4.1.           

     

The material is represented in Figure 3. A viscoelastic material covered by a thin
aluminium layer is bonded on to a plate of aluminium, in order to increase the damping
of the plate. The behaviour of the material, for the case of vibrations induced by a plane
wave incident on the left-hand side, can easily be described by the general model developed
previously. The matrix [D] and the vector V of equation (55) are

[Ii
f,s ] [Ji

f,s ][T(1)] 0 0 0

0 [I] [T(2)] 0 0
[D]=G

G

G

K

k

0 0 [I] [T(3)] 0
G
G

G

L

l

,
(64)

0 0 0 [Io
s,f ] [Jo

s,f ]

V=[p(A), v f
3(A), V(M2), V(M4), V(M6), p(B), v f

3(B)], (65)

where [I] is an unit matrix.
The parameters which characterize the three layers are given in Table 1. A loss angle

for aluminium larger than the effective has been used to account for the finite dimension
effect and the fastening.

The transmission coefficient can be calculated by equation (63). The transmission loss

is given by

F=−10 log10 g
umax

0

=T(u)=2 cos u sin u du, (66)

where umax generally is taken equal to 80° [8]. Other values for umax can be chosen [9]. We

have used umax =90°, which gives the best agreement between prediction and measurement.

T 1

Parameters for the three layers of the first example

Parameter Layer 1 Layer 2 Layer 3

Thickness (m) 1·6×10−3 0·5×10−4 1·5×10−4

Density (kg/m3) 2·800×103 1·01×103 2·8×103

Shear modulus (Pa) 2·4×1010 +j4×108 2×106(1+ j) 2·4×1010 +j4×108

Poisson ratio 0·34 0·499 0·34
Loss factor 1·6×10−2 1 1·6×10−2
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The measured and predicted transmission losses are represented in Figure 4 for the

stratified material of the first example. The agreement between prediction and

measurement is good in the high frequency range, but the predicted transmission loss is

too small at frequencies lower than 8 kHz.

4.2.      

For this example, the power Pd dissipated by unit area of material can be evaluated from

the calculation of Ra and Tb by

Pd =(1− =Ra =2 − =Tb =2)(cos u/Zc ). (67)

This power is related to an amplitude D of the displacement in the x3 direction, at the

contact surface of air and layer (1), equal to

D= =(1+Ra )/Zav=. (68)

The reflection coefficient Ra is related to Za by

Ra =(Za −Zc /cos u)/(Za +Zc /cos u). (69)

5. SECOND EXAMPLE

The second stratified material is represented in Figure 5. It is composed of a porous layer
bonded onto a layer of aluminium. The main parameters which describe the porous layer
are given in Table 2.

The calculation of the matrix [Tp] in the context of Biot theory and a systematic use of
the characteristic dimensions [10] is given in reference [1].

The thickness of the layer of aluminium is equal to 1 mm. The matrix [D] and the vector

V of equation (56) for this material are

[D]= &[I
i
f,s ]
0
0

[Ji
f,s ][Ts]
[Is,p ]
0

0
[Js,p ][Tp]

[Io
p,f ]

0
0

[Jo
p,f ]', (70)

Figure 4. The transmission loss for the stratified material described in Table 1, and for the first layer of Table 1
without the viscoelastic layer and the aluminium foil. Stratified material: prediction ——, measurement
Q Q Q; layer 1: prediction – – – , measurement W W W.
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Figure 5. A porous foam (2) bonded on to a layer of aluminium (1)

V=[p(A), v f(A), Vs (M2), Vp (M4), p(B), v f(B)]. (71)

The transmission coefficient T and the impedance Za can be calculated by equations (61)
and (63). An approximate modelling of the aluminium layer previously used in similar
problems [11–13] consists in considering, instead of the elastic solid layer, a plate subjected
to flexural vibrations. Applying this approximation, at A, M1, M2 and M3 yields the

following equations. For the velocity components,

v f
3(A)= vs

3(M1)= vs
3(M2)= vs

3(M3)= v f
3(M3), (72)

vs
1(M1)=−vs

1(M2)=−vs
1(M3)= (e/2) dvs

3(M1)/dx1, (73)

where e is the thickness of the plate and dv3(M1)/dx1 is given by

dvs
3(M1)/dx1 =−jk1v3(M3) (74)

(the chosen time dependence is exp(jvt)).
The equation of motion of the plate is

D
jv

d4vs
3(M2)
dx4

1

+ rejvvs
3(M2)= p(A)+ sf

33(M3)+ ss
33(M3)+

e
2

dss
13(M3)
dx1

, (75)

where r is the density of the plate and D is the flexural rigidity given by

D=Ee3/12(1− n2), (76)

in which E and n are respectively Young’s modulus and the Poisson ratio. The following
equations relate the velocity components and the stress components at A and M3:

v f
3(M3)= v f

3(A), vs
3(M3)= v f

3(A), vs
1(M3)= jk1(e/2)v f

3(A), (77–79)

T 2

Parameters for the porous material

Thickness (m) 5×10−3

Density (kg/m3) 100
Tortuosity 1
Flow resistivity (N m−4 s) 104

Frame shear modulus (Pa) 5×107 +j106

Poisson ratio 0
Porosity 0·99
Characteristic dimensions (m) L=1·2×10−4, L'=1·2×10−4
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sf
33(M3)+ ss

33(M3)− j(k1e/2)ss
13(M3)= {rejv+(D/jv)k4

1}v3(A)− p(A). (80)

From equations (77)–(80), one obtains the following interface matrices [If,pl ] and [Jf,pl ]

which relate Vf at A and Vp at M3:

0 jk1e/2 1 0 0 0 0 0

0 1 0 1 0 0 0 0

[If,pl ]=G
G

G

G

G

K

k

0 1
G
G

G

G

G

L

l

,
[Jf,pl ]=−

G
G

G

G

G

K

k

0 0 1 0 0 0
G
G

G

G

G

L

l

.

−1 rejv+D(k1)4/jv 0 0 0 1 −j
k1e
2

1

(81, 82)

The matrix [D] and the vector V with this modelling are

[D]=$[If,pl ]
0

[Jf,pl ]
[Ip,f ]

[Tp] 0
[Jp,f ]%, (83)

V=[p(A), v f(A), Vs (M4), p(B), v f(B)]T. (84)

This second model fails when the porous layer is very stiff, as the mid-plane of the layer
of aluminium is no longer a neutral layer. The robustness of the model can be evaluated
by arbitrarily increasing the stiffness of the foam and comparing the predicted transmission
loss obtained by both models.

The transmissions predicted by both models are represented in Figure 6 for a very large
stiffness of the foam, with a shear modulus G and a Poisson coefficient given by
G=108(1+ j0·1) Pa and n=0·4.

The small discrepancy appears for small values of G, and is not created by the stiffness
of the foam but by using a plate model for an elastic solid layer. It appears that the second
model can be used with confidence for most stratified materials made up of a porous layer
bonded on to a metal plate.

Figure 6. The computed transmission loss for the stratified material made up of a porous layer bonded
on to an aluminium layer. Aluminium layer modelled as an elastic layer, – – – ; aluminium layer modelled as
a plate, ——.
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6. CONCLUSIONS

A simple method of modelling sound propagation in stratified materials has been

developed. A program derived from this method for the prediction of sound transmission

and reflection of plane waves by these materials has been created, and used for two

different layered media. The large range of materials which can be studied with the same

program demonstrates the versatility of the method.
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APPENDIX

A plane wave impinges upon the material at an angle of incidence ua on the left-hand
side in Figure A1 in the presence of a uniform steady flow Va in the semi-infinite layer
of air, parallel to the surface. Losses in air are disregarded and the perfect fluid, linearized

equations, are

r0(1v/1t+(Va · 9)v)=−9p, (1/Ka )(1p/1t+(Va · 9)p)=−9 · v, (A1)

where r0 is the ambient density, Ka is the adabatic bulk modulus of air, and v and p are
the acoustic excess velocity and pressure. Consider a plane wave component

e j(vt−k(u) · r), (A2)
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Figure A1. A stratified material in air with a uniform steady flow of velocity Va at its left-hand side.

at angle u with x3,

k(u)= k	 sin ux̂1 + k	 cos ux̂2, r= x1x̂1 + x2x̂2, (A3)

where x̂1 and x̂2 are the unit vectors in the directions x1 and x2 respectively. For such a
component at incidence angle u, the two equations (A1) are equivalent to

r̃0 1v/1t=−9p, (1/K	 a ) 1p/1t=−9 · v, (A4)

with

r̃0 = r0

1
1+ (Va /c) sin u

,
1
K	 a

=
1
Ka

1
1+ (Va /c) sin u

, (A5)

where c=(Ka /r0)1/2 is the adiabatic speed of sound. This can be obtained by introducing
a velocity potential F, which behaves as indicated in equation (A2), and is such that

v=9F. (A6)

Then, by using equation (A1) one obtains

p=−r0(1F/1t+(Va · 9)F), (A7)

and a further use of equations (A2) and (A1) yields equation (A5). Hence, the characteristic
impedance

Z	 =( r̃0K	 a )1/2 =(r0Ka )1/2 =Zc (A8)

is independent of Va and u. The effect of the mean flow is only to provide a propagation

constant and speed of sound which depend on Va and u:

k	 =v( r̃0/K	 a )1/2 =(v/c)/{1+ (Va /c ) sin u}, c̃= c{1+ (Va /c) sin u}. (A9)

In particular, the projection k1 of the wavenumber is

k1 =(v/c̃) sin u=(v/c) sin u/{1+ (Va /c) sin u}. (A10)

One can now examine the validity of equations (1)–(6). The (invertible) transfer matrix
in equation (1) describes the linear response of the black box when some pressure p and
normal flow v f

3 that are characterized by the temporal and spatial periodicities 2p/v and

2p/k1, are imposed at the surface. If boundary layer effects that may be induced by the

external mean flow are neglected, no change is brought to this generic problem, and p and

v f
3 in equation (1) are still acoustic quantities. However, for determining the new value (at

angle u, parallel flow Va and angular frequency v) of the spatial periodicity 2p/k1, equation

13



(A9) must be used and substituted into equation (7) to obtain the suitable transfer matrix

coefficients. As noted in section 1, equations (2) and (3) apply with the proper angles ua

and ub . It follows that

Ta =(ad− bc)
2Z−1

c cos ub

c+ dZ−1
c cos ub +Z−1

c cos ub (a+ bZ−1
c cos ub )

, (A11)

Tb =
2Z−1

c cos ua

c+ dZ−1
d cos ua +Z−1

c cos ua (a+ bZ−1
c cos ua )

. (A12)

Obviously, ad− bc=1 since a, b, c and d correspond to the usual transfer matrix in the

absence of flow, for an angle u* such that

sin u*=sin ua /{1+ (Va /c) sin ua}. (A13)

The transmissions in the normal directions coincide:

Ta cos ua =Tb cos ub . (A14)
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