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Abstract
In this work, we study the propagation of soundwaves in a honeycombwaveguide network loaded
withHelmholtz resonators (HRs). By using a planewave approximation in eachwaveguidewe obtain
afirst-principlemodeling of the network, which is an exactmapping to the graphene tight-binding
Hamiltonian.We show that additional Dirac points appear in the band diagramwhenHRs are
introduced at the network nodes. It allows to break the inversion (sub-lattice) symmetry by tuning the
resonators, leading to the appearence of edgemodes that reflect the configuration of the zigzag
boundaries. Besides, the dimerization of the resonators also permits the formation of interfacemodes
located in the band gap, and thesemodes are found to be robust against symmetry preserving defects.
Our results and the proposed networks reveal the additional degree of freedombestowed by the local
resonance in tuning the properties of not only acoustical graphene-like structures but also ofmore
complex systems.

1. Introduction

Over the last years, in the context ofmetamaterials, a plethora of sophisticated acoustic structures exhibiting
unusual wave properties have been theoretically proposed and also experimentally studied. Examples include
Dirac cones [1], unidirectional propagation [2–4], topological interface waves [5–7], robust localizedmodes [8],
etc. Recently periodic acoustic/elasticmedia have been proven to be an excellent platform for studying various
wave phenomena [9]. In particular, artificial structures exhibitingDirac degeneracies have beenwidely studied
due to the direct link between the conical dispersion and the topological properties of wave propagation [10–12].
Owing to the experimental advantages compared to other classical wave systems (such as easy implementations
inmacro scale[13, 14] and directmeasurements [15, 16]), nowadays, acoustics is intensively used as a test-bed
for topological wave physics.

The usual route to study these phenomena in continuous classical systems is to achieve particular designs
which are analogs of discretemodels with topological characteristics [17, 18]. That way, it is expected that the
proposed continuouswave systemswill inherit the topological properties of these discretemodels, especially
regarding the robust transfer of protected states [19–21]. One of thefirst andmost thoroughly studiedmodels in
thefield of condensedmatter is the honeycombdiscrete tight-bindingmodel, whichwas originally used to
describe the electronic properties of graphene.

The honeycomb tight-bindingmodel with a broken inversion (sub-lattice) symmetry of the unit cell is
known to possess a quantumvalleyHall (QVH) topological phase transition [22, 23], and the corresponding
valley-protected edge states have been shown to persist under particular types of imperfections [24–27]. To
observe these phenomena in acoustics, different theoretical proposals and experimental demonstrations have
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been reported, such as a bilayer design of sonic crystal [28], a triangular sonic crystal [29], a graphene-like
structure with cavities [30] and a subwavelength honeycomb lattice [31].

Inmost cases, a dispersion relationwhichmimics the one of graphene is sought by using either connected
acoustic cavities [30] or sonic crystals [31]with a honeycomb geometry of the scatterers. However, to the best of
our knowledge in all of these cases the corresponding discretemodel is obtained bymeans of the k·pmethod
(and thus it works well only close to a high symmetry point) [32], or by a tight-bindingmodel whose coupling
(hopping) coefficients are practically fitting parameters [33, 34].

In this work, we study an acoustic honeycombnetwork composed by connectedwaveguides whose Bloch
wave solutions satisfy an eigenvalue problemwhich is exactly the same as the BlochHamiltonian of graphene.
Taking advantage of the simplicity of the structure and of themodeling, we study the effect ofHelmholtz
resonators (HRs) located at the network nodes. Our goal is to propose an alternative way that can break the
inversion symmetry of the unit cell and create a gap around theDirac point to exploit the corresponding valley-
protected edge and interfacemodes of the network.Our structure allows us to independently tune both the
resonance frequency ofHR and theDirac point frequency.We use thisflexibility of our design by setting these
two frequencies at the same point andwe study the combined effect of the resonance and of the symmetry
breaking. Both edge and interfacemodes are identified and the influence of boundary conditions are
investigated.We found that robust propagation against a corner of 120° can still be observed as in the case of
valley-protected edges/interfacemodes.

The article is organized as follows: in section 2, the honeycomb acoustic network and itsmodeling are
presented. The exactmapping of the acoustic networkHamiltonian to the one of graphene is obtained. Based on
acoustic graphene network, the effect ofHRs loaded to the acoustic network is studied. Section 3 shows the
derivation and discussion of zigzag edgewaves considering an inversion symmetry breaking network due to
resonance stemming simply fromHRs loaded to one of the graphene sublattice nodes. The existence of edge
waves in two different edge configurations, that is, with/without loadedHR, is studied. In section 4, we further
study the soundwaves propagation on the interfaces by combining two symmetry breaking networks in
section 3. The existence of interfacemodes, and their robustness against defect (a corner of 120°) is shown even
in the appearance of the combined effect of the resonance and the symmetry breaking. Finally, conclusions are
presented in section 5.

2.Model

A schematic presentation of the graphene network is shown infigure 1(a), where a unit cell containing two
junctions (marked asA andB) is indicated by a red-dashed box. This network can be achieved by using
connected acoustic waveguides. A three-dimensional (3D) view of the unit cell is shown infigure 1(b), where the
distance between two consecutive junctions is L and the radius of the acoustic waveguides isRt. By placing the
unit cell offigure 1(b) in a hexagonal lattice, the acoustic honeycombnetwork is constructed. The sound
pressure at each junction is linked to the pressures of its neighboring junctions through the air channels. Aswe
will show later, soundwave propagation in this network can be exactlymapped to the electron behavior in
graphene under the tight-binding approximation.

Figure 1. (a) Schematics of the graphene network under consideration. The lines correspond to acoustic waveguides while the dots in
cyan and green indicate theA andB junctions. One unit cell is highlighted by the red dashed box. (b)The corresponding three-
dimensional (3D) view of the unit cell. L andRt correspond to the length and radius of each acoustic waveguide. (c)Dispersion curves
of the graphene network. Blue solid (black dashed) lines represent the theoretical (numerical) results. The inset shows the Brillouin
zone.
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2.1. Exact acoustic analog of graphene
To obtain the governing equations and the dispersion properties for the acoustic network, we adopt the
methodology initially proposed in 2D lattices of tubes [35] and further developed in 2D acoustic channels of
lattice structures [36, 37].We assume that soundwave propagation between junctions is well described as
monomode propagation (planewave approximation) as long as the radius of the air channels ismuch smaller
than the distance between the two junctionsA andB, i.e.Rt= L and the frequencies of interest aremuch lower
than thefirst cutoff frequency of thewaveguides. Each unit cell is labeled using the normalized coordinatesm
and n (both integers) as shown infigure 1(a). Then, we employ the continuity offlux at each of the two junctions
A, B andwe obtain the following systemof discrete equations for the sound pressure at site (m, n):
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In equations (1), apm n, withα=A,B is the pressure at each junction, and εα is the ‘energy’ termwhich is given by

e e e= = . 2A B g ( )

In the case of simple coupledwaveguides, e p= fL c3 cos 2g ( )where f is the soundwave frequency and c=344
m s−1 is the speed of sound in air. It is straightforward to obtain the dispersion relation of the infinite periodic
network by assuming Blochwave solutions of the form,
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where =q Lk3 2x x , qy=3L ky/2with kx, ky thewave vectors along the x- and y-directions in thefirst
Brillouin zone (BZ) as shown infigure 1(c). By substituting thewave solution into equations (1), the following
governing equation can be derived,
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where = + +- + +F q q, 1 e ex y
q q q qi i i ix y x y( ) . By solving the eigenvalue problemdescribed by equation (4)

where εg are the eigenvalues, we obtain the dispersion relation

e = = + +F q q q q q, 3 4 cos cos 2 cos 2 , 5g x y x y x
2 2∣ ( )∣ ( ) ( ) ( ) ( )

which gives themapping betweenBlochwave number and frequency. It is very interesting to note that
equation (4) is identical to theHamiltonian of electrons in graphene under the first neighbor interactions,
manifesting the fact that the honeycombnetwork is an exact acoustic analog of graphene. However, in contrast
tomany of the existent classical analogs of graphenewhere an effective tight-bindingmodel is used to describe
the properties of the system [30], the corresponding discretemodel in equation (4) directly stems from the
acoustic conservation laws.

To showmore clearly that the honeycombnetwork is an exact acoustic analogue of graphene, we consider
the network of L=0.4 m,Rt=0.025 m, seefigure 1(b). The dispersion relation given by equation (5) along the
irreducible BZ is shownby solid blue lines infigure 1(c) as a function of εg. In comparison, we also show the
corresponding dispersion curves in dots obtained by finite element simulation and a good agreementwith the
analytic results is exhibited. The small discrepancy is due to three-dimensional nature of the junctionwith near
field effects that increase with increasingRt/L. In the graphene dispersion curves, theDirac points can be found
at εg=0, leading to the correspondingDirac frequency fK=c/(4L)=215 Hz for the graphene network. Note
also that the right-hand side of equation (5)does not depend on the geometrical properties of the particular
system (e.g. length of the air channel). As such the discretemodel is valid for any acoustic honeycombnetwork as
long asmonomode propagation in the air channels is justified.

2.2. Graphene network loadedwithHRs
Weare now interested in the effect of local resonances by side-loadingHRs at the two junctionsA andB of the
graphene network as shown infigure 2(a). The sketch of the resonator is also shown infigure 2(a). At sufficiently
low frequencies, thoseHRs are regarded as point scatterers, whose presence can bewell described bymodifying
theflux conservation at each junction to include the flux entering the resonator. Then equations (1) remain
unchanged, but the energy term εα yields

e p= +a a afL c G f f3 cos 2 , . 6( ) ( ) ( )

The functionGα( f, fα) incorporates the geometrical characteristics of theHR and depends on both the sound
wave frequency f and its individual resonance frequency fα (see appendix A).

Considering themodifications on the energy term, the corresponding dispersion relationwith the presence
of resonators takes the following form
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e e = + +q q q3 4 cos cos 2 cos 2 . 7A B x y x( ) ( ) ( ) ( )

As an example, we consider the case when the two resonators are identical with a resonance frequency
fA=fB=320 Hz. The dispersion curves are shown infigure 2(b) by blue solid lines. For comparison, the
dispersion curves of the graphene networkwithout resonators are also shown infigure 2(b) by red dashed lines.
As it can be seen, by addingHRs to the system,we have generated twomore propagating branches and a band
gap around the resonance frequency depicted by the green shaded area infigure 2.Note that, since the resonators
are identical, the unit cell still preserves the lattice symmetry, hence the existence of theDirac point at the corner
of the BZ (K point). However, the appearance of the two extra propagating branches due to resonances leads to
the presence of an additional Dirac point at theK point. TheDirac frequencies are determined by equation (7),
which satisfies εAεB=0 at theK point. By combiningwith equation (6), it turns out that theDirac frequencies
depend also on the resonance frequency of theHRs (see appendix B). This can be seen in the dispersion curves in
figure 2(c)where the resonance frequency is tuned to be fA=fB=fK. It shows that the resonance band gap has
beenmoved around the resonance frequency fKwhile the twoDirac points are also shifted compared to
figure 2(b).

When the two resonators are different as shown infigure 2(d), the twoDirac points at theK point are lifted
due to the breaking of the inversion symmetry of the unit cell. As a consequence, two full gapsmarked by orange
shaded areas appear. This is different from the gap depicted by green shaded areawhich stems from the
resonances. It should bementioned that there are different ways to break the inversion symmetry in order to
open a gap at theK point of graphene/graphene-like structures. For example, in graphene/graphene-like
systems, the inversion symmetry can be broken by introducing difference inA,B sublattices, such as,
bianisotropic responses [23], refractive index [24], cylinder sizes [25], masses [26], bilayer designs [28], acoustic
cavities [30], etc. However, in this paper we are interested in the case of breakingDirac points by loading
resonators to the junctions, which leads to interesting edge/interface waves in the corresponding gapswhen
boundaries are considered. In the next section, wewill investigate these edge/interface waves which have not
beenwidely reported in acoustic systems so far.

Figure 2. (a) 3D viewof the unit cell of the graphene network loadedwithHelmholtz resonators (HRs) and the corresponding
dispersion relation for different resonance frequencies. TwoHRswith resonance frequencies fA B, are loaded to theA,B junctions of
the network. A close view of theHR is present in the right. (b)–(d)Dispersion relations of the loaded graphene network for the
resonance frequencies = ¹f f fA B K (b), fA=fB=fK (c), and ¹ ¹f f fA B K (d). The red dashed lines in (b) correspond to the
dispersion curves of the unloaded graphene network. The green areas represent the band gaps due to resonance, and the orange areas
correspond to the gaps due to inversion symmetry breaking.
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3. Zigzag edgewaves

Fromhereon, we study the graphene network loadedwith only oneHR at junctionA of the unit cell (single
loaded graphene network (SLGN)), and the resonance frequency of the resonator is tuned to be »f fA K . The
corresponding dispersion curves are shown infigure 3(a). The blue solid lines represent the analytical results
from equation (7) for εB=εg (no resonator), and the black dot lines the finite element simulation. As it can be
seen, the degeneracy of theDirac point at theK point is lifted creating a band-gap, due to inversion symmetry
breaking, similar to other inversion symmetry breaking systems [5, 7, 23, 31]. On the other hand, a unique
feature of our system is the appearance of an additional nearlyflat band inside the generated band gap around the
resonance frequency fA. It is interesting to note that this band becomes flatter as fA approaches fK. In particular, at
the resonance frequency ( fA) the pressure field at junctionA (with resonator) should be equal to zero. Sincewe
have chosen fA to be half of the Bragg frequency (Dirac point), thewavelength is 4L imposing amaximum
pressure at junctionB (no resonator). Thus, a localized solution (described in the appendix C), where pressure at
only a single junctionB of thewhole lattice is non-zero and every other junction (A andB) is zero, is possible and
induces theflat band.

To investigate the presence of edgewaveswhen boundaries are considered, we consider a SLGNwhich is
finite in the y-direction but infinite in the x-direction. A supercell of the SLGN containingNunit cells (inset of
figure 3(a)) is depicted in one of the red-dashed boxes offigure 3(b). The two zigzag edges, e.g. top and bottom
ends, are set to be zero pressure boundaries. For example, considering the supercell on site j (contains both 2m
and 2m+1), the zigzag boundary conditions in the network are expressed as

= =p p 0. 8
j
B

j N
A

,1 ,
( )

Figure 3. (a)Dispersion of the infinite single loaded graphene network (SLGN) at junctionAwith resonance frequency fA=fk. The
unit cell is presented in the inset. Blue solid lines (black dots) represent the analytical (numerical) results. (b)A sketch of the SLGN
with a resonant (free) zigzag edge at the top (bottom) end. A supercell ofNunit cells around the position 2m corresponding to the
index j ismarked by a red dashed box. The gray solid linesmark the zigzag edges of thefinite structure in a lattice presentation, while in
acoustic boundary condition this corresponds to an additional waveguide (dashed lines) connecting to a junction of zero pressure. (c)
The corresponding dispersion curves of the supercell whenN=17. Gray (blue) dots represent bulkmodes (edgemodes on the
resonant zigzag edge). (d)Close view of the nearlyflat region in (c). The edgewave band of the free zigzag edge is labeled bymagenta.
(e)Pressure field distributions of eigenmodes of the blue bands in (c) and of themagenta band in (d).
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By combiningwith equation (1), the following equation connecting two consecutive supercells can be derived

= +v vf fD S , 9j j 1( ) ( ) ( )

where = + +v p p p p; ; ;...;j m
A

m
B

m
A

m N
B

2 ,1 2 1,2 2 1,2 2 ,[ ] contains all the sound pressures at the junctions inside the
supercell.D( f ), S( f ) are 2(N−1)×2(N−1)matrices depending only on the soundwave frequency, which
can be obtained by summing up all the equations ofmotion of theN unit cells combiningwith the boundary
conditions in equations (8). By applying an ansatz of Blochwave solution, =v V ej

q j2i x , equation (9) leads to the
following generalized eigenvalue problem

=V Vf fD Se . 10q2i x( ) ( ) ( )

By sweeping the frequency f, the corresponding Blochwave vector qx can be obtained by equation (10), resulting
in the dispersion curves for the supercell. It should bementioned that the common approach to get dispersion
curves by sweeping Blochwave vector in the BZ is not suitable in our systemwhenHRs are loaded to junctionA
of the network. The challenge is that the energy term εA (equation (5)) contains the contribution part of the
resonatorGA, while εB is not affected by resonance, leading to the breakdownof the eigenvalue problemof the
form shown in equation (5). However, the eigenvalue equation (10) avoids the obstacle caused by resonance
since its eigenvalue gives rise to theBlochwave vector. In addition, from the eigenvalue problem in equation (10),
not only the propagatingmodes, but also the evanescentmodes can be obtained. Thismight lead to great
advantages for the study of wave systemswhere dissipation is considered.

The dispersion of a supercell withN=17 is shown infigure 3(c).We note here that the top edge is free of
resonators, we call it free zigzag edge (FZE), while the bottom edge is loadedwith resonators, we call it resonant
zigzag edge (RZE). The dot lines correspond to the simulation results. As can be seen, there are two edgewave
branches illustrated by blue dot lines around 185 and 270 Hz. These two branches support the edgewaves on the
RZE, the bottom edge offigure 3(b). This can be confirmed by the eigenmodes on the two branches. For
example, we investigate themodes of the blue branches using afinite elementmethod, the correspondingmode
profiles are presented infigure 3(e). It shows that soundwaves are localized on the RZE and are evanescent along
the bulk.

On the other hand, edgewaves exist also on FZE (on the top edge offigure 3(b)). These edges waves are
located into the nearly flat band as it is shown by the close view offigure 3(d)where the edge branch of the FZE is
indicated by amagenta dot curve. The eigenmode profile of the edgemode is also depicted infigure 3(e), where
soundfield is seen to be localized on the FZE and decaying into the bulk.

4. Zigzag interfacewaves

Wenow consider soundwaves propagating along the interface constructed by two SLGNs. The study of the
interface is interesting as it can lead to potential investigations of topologicalmodes associatedwith theQVH
effect in the current graphene network loadedwithHRs. Regarding the geometry of the SLGN, there are two
different kinds of interfaces: (1)Resonant zigzag interface with two consecutive junctions side-loaded byHR as
shown infigure 4(c). (2) Free zigzag interface with two consecutive junctionswith no resonators as shown in
figure 5(c). The dispersion of interfacemodes is calculated in a similar way as discussed in section 3.

Considering the resonant zigzag interface, figure 4(a) displays the dispersion curves of the supercell, which
containsN=17 unit cells with the resonant zigzag interface in themiddle. As can be seen, the dispersion
exhibits similar bulkmodes features (gray dots), while six total branches of edge/interfacemodes are found,
instead of three compared tofigure 3(c). The four branchesmarked by red dots infigure 4(a) correspond to
interfacemodes, and the other two branches close to the nearlyflat region support edgemodes on the two FZEs
as shown infigure 4(b) bymagenta dots. Compared to the case without interface (figure 3(c)), the twoRZE
branches are absent as this RZE boundary is eliminated from the supercell offigure 4(c). In addition, one
additional branch for edgewaves on the FZE appears on the top of the near flat region (see figure 4(b)) due to the
symmetry of FZEs on both ends of the supercell. Figure 4(c) shows three eigenmodes corresponding to three
lower branchesmarked as red infigure 4(a) andmagenta infigure 4(b). Themodes in the red bands show the
localization of sound pressure on the interface (middle of the supercell), exhibiting the feature of interface
modes. Themode in themagenta band infigure 4(b) has a similar pressure field distribution as the FZEmode in
figure 3(d) as they are both free zigzagmodes on the open ends.

Regarding the free zigzag interface, figure 5(c), the band diagram is depicted infigure 5(a), where two edge
wave branches on the RZEs (blue dots) and two interface branches (red dots) are observed in the band gaps. It
should be noted that, unlike the results infigure 3(c), each of the RZEbranches infigure 5(a) is a degeneracy of
two branches due to the symmetry of the RZEs on both ends of the supercell. The two additional branches (red
dots) correspond to the interfacemodes compared tofigure 3(c). Infigure 5(b) showing a close view around the
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flat band, we observe the absence of edgemodes as expected since there is only one kind of boundary
corresponding to RZE.

We also pick three eigenmodes corresponding to three different branches to show the pressure field
distribution of eachmode infigure 5(c). Themodes of the interface branches (red bands infigure 5(a)) show a
similar distribution as the red ones infigure 4(a) since pressures are localized on the interface. Themode in the
RZEbranch exhibits the localization of pressures on theRZE, which is consistent with the results of edgewaves
on the RZE as observed infigure 3.

Our results show that in the presence ofHRs (resonance frequency equal to fK) in the SLGN, there are 3 edge
modes branches in the absence of interface and 6 edge/interfacemodes branches when interfaces are present. It
has been reported in [11] that there are 3 branches of edges/interfacemodes due to the inversion symmetry
breakingwithout resonance.However, our study of SLGN shows that the presence ofHRswith resonance
frequency close to fK injects one additional nearlyflat band to themiddle of the band gap, splitting the band gap
into two. As a consequence,more branches for edge/interfacemodes appear in the gaps.

As it has been studied in the analogs ofQVH system [5, 7, 23, 31], the interfacemodes in the full gap
appearing by breaking theDirac cone at theK point are robust in a sense that they can travel through corners of
120◦with respect to its original direction of propagation. This phenomenon can also be observed in our SLGN.
To verify the above analysis, we conduct simulations on afinite size SLGNof 34×27 unit cells.We create a FZE
type of interface forming a ‘Z’ shape in thefinite network.We preformnumerical simulations of the finite
structure in frequency domain assuming an incomingmonochamatic wave at the beginning of the air channel

Figure 4. (a)Dispersion of SLGNwith an interface composed of two resonant zigzag edges. The red dots highlight the interfacemode
branches. (b)Close view of the nearlyflat region in (a). The edgewave branches aremarked bymagenta. (c)Pressure field distributions
of eigenmodes corresponding to two red bands in (a) and amagenta band in (b).

Figure 5. (a)Dispersion of SLGNwith an interface composed of two free zigzag edges. The red (blue) dots highlight the interface
(edge)mode branches. (b)Close view of the nearlyflat region in (a). (c)Pressure field distributions of eigenmodes of the three bands in
(a).

7

New J. Phys. 22 (2020) 013029 L-YZheng et al



denoted by yellow arrow infigure 6. The other air channels at the edges are set to be zero pressure corresponding
to the open boundary infigure 3(b). The results are shown infigure 6(a) for 208 Hz corresponding to the lower
edge branch and 6(b) for 240 Hz to the upper edge branch. It shows that in both cases, soundwaves travel along
the interface path and do not propagate into the bulk or along the edges of the structure.More interestingly, the
pressure field distributions of the interfacemodes indicate a robustness of soundwaves propagation again the
two120◦ corners along the interface path. Note that the presence of visco-thermal losses is found to change only
quantitatively the propagation of theZ-shape interfacemode. Disregarding the nearlyflat band region in the
band gap, the result suggests that the robustness of interface wavesmight stem from the topological property of
the systems similar to theQVH systems, which can be further studied in a futurework by taking into account the
influence of the nearlyflat band.

5. Conclusions

Wehave developed a discretemodel to describe wave propagation in an acoustic graphene network including
subwavelength resonators. Regarding the influence of resonances, we show that they are responsible for the
appearance of additional branches and band gaps, and the tunable resonance frequency provides an extra degree
of freedom to alter the symmetry of the system. For a strip geometry with zigzag boundaries, the breaking of
Dirac cones at theK point due to resonance results in the existence of edgewaves.We also show the appearance
of interfacemodes that exhibit a robust propagation against the120◦ corners, similarly toQVHeffect. This work
is a preliminary step towardsmore complex topological systemswith on-site resonances.
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AppendixA.Discretemodel

To obtain the discrete equation (1), we assume that only the planarmode is propagating (i.e.Rt/L= 1) in the
acoustic waveguide, allowing us towrite down the acoustic particle velocity at any end of the channel as a
function of the pressure at both ends [36, 37]. For example, as shown schematically in the right part offigure A1,
wemaywrite that

= + ¢u Yp Y p , A1i a b ( )

where p= -Y fL c Zi cot 2 c( ) and p¢ =Y fL c Zicsc 2 c( ) andZc=ρ c/Swhere ρ and c are the density of air
and the sound velocity, and S is the section of thewaveguide.WhenHRs are loaded to the network, for example,
at junctionB of the unit cell at (m, n) infigure A1, the velocity in the direction of theHRs neck uR is directly given
by the corresponding impedance as

Figure 6. Steady state of pressurefield in a finite size network having aZ-shape interface by connecting two SLGNswith free zigzag
edges. The position of input source ismarked by a yellow arrow. (a) Input soundwave frequency is 208 Hz. (b) Input soundwave
frequency is 240 Hz.
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=u p Z . A2R m n
B

R,
( )

Considering the totalflux at junctionB, the conservation offlux dictates that u1+u2+u3+uR=0.
Replacing velocities with the corresponding pressures, and reproducing the process at junctionA, we can obtain
the governing equations (1). The corresponding energy terms εA,B are given by equation (6). And the function
Gα( f, fα) is given by

= ¢a a aG f f Y Y, . A3( ) ( )

The entrance admittanceYα depends on the geometrical characteristics of the resonators (α=A,B) and is given
by

r
=

-
a

a
Y

S

cL

k

k ki
, A4n

n
2 2

( )

where the resonance frequency is given by =a ak R L R Ln n c
2 2 2( )with kα=2π fα /c.

Appendix B. Effects of theHelmholtz resonance on the graphene dispersion relation

According to equation(5) and the expression of F(qx, qy), passbands are foundwhen òα or òg are boundedwithin
[−3: 3]. In the absence ofHRs, the ‘energy’ is defined by p= fL c3 cos 2g ( ) and thus there is no bandgap as it
has to be for standard graphene. This function is plotted infigure A2with the red dashed line. Note that when òg
is crossing the zero axis, it corresponds to aDirac point.When the system is side loaded by identical HRs, due to
the resonant shape of the entrance admittance of theHRs, the ‘energy’ òα (see equqtion (6)) now crosses the zero
axis at two different points (see figure A2with the solid blue line) yielding twoDirac points in the considered
frequency range.

Figure A1. Schematic presentation of an unit cell of the graphene network loadedwith a singleHelmholtz resonator. Sketch of
monomodes propagation in awaveguide is presented in the right.

Figure A2.The ‘ energies’ òg and òα as a function of the frequency.
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AppendixC. Localized states andflat band

In order to providemore information about the flat band appearing infigure A3, we showhere (figure A3) the
shape the localizedmode that exists in the particular case where fA=fK. Due to the resonance at junctionA, it is
possible to construct such a compact solutionwith a typical tripod patternwhere the pressure is zero at junction
A andmaximumat junctionB. This localizedmode is responsible for the appearance of theflat band [38].
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