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Abstract 

Empiric models have been introduced to describe frequency dependence of dielectric permittivity.  Simple exponential models are often not 

satisfactory, while advanced non-exponential models (usually referred as “anomalous relaxation”) are commonly required to better explain 

experimental observations of complex systems. For viscoelastic materials, the so-called fractional derivatives models are powerful for both 

dynamic and loss moduli prediction. In this paper, the analysis of the main models used in the characterization of dielectric and viscoelastic 

materials such as five-parameter fractional Zener model and empiric Havriliak-Negami model are analysed. The fractional shape parameters 

describing the symmetric and asymmetric broadening of the complex modulus don't have the same influence in low and high frequencies. In 

contrast to the five-parameter Zener model, the empiric model asymmetry parameter has an influence on complex modulus at low frequencies 

comparing to the loss modulus peak frequency. A no resonance technique based on a forced vibrations procedure is used to investigate the 

frequency dependent complex shear modulus of a polyurethane foam, not influenced by its fluid phase, in the range 0.1-500 Hz. It is shown that 

the Havriliak-Negami model can predict the frequency dependence for a wide frequency range.  

Keywords: polyurethane foams, fractional models, dynamic modulus, loss modulus, wide frequency range 

1. Introduction 

Porous materials like polymer foam and glass wool are 

widely used for noise control in several engineering 

activities such as aeronautics and automotive industries. 

Their properties are two-fold: sound absorption and 

damping of the nearby structure [1]. 

Viscoelastic behavior was analogically modelled by 

ideal springs and dashpots representing respectively the 

elasticity and the dissipation phenomenon during material 

deformation. The most popular models (Kelvin–Voigt, 

Zener etc.), cannot accurately describe qualitatively the 

dynamic behavior of real materials. The reason for the 

inaccurate behavior of the spring–dashpot models can be 

found in the stress–strain relationship defined in the time-

domain by a linear differential equation of integer order. 

However, this differential equation can be generalized by 

replacing the integer order derivatives with fractional order 

ones. In this way the spring–dashpot models can be 

generalized, resulting in frequency curves having smaller 

slopes than those of the frequency curves relating to the 

original models. The models thus developed are called 

generalized, or fractional derivative models. They were 

used to characterize the rheological behavior of linear 

viscoelastic systems by a number of authors [ 2-7]. 

Moreover, it has been established that the fractional 

derivative model having only four-parameters can be used 

to describe the variations of dynamic properties in a wide 

frequency range. The Fractional Zener Model (FZM) has 

been improved by adding a fifth parameter6 for a better 

fitting of dynamic and loss moduli at high frequencies.  

Similarly, in dielectric materials, the sample is treated as 

a parallel or serial circuit of an ideal capacitor and an ohmic 

resistor. Among the abundant literature on this subject, we 

can refer to the precursory works. The standard and 

simplest model in the physics of dielectrics was provided by 

Debye [8] in 1912 based on a relaxation function decaying 

exponentially in time with a characteristic relaxation time. 

Since the pioneering work of Kohlrausch in 1854, 

introducing a stretched exponential relaxation successively 

rediscovered by Williams and Watts [9], important models 

where introduced by Cole and Cole [10], Davidson and 

Cole [11], Havriliak and Negami (HN) [12] and others [13-

16]. The empirical five-parameter HN model describes 

symmetric and asymmetric broadening of the complex 

dielectric function. The limiting behavior of the complex 
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dielectric function at low and high frequencies was 

analyzed and called universal dielectric response by 

Jonscher [17]. 

The aim of this paper is to highlight the used approaches 

for viscoelastic and dielectric materials through two five-

parameter models [6,12]. These fractional derivatives 

models and empirical models don’t describe the same 

behavior at low and high frequencies respectively with 

regard to the position of maximal loss. Experimental data 

on polymeric foams in the range 0.1 Hz-500 Hz are fitted to 

show the advantage of the empirical model. 

2. Theory 

In classic approach, mechanical models consisting of 

spring and dashpots, are used to describe the viscoelastic 

properties of viscoelastic materials [18]. A good description 

requires an introduction of fractional derivatives models 

and so the Zener model [19] was replaced by the four-

parameter fractional derivative model [2]. For dielectric 

materials, the combination of resistors and capacitors as 

well as the empirical use of fractional exponents in 

frequency relationships has induced more efficient models 

such as those of Cole-Cole and HN models [17]. 

 

2.1. Zener model 

For the Zener model illustrated in Fig 1, the stress-strain 

relationship is: 

�1 + �
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�
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 = �� + �(1 + ��
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) �

��� �                              (1)                                   

or 
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where: 

� = � �,           � = �,⁄            � = �(1 + � �)⁄ .       (3)                  

The complex modulus: 

�∗(�) = 
 (�) �̂(�)⁄ ,                                                    (4)                                                   

obtained by using the Fourier transformation in Eq. (1), 

takes the form: 

�∗(�) = "#$%&
�#$'&                                                            (5) 

The dynamic and loss moduli corresponding the real and 

imaginary part of  �∗(�) are: 

�((�) = "#'%&�

�#'�&�                                                        (6)                                                        

�"(�) = (%*'")&
�#'�&�                                                       (7)                      

At low and high frequencies, the limits of the dynamic 

modulus �( are: 

�+ = �,                     �, = �/�.                               (8)                              

 

 

 

 

 

 

 

 

 

 

Fig.1: Classical Zener mode 

2.2. Fractional Zener model 

Linear viscoelasticity is certainly the field of the most 

extensive applications of fractional calculus, in view of its 

ability to model hereditary phenomena with long memory. 

The FZM introduced by Caputo et al. [2] can be defined 

from Eq. (1) where the integer derivatives are replaced by 

the fractional ones.  

The stress-strain relationship given by Eq. (2) becomes: 

�1 + � �.

��.	 
 = �� + � �.

��.� �,                                      (9)                                    

where the /th order fractional derivative of the function u(t) 

is defined with the gamma function as [20]: 

�.

��. 0 = �
1(�*2)

�
�� 3 4(5)

(�*5). 67�
+ .                                      (10)                                               

Fortunately, by means of Fourier transformation, Eq. (9) is 

easy to transform in the frequency-domain by replacing 

 62 682⁄  by (9�)2; then the complex modulus is: 

�∗(�) = "#%($&).

�#'($&).  .                                                      (11)                                              

The values of the dynamic modulus for classical model at 

low and high frequencies holds for FZM; the introduction 

of �+ and  �, in Eq. (11) leads to: 

:∗*:;
:<*:;
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or 
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:∗*:;
:<*:;

= �
�#($&5). ,                                                        (13)                                                                

by introducing the relaxation time [20]: 

7 = �� 2⁄ .                                                                          (14)                                                                        

For the four-parameter fractional derivative model, some 

mathematical manipulations on the Eq.12 result in: 

:∗*:<
:;*:<

= ($&5).

�#($&5). .                                                           (15)                  

and will be discussed below. 

The real and imaginary parts of  �∗(�) take the form: 

�((�) = :<#(:<#:;)(&5).=>? (@2 �)#:;(&5)�.⁄
�#�(&5).=>? (@2 �)#(&5)�.⁄  ,                (16)              

�"(�) = (:;*:<)(&5).?AB (@2 �)⁄
�#�(&5).=>? (@2 �)#(&5)�.⁄  .                                 17)                             

It is worth mentioning that the frequency function defined 

by Eq. (13) has been 

suggested empirically by Cole brothers [10] as a result of 

analyzing the frequency dependence of complex dielectric 

functions. The normalized frequency: 

 

�+ =  �7 ,                                                                        18)                                                              

 

is used in the following figures. 

 

In this four-parameter model, theoretically analyzed by 

Pritz [5], it is shown that there is a strict relation between 

the dispersion of the dynamic modulus, the loss modulus 

peak and the slope of the frequency curves. The variations 

of the dynamic and loss moduli are given respectively in 

Fig. 2a and Fig. 2b. It can be seen that the dynamic modulus 

increases from �+ up to �, with increasing frequency. The 

smaller /, the smaller the slope of the dynamic modulus 

frequency curve at the inflexion point. Similarly, the slope 

of the increase and decrease of the loss modulus curve is 

determined by a below and above their maxima, 

respectively. In other words, at low and at high frequency 

the loss modulus can be simplified respectively as follows: 

�′′ ∝ �2 ,                �′′~ ∝ �*2 .                                (19)                       

The peak value of the loss modulus curve and the inflexion 

point of the dynamic modulus curve are at the frequency of: 

�F = 1 7⁄ .                                                                  (20)                                                          

a)  

 

b) 

Fig. 2(a,b): Dynamic and loss moduli calculated by the four-

parameter fractional Zener model  

More recently, in order to describe asymmetrical loss 

modulus and the high-frequency behavior of polymeric 

damping materials, a supplementary derivation of  G order 

by Pritz [6] leads to: 

:∗*:<
:;*:<

= ($&5).

�#($&5)β 
.                                                           (21) 

The complex modulus of this five-parameter fractional 

derivative model, given by Eq. (19), corresponds to the 

four-parameter one, Eq. (15), if G = /. The loss modulus as 

well as the dynamic one is not influenced by G at low 

frequency as shown in Fig. 3. Furthermore, the deviation at 

high frequency introduces the asymmetry with a variable 

curve G’’ slope. The first fractional derivative order α is 

quite the same for the two models: the low-frequency 

branches of loss modulus predicted by these models are 

practically superimposed.  
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 Fig. 3: Dynamic and loss moduli calculated by the five-parameter 

FZM (solid line β = 1, hashed line β = 0.65) 

2.3. Empiric models for dielectric materials    

Dielectric relaxation in solids [17] represents one of the 

most intensely researched topics in physics, the history of 

which goes back to the 18th century, and yet one whose 

theoretical understanding to this day escapes a satisfactory 

solution. The main reason might lie with the dissipative 

nature of the relaxation process. The standard and simplest 

model leads to the exponential relaxation, and 

correspondingly the frequency dependence of the complex 

permittivity is: 

�∗ − �, = I<*I;
�#$&5 ,                                                          (22) 

where �+ and �, are the “static” and “infinite” frequency 

dielectric constants, and 7 is a characteristic relaxation time. 

A generalization of the FZM was proposed by Havriliak 

and Negami to describe the α-dispersions in polymer 

system: the complex modulus �∗ was empirically written 

as: 

:∗*:;
:<*:;

= �
(�#($&5).)J ,                                                        (23) 

where the parameter G controls the asymmetry of the loss 

modulus. The formula reduces to the Debye model, given 

by Eq. (22), for / =  G = 1 and to the Cole-Cole model for 

G = 1, and to Davidson-Cole model for / = 1.  

For this model the real and imaginary parts of the complex 

modulus are [21]:  

�( = �, + (:<*:;)=>? (KL)
M�#�&.5.=>? (2@ �)#&�.⁄ 5�.NJ �⁄  ,                       (24) 

�" = (:;*:<)?AB (KL)
M�#�&.5.=>? (2@ �)#&�.⁄ 5�.NJ �⁄  ,                                (25)                 

where: 

O = 8�P*� &.5.?AB (2@ �⁄ )
�#&.5.=>? (2@ �⁄ ) 

.                                            (26) 

a)  

 b)   

Fig. 4(a,b): Dynamic and loss moduli calculated by the HN model  

It can be seen in Fig. 4a that the smaller G, the smaller the 

dynamic modulus; the maximal values are obtained for G = 

1 which correspond to FZM ones. 

The frequency curves in Fig. 4b show the influence of the 

asymmetry parameter G for loss modulus at a fixed value of 

α. In comparing to the FZM, the loss modulus takes the 

form [17]: 

�′′ ∝ �2          and               �′′ ∝ �*2β .                     (27)                  

At low and high frequency respectively; α and -α G are the 

slopes of logG’’ vs logω at low and high frequencies 

respectively with regard to the position of maximal loss. 

These Jonscher power-law exponents are explicitly given 

below. 

If ωτ << 1, Eq. (25) takes the form tanO ≈ �272sin (/U 2⁄ ) 

and G’’ in Eq. (25) can be simplified as: �" ≈
(�, − �+) sin(GO) ≈ (�, − �+)GO ≈ (�, −
�+)G�272sin (/U 2⁄ ). Then: 

WXY�" ≈ /WXY� + logM(�, − �+)G72sin (/U 2⁄ )N.      (28)             

If ωτ >> 1, the similar mathematical simplifications of G’’ 

in Eq. (25) lead to: 

WXY�" ≈ −/GWXY� + log](�, − �+) sin(/GU 2⁄ ) /
72K^                                                                                         
                                                                                            .(2

9) 

The peak value22 of the loss modulus curve at the frequency 

of: 

�F = �
5 �_`P 2@

�#�K�
� 2⁄

�_`P αK@
�#�K�

*� 2⁄
 ,                         (30)                   

which reduces to Eq. (19) for G = 1 corresponding to FZM. 

In contrast to the five-parameter FZM mentioned above in 

Eq. (21) and in Fig. 3, the asymmetry parameter G has an 

effect on the position of the loss modulus peak given by Eq. 

(30) and on the slope of G’’ curve at high frequency as 

shown in Fig. 4b. It follows that the loss modulus increases 

with increasing / at low frequency and where the curves 

are parallel for � <  �F; in addition, the smaller G, the 

smaller value of the loss modulus. 
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3. Havriliak-Negami Model and experimental data 

It was shown above that, for � ≪ �F, the parameters α 

and β have an effect on the loss modulus curve and on the 

dynamic modulus as shown in Fig. 4. Once the applicability 

of the HN model has been established for a class of 

materials, the dynamic properties can be predicted for wide 

frequency range by using data measured in a narrow range. 

In a previous paper [23] a method is presented for the 

mechanical characterization of anisotropic foams where the 

objective of the experiment is to determine the static elastic 

parameters of an acoustic foam. In the present study, a 

quasi-static method [24] is implemented for shear 

characterization of polyurethane foams at low frequency. 

Porous foams are diphasic materials with coupling effects 

where the air flow resistivity can be neglected in shear tests. 

 

 

 

 

 

 

 

 

 

Fig. 5: Shear configuration, samples (clear grey) squeezed 

between a rigid plate and a U-shaped profile (black grey). 

 

 

 

 

 

 

 

 

 

Fig. 6: Shear measurement setup (1- supporting frame, 2- 

piezoelectric force transducer (PCB 209B01), 3- inductive 

gauging sensor (Keyence EX-201:305) , 4- driving plate, 5- 

Electrodynamic shaker (Bruel & Kjaer 4808) 

 

A simplified representation of the shear setup is given in 

Fig. 5. The brick-shaped samples, having a thickness h and 

a square section area S = b2, are placed between a rigid 

plate and a U-shaped profile. In this test, the measured 

shear stiffness F/u is twice the stiffness of each sample 

where F and u are defined in Fig. 5. The U-shaped device is 

harmonically translated by an electrodynamic shaker using 

a 0.1–500 Hz sweep-sine as illustrated in Fig. 6. An 

inductive displacement sensor is used to measure the 

displacement 0∗(�) of the driving plate. A piezoelectric 

force transducer placed between the top of the middle plate 

and the supporting frame is used to measure the transmitted 

force c∗(�). A FFT analyzer computes the following 

mechanical impedance: 

d∗(�) =  c∗ 0∗⁄ .                                                              

(32) 

Under the assumption that the thickness h of the sample is 

small compared to the other dimension b of the sample, the 

complex shear modulus �∗(�) is given by [23]: 

�∗(�) =  d∗(�)ℎ 2f⁄ .                                                     

(33) 

 

Fig.7: Dynamic and loss moduli, solid line for HN model, * for 

measured values of polyurethane foam. 

Five pairs of samples having the dimensions h = 2mm and b 

= 8 mm are squeezed by means of sand papers to avoid any 

slippage at the four interfaces. A fit of HN model to the 

average data measured at 20 °C from Eq. (33) gives the 

following parameters: �+ = 100 hi�, �, = 450 hi�, 7 =
 10*l _, / = 0.4 and G = 0.84. As can be seen in Fig. 7, a 

good fit is obtained over the entire frequency range for both 

dynamic and loss moduli. The sound absorbing properties 

of this foam have applications sought in the audible band, 

less than 20 kHz, and at a higher frequency for light thin 

structure damping. For this foam, the useful frequency 

range is very small compared to �F where the simplified 

G’’ expression in Eq. (28) leads straightforward to the slope 

α. For G = 1, HN and five-parameter FZM are both 

reduced to four- parameter FZM. Furthermore, for Zener 
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models, the G parameter has no influence on loss modulus 

as well as the dynamic one at low frequencies. Despite the 

empiric origin of HN model not related to constitutive 

equations, the G value obtained above has improved the 

fitting of the experimental data. 

4. Conclusion 

This article presented the main models in viscoelastic 

and dielectric materials to predict the frequency 

dependences of properties for a wide range. Generally, the 

introduction of a new parameter leads to a better fitting of 

dynamic and loss moduli. However, this improvement can 

be better adapted to a class of materials depending on the 

used model. 

 The five-parameter HN model was analyzed and 

compared to the five-parameter fractional derivatives 

model. It is shown that the fifth parameter in fractional 

model can modify the viscoelastic only at high frequencies 

while the one in HN model affect the prediction in a wide 

frequency range. A method for studying the viscoelastic 

properties of polymeric foams at low frequency less than 

500 Hz has been developed. The complex shear modulus is 

predicted on a large frequency range until 100 kHz by using 

the HN model. As a result of this investigation, this model 

is successfully adapted to viscoelastic behavior of 

polyurethane foams.  
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