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This paper is devoted to the rigorous obtention of the energy balance in porous materials. The wave propagation in the porous

media is described by Biot-Allard’s �u ,U� and �u , P� formulations. The paper derives the expressions for stored kinetic and 
strain energies together with dissipated energies. It is shown that, in the case of mixed formulations, these expressions do not

correspond to the real and imaginary parts of the variational formulations. A quantitative convergence analysis of finite

element scheme is then undertaken with the help of these indicators. It is shown that the order of convergence of these

indicators for linear finite-element is one and that they are then well fitted to check the validity of finite-element models.

I. INTRODUCTION

Porous materials are commonly used in noise control

issues as passive devices for reducing both structure and air-

borne sound. Today, most of the vibroacoustic prediction

tools are able to account for the coupling of structures with a
porous medium. These tools are mainly based on

Biot–Allard’s
1,2 

model. In noise control analysis, it is often 
desirable to understand how energy is stored and how power

flows from one system component to the other. Two sets of

poroelastic formulations can be distinguished: The first one

deals with displacement formulations
1,2 

and the second one 
is concerned with mixed formulations.

3–5 
The finite-element 

modeling of porous material by the way of �u ,U�6,7 
tech-

niques or �u , P�4,5 
techniques. �u , P� finite-element methods 

have shown their efficiency compared to displacement

formulation
4,5 

and a key point to improve them is to study 
their convergence and their physical interpretation. Due to

the biphasic nature of porous materials and also to the fact

that in mixed pressure-displacement formulations the fields

are of different nature, the derivation of the expressions of

energies and powers in these media is not obvious; in par-

ticular they cannot be obtained through separating the real

and imaginary parts of the variational formulations. In the

past, only equations related to the dissipated powers have

been presented in the case of Biot–Allard’s �u , P� 
formulations.

8–10 
The first objective of this paper is to rigor-

ously derive the expressions of both stored and dissipated

energies in poroelastic materials based on the theorem of

kinetic energy in the framework of �u ,U� and �u , P� formu-

lations of Biot–Allard’s poroelasticity equations. The second

objective of this paper is to propose a quantitative conver-

gence analysis of finite element scheme with the help of

these indicators. This analysis shows that these indicators are

of order one and can advantageously be used to check the

validity of finite-element schemes.

In the following, the considered porous medium are

usual sound absorbing materials like fibrous aggregates and

foams. As acoustical applications are considered, the porous

skeleton is assumed to be fully saturated by air. According to

Biot’s theory, the porous medium is considered as a super-

position of a solid phase and fluid phase described by ho-

mogenized fields. K �respectively, W� denotes the total ki-

netic �respectively, strain� energy of the porous media. The

separation of these two quantities into a solid part and a fluid

part must be handled with particular care since one deals

with homogenized quantities. In the porous material, three

dissipation mechanisms associated with viscous and thermal

effects together with structural damping occur. Unlike stored

energies, the derivation of the dissipated powers into a solid

and fluid part is more tractable since the physical phenom-

enon is intrinsically linked to a particular phase �solid phase

for structural damping and fluid phase for viscous and ther-

mal effects�.
In this paper, a temporal dependency e j�t is chosen. For

a given quantity X, an index 0 will represent its complex

amplitude so that X=X0e j�t. R� � and I� � denote the real

part and imaginary part functions of complex numbers, the

star exponent is associated with the complex conjugation.a�
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Moreover, for all inertial and constitutive coefficients appear-

ing in the model, a � ˜� above a coefficient indicates that it is

complex-valued and frequency-dependent. Yr and Y i refer to

the real part and imaginary part of Ỹ, respectively.

The classical techniques, dealing with the real and

imaginary parts of variational formulations, must be handled

with care in the case of poroelastic problems. Hence, the

methodology of our derivation is to express in the time do-

main the kinetic energy theorem and the thermodynamics

first principle. Both of these theorems are expressed in the

case of the �u ,U� formulation as this one is fitted for a clear

explanation and separation of the different physical mecha-

nisms. This first step is, by itself, not original and has been

applied in previous works for geomaterials.
1,11

Nevertheless,

it has never been applied to acoustical materials involving

frequency-dependent parameters and the link with the po-

roelastic �u ,U� variational formulations has never been es-

tablished. This first step is also interesting as the different

notations and mechanisms can be defined. Once the temporal

expressions of stored energies and dissipated powers are

written, their mean value over a vibrating cycle can easily be

obtained. The expressions of these indicators in the case of

the �u , P� formulation are directly derived from the one of

the displacement formulation through a variable change.

Hence, no energetic demonstration is done in the case of the

mixed formulation, but the expressions are derived from the

displacement ones.

This paper is organized as follows. First, the equations

of motion and stress–strain relationships for a saturated po-

roelastic material are recalled �Sec. II�. Then the expressions

of stored and dissipated energies are derived in the case of

�u ,U� formulation �Sec. III�. These expressions are then pro-

vided in the case of the �u , P� formulation �Sec. IV�. A

simple example is then presented in order to illustrate and a

quantitative and original convergence investigation of a

finite-element scheme, based on the proposed indicators, is

finally described in Sec. V.

II. OVERVIEW OF BIOT’S EQUATIONS

For sake of clarity, Biot–Allard’s poroelasticity equa-

tions are first recalled in order to identify the different terms

appearing in the expressions of the energies given in the

following.

A. Equations of motion

The equations of motion of �u ,U� formulation are
1

− �2�1u = � · �
s�u,U� + �2�12�U − u� + j�b̃�u − U� ,

�1a�

− �2�2U = � · �
f�u,U� + �2�12�u − U� − j�b̃�u − U� .

�1b�

�s�u ,U� �respectively, � f�u ,U�� denotes the partial stress

�1 = �1 − ���s, �2 = �� f, �12 = − �� f��� − 1� . �2�

� is the porosity, �s is the skeleton material density, � f is the

interstitial fluid density, and �� refers to geometric tortuosity.

�12 accounts for the interaction between the inertia forces of

the solid and fluid phase. �j��b̃�u−U� represents the contri-

bution of viscous forces. It is worth noting that the real part

br and imaginary part bi of b̃ are respectively associated with

the dissipative part of viscous forces and with the modifica-

tion of tortuosity due to the added mass effect associated

with the viscous behavior of the fluid in the pores. In order to

simplify Eqs. �1a� and �1b� an apparent inertial mass can be

introduced,

hence the last two terms on the right-hand side of Eq. �1� can

be grouped; this new coefficient provides a more compact

writing but hides the two different phenomena �geometry and

viscosity� in the real part �denoted by �12� �.

B. Constitutive relations

In order to identify all the macroscopical coefficients,

stress–strain relations must be considered. They read:
1,12

�
s�u,U� = Ã � · uI + 2N̂�

s�u� + Q̃ � · UI , �3a�

�
f�u,U� = R̃ � · UI + Q̃ � · uI . �3b�

�s�u� is the strain tensor of the fluid phase and I is the iden-

tity tensor of rank 3. All the constitutive coefficients but N̂

are also complex and frequency dependent and their expres-

sion can be found in Biot and Willis’s work.
12

Their complex

and frequency-dependent nature is due to thermal effects; the

real part corresponds to conservative effects �stress� and the

imaginary part to thermal dissipative effects. It is important

to note that Ã is frequency dependent but can be split into

two terms as

Ã = Â +
Q̃2

R̃
, �4�

where Â is linked to the property of the solid in vacuo and

Q̃2
/ R̃ can be related to a restoring elastic force induced by

the fluid phase on the solid phase. One can then introduce the

in vacuo solid stress tensor:

�̂�u� = Â � · uI + 2N̂��u� . �5�

Unlike the partial stress tensor of the solid part, �̂�u� is

independent of the motion of the fluid phase; in addition its

constitutive coefficients do not depend on frequency since

the contribution of the fluid phase has been withdrawn. This

tensor plays an important role in the mixed formulation. An-

other interesting property is that in all cases, the ratio Q̃ / R̃ is

real so that a useful nondimensional real parameter can be

defined
tensor of the solid �respectively, fluid� phase. �1, �2, and �12 
represent homogenized densities. They are given by
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� =
Q̃

R̃
=

Qr

Rr

=
Qi

Ri

� R . �6�

In order to take into account dissipation in the porous

skeleton a hysteretic model is often used and it is then as-

sumed that

Â = Ar + jAi = A�1 + j�s�, N̂ = Nr + jNi = N�1 + j�s� ,

�7�

where �s is the skeleton structural damping coefficient. Note

that other damping models can be substituted. In order to

make a distinction between conservative and dissipative ef-

fects let �̂r
s�u� �respectively, �̂i

s�u�� be the in vacuo tensor

associated to the real �respectively, imaginary� part of coef-

ficients.

III. EXPRESSIONS OF ENERGIES AND POWERS
IN THE CASE OF ˆU,U‰ FORMALISM

A. Theorem of kinetic energy

The theorem of kinetic energy should be first expressed

for Biot’s equations. The methodology is inspired from the

one presented in Ref. 11 and is based on the mechanics and

thermodynamics of open continuous media. This paper ex-

tends Coussy’s purpose to the case of acoustic materials and

gives explicit expressions of all the terms of both �u ,U� and

�u , P� formulations which are not given in detail in the pre-

vious references.

The theorem of kinetic energy is a particular case of the

theorem of virtual powers. This theorem stipulates that for

any material subdomain and for any velocity field whether

actual or virtual, the sum of the powers of external, inertia,

and internal forces is zero; the kinetic energy corresponds to

the case of the actual velocity field. In order to obtain the

expression of theorem of virtual powers, the temporal point

of view must be considered; hence, by introducing v �respec-

tively, V�, the complex velocity field of the solid �respec-

tively, fluid� phase, Eq. �1� is rewritten in the time domain as

�1

dR�v�

dt
+ �12�

d

dt
R�V − v�

= R�� · �
s�u,U�� − brR�v − V� , �8a�

and

�2

dR�V�

dt
+ �12�

d

dt
R�v − V�

= R�� · �
f�u,U�� − brR�V − v� . �8b�

K =
1

2
�

�

�1R
2�v� + �2R

2�V� − �12� R2�V − v�d� . �9�

In order to distinguish the powers of external and internal

forces, Green’s second formula is used and the term corre-

sponding to the right-hand side of Eqs. �8a� and �8b� then

reads:

Pext = �
��

R��s�u,U�� · R�v� · nd	

+ �
��

R�� f�u,U�� · R�V� · nd	 , �10�

Pint = �
�

R��s�u,U��:R�ds� + R�� f�u,U��:R�d f�

− brR�v − V�2d� , �11�

where d
s and d

f are the time derivatives of strain tensors

associated with the solid phase and fluid phase, respectively.

The kinetic energy theorem is then in its classical form:

Pext = Pint +
DK

Dt
. �12�

B. Expression of the first law

For dissipative media, the only use of the kinetic energy

theorem is not sufficient to detail and separate the different

aspects of energy stored and exchanged by the porous media.

It is necessary to use the first law of thermodynamics, which

expresses the conservation of energy in all its forms. This

principle states that at any time, the material derivative of the

total energy E is equal to the sum of the work rate Pext of the

external forces acting upon the porous material and of the

rate Q0 of external heat supply. The total energy is in fact the

sum of the kinetic energy K defined in the following and of

the internal energy E associated with both the deformation of

the media and the random, disordered motion of molecules at

atomic scale:

DE

Dt
= Pext + Q0. �13�

In the classical models used in acoustics of porous me-

dia, it is always assumed that this internal energy is only due

to deformation effects without modification of the tempera-

ture of the matter. This is due to the high ratio of thermal

conductivity to thermal capacity in both media which causes

all the heat produced by dissipation mechanisms to go out-

side of the porous medium without warming it up.

By combining Eqs. �12� and �13�, one obtains

DE

Dt
= Q0 + Pint. �14�

Hence, the integration over a cycle of equations �12� and

�13� leads to

In order to obtain the kinetic energy theorem, Eq. �8a� �re-

spectively, �8b�� is multiplied by R�v� �respectively, R�V��, 
both equations are integrated on the porous domain � and 
the sum of the two obtained equations is performed. The 
resulting term corresponding to the left-hand side of Eqs. 
�8a� and �8b� can be interpreted as the total derivative of the 
total kinetic energy K defined by
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�
T

Pextdt = �
T

Pintdt = − �
T

Q0dt . �15�

The interpretation is as follows: If over a cycle, mechanical

energy is algebraically provided to the system, an equal

amount of heat is released by the porous medium; in other

words, no energy is stored in the porous media. The trans-

formation of nature of energy is due to the dissipation phe-

nomena inside the porous medium which is more easily un-

derstandable by detailing Pint. The latter is the sum of four

terms:

Pint = dWdef − Pvis − Pstr − Pth �16�

dWdef corresponds to the conservative elastic effects defined

by

dWdef = �
�

�̂r
s�R�u��:R�ds�

+ Rr � · R��u + U� � · R��v + V�d� . �17�

dWdef is the material derivative of the strain energy Wdef

defined by

Wdef =
1

2
�

�

�̂r
s�R�u��:R��s� + Rr�� · R��u + U��2d� .

�18�

Pvis, Pstr, Pth are the powers dissipated by viscous ef-

fects, structural damping, and thermal effects. They read:

Pvis = �
�

brR
2�v − V�d� , �19a�

Pstr = �
�

�̂i
s�I�u��:R�ds�d� , �19b�

Pth = �
�

Ri � · I��u + U� � · R��v + V�d� . �19c�

C. Separation of energies stored in the solid and fluid
part

The distinction between the solid and fluid is now un-

dertaken to separate the contribution of each phase to K and

Wdef.

The definition �9� of the kinetic energy K comprises

three terms. The first one can be interpreted as the kinetic

energy of the solid phase Ks:

Ks =
1

2
�

�

�1R
2�v�d� . �20�

The last two terms represent the kinetic energy of the fluid

phase K f:

K f =
1

2
�

�

�2R
2�V� − �12� R2�V − v�d� . �21�

Let us now consider the strain energy. In Eq. �18�, two

terms appear. The first term �referred to in the following as

Ŵdef
s � can easily be defined as the strain energy of the in

vacuo solid phase. To interpret the second part, the stress–

strain relation of the fluid phase must be considered. Since

− �
P

R̃
= � � · u + � · U , �22�

the second term can be expressed and defined as

Ŵdef
f =

1

2
�2Rr�

�

R2	P

R̃

d� , �23�

which can be interpreted as the strain energy of a closed fluid

media. Nevertheless neither the solid is in vacuo, nor the

media is closed. The best way to separate the solid and fluid

phase is to go back to the partial stress tensor. Hence:

Wdef
s =

1

2
�

�

R��s�u,U��:R��s�u��d�

=
1

2
�

�

�̂r
s�R�u��:R��s�

+ Qr�� · R��u + U�� � · R�u�d�

is defined as the strain energy of the solid phase. The strain

energy of the fluid phase reads:

Wdef
f =

1

2
�

�

R�� f�u,U��:R��s�u��d�

=
1

2
�

�

Rr�� · R��u + U�� � · R�U�d� .

Concerning the dissipated powers, there is no need to sepa-

rate them into solid and fluid phases.

D. Time-averaged expressions

All the expressions given in the following are instanta-

neous values. As harmonic excitations are considered, it is

more common to present time-averaged values. Table I sum-

marizes the time-averaged expressions of kinetic and strain

energies together with energies dissipated over a cycle

through the considered mechanism. This energy is defined by

W with the index corresponding to the considered mecha-

nism. �.� is the time-average operator. For this formulation it

is straightforward to check that these time-averaged expres-

sions of the stored energies and dissipated powers are the

ones that can be obtained with the help of the real and imagi-

nary part of the variational formulations.

IV. EXPRESSIONS OF ENERGIES AND POWERS
IN THE CASE OF ˆu,P‰ FORMULATION

In order to transpose the previous results obtained in the

case of �u ,U� formulation to the �u ; P� formulation,
4

a

change of variable is performed. It is based on a combination

of both the constitutive relation and the equation of motion

of the fluid phase. Hence:
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U =
�

�̃22�
2

� P −
�̃12

�̃22

u ⇔ U0 =
�

�̃22�
2

� P0 −
�̃12

�̃22

u0.

�24�

Recall that the apparent Biot densities are defined by

�̃11 = �1 − �̃12; �̃22 = �2 − �̃12. �25�

In order to obtain the expressions of the strain energies

and thermal and structural dissipated powers, it is necessary

to calculate � ·U0. It is directly given by the constitutive

relation of the fluid phase:

� · U = −
�

R̃
P − � � · u ⇔ � · U0 = −

�

R̃
P0 − � � · u0.

�26�

A. Kinetic energies and viscous dissipated
power

It is possible to obtain directly both kinetic energies and

viscous dissipated energies by considering the following

complex quantity X= �4 /�2��Ks�+ �4 /�2��K f�− j�1 /


�2�Wvis. Hence, X can be written as a function of the dis-

placement amplitude:

X = �
�

��̃11u02 + �̃12u0
*U0 + �̃12U0

*u0 + �̃22U02�d� .

�27�

By using Eq. �24�, one obtains

X = �
�

�̃u02 +
�2

�̃
22
* �4

�P02 +
2j�

�2
I	 �̃12

�̃22


u
0
* � P0d� .

�̃ = �̃11 −
�̃12

2

�̃22

. �29�

In order to use the modified �u , P� formulation
5

it is neces-

sary to recall the definition of the dynamic tortuosity
2 �̃ and

its consequence:

�̃ =
�̃22

�2

. ⇒ I	�12
˜

�22
˜

 = I	 1

�̃

 . �30�

Hence,

X = �2�
�

�̃u02 +
�2

�22
*̃�4

�P02 +
2j

�2
I	�

�̃

u

0
* � P0d�

�31�

�

�̃
= �̃ + h	1 +

Q̃

R̃

 ⇒ I	�

�̃

 = I��̃� . �32�

By identifying real and imaginary parts of X, it is pos-

sible to separate kinetic energies and viscous dissipated pow-

ers:

�K� =
�2

4
�

�

R��̃�u02 + R	 �2

�22
*̃�4


�P02

−
2

�2
I	�

�̃

I�u

0
* � P0�d� . �33�

The last expression can be separated into solid and fluid

parts,

�Ks� =
�2

4
�

�

�1u02d� , �34�

�K f� =
�2

4
�

�

R��̃ − �1�u02 + R	 �2

�22
*̃�4


�P02

−
2

�2
I	�

�̃

I�u

0
* � P0�d� . �35�

It is possible to define �̃ f = �̃−�1 in order to condense the

former expression.

The imaginary part of X allows for the obtention of the

viscous dissipated energy:

Wvis = − 
�2�
�

I��̃�u02 − I	 �2

�22
˜�4


�P02

+
2

�2
I	�

�̃

R�u

0
* � P0�d� . �36�

This last expression agree with the ones given by Sgard et

al.
8

B. Strain energy and thermal dissipation

Let us now consider the expressions of strain energies

together with thermal and structural dissipated powers. First,

TABLE I. Summary of the energy expressions in the case of �u ,U� formu-

lation.

�Ks� �2

4
���1u02d�

�K f� �2

4
���2U02−�12� u0−U02d�

�Wdef� 1

4
���̂r

s�u0� :�s�u
0
*�+Rr�� ·u0+� ·U02d�

�Ŵdef
s � 1

4
���̂r

s�u0� :��u
0
*�d�

�Ŵdef
f � Rr

4
���� ·u0+� ·U02d�

�Wdef
s � 1

4
���̂r

s�u0� :��u
0
*�+Qr�� ·u02+QrR�� ·U0� ·u

0
*�d�

�Wdef
f � Rr

4
���R�� ·u0� ·U

0
*�+ � ·U02d�

Wvis br
���u0−U02dS

Wstruct 
���̂i
s�u0� :��u

0
*�d�

Wth Ri
���� ·u0+� ·U02d�

   �28�

�̃ has been introduced by Atalla et al.
4 

and is defined by

5



�Ŵdef
s � and Wstruct remain unchanged as they depend only on

the solid displacement. A second set of expressions can eas-

ily be expressed by using Eq. �26�,

�Wdef� =
1

4
�

�

�̂r
s�u0�:�s�u

0
*� +

�2Rr

R̃2
P02d� , �37a�

�Ŵdef
f � =

�2Rr

4R̃2
�

�

P02d� , �37b�

Wth =
�2
Ri

R̃2
�

�

P02d� . �37c�

In order to obtain Eqs. �37b� and �37c�, two intermediate

results are given:

�
�

� · U02d� = �
�
	− �

R̃*
P

0
* − � � · u

0
*


�	− �

R̃
P0 − � � · u0
d�

= �
�

�2

R̃2
P02 + 2��R	� · u

0
*P0

R̃



+ �2� · u02d� ,

�
�

R�� · u0 � · U
0
*�d� = − �

�

R	 �

R̃*
� · u0P

0
*


+ �� · u02d� .

Therefore,

�Wdef
s � =

1

4
�

�

�̂r
s�u0�:��u

0
*� − QrR	�2

R̃*
� · u0P

0
*
d� ,

�38�

�Wdef
f � =

Rr

4
�

�

��R	� · u0 . P
0
*

R̃*

 +

�2

R̃2
P02d� . �39�

All the results for the modified �u , P� formulation are

summarized in Table II.

C. Discussion

It is necessary to underline that the �u , P� expressions of

missible field each one of these two motion equations.

Hence, two bilinear formulations are then obtained. The glo-

bal mixed formulation is obtained by adding equations of the

solid and fluid phase. It is interesting to note that every com-

bination of these two equations could have been used. Sev-

eral differences occur while comparing this sum to the ex-

pressions given in Sec. IV B.
4,5,8

Despite the remarks of this section, it is fundamental to

indicate that the numerical results obtained through the

finite-element discretization of the mixed formulations based

on Ref. 4 are correct even if the energetic interpretation of

these formulations must be handled with care. This is con-

firmed in Sec. V.

V. APPLICATION TO A MULTILAYERED PROBLEM

A. Presentation of the problem

The following is devoted to the adaptation of the ana-

lytical energetic indicators proposed in the preceding sec-

tions to a discretized problem. The convergence of finite el-

ement schemes is often made through global indicators, it is

then interesting to use the proposed ones. They are comple-

mentary to the mathematical L2 ones �mean square pressure

or velocity, for example� which do not have physical signifi-

cance. It is then necessary to investigate in which way they

are able to check the validity of a finite-element discretiza-

tion.

The configuration of interest is a monodimensional two

layer problem depicted in Fig. 1. The second layer is bonded

on a rigid wall and the first one is excited by a normalized

pressure plane wave. The properties of the two porous media

are given in Table III and the Appendix presents the expres-

TABLE II. Summary of the energy expressions in the case of modified

�u , P� formulation.

�Ks� �2

4
���1u02d�

�K f� �2

4
��R��̃ f�u02+R� �2

�22
˜ *�4 ��P02

−
2

�2
I��

�̃ �I�u
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*� P0�d�

�Wdef� 1
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���̂r
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0
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�2Rr
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P02d�

�Ŵdef
s � 1

4
���̂r
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�Ŵdef
f � �Rr

4R̃2
��P02d�

�Wdef
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4
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0
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�Wdef
f � Rr

4
����R�� ·u0 · P

0
*

R̃* �+
�2

R̃2
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Wvis −
�2��I��̃�u02−I� �2

�22
˜ �4 ��P02

+
2

�2
I��

�̃ �R�u
0
*� P0�d�

Wstruct 
���̂i
s�u0� :��u

0
*�d�

Wth
�2
Ri

R̃2
��P02d�

the stored energies proposed in Sec. IV B are not the ones 
which can be obtained by taking the real part of the classi-

cally called mixed poroelastic variational formulations.
4 

This 
identification, well known as a classical vibration problem 
�as well as the �u ,U� formulation�, is not valid in this case. 
The reason for this difference lies in the derivation of the 
mixed formulation,

4 
which is not obtained from the differen-

tiation of a Lagrangian density dealing with the whole po-

rous material �solid and fluid phase�. The methodology is in 
fact in two steps; the first one is the obtention of motion 
equations in terms of �u , P� fields for each phase. The second 
step of the method of Attala et al. is to multiply by an ad-

6



sions of the coefficients of the Biot–Allard
2

model. This

problem is numerically interesting as the acoustical behavior

of these two porous materials is more complex than the case

for a single porous structure. The second advantage is that an

exact analytical solution can be obtained. Hence, the accu-

racy of the discretization scheme can be estimated by a com-

parison to the exact analytical solution of the problem con-

sidered as reference. It is not the case of the convergence

analysis of poroelastic finite element models of the literature

for which the reference solution is a numerical overmeshed

discretized result.

B. Physical considerations

This simple problem can be solved analytically and the

methodology is as follows. The shear waves are not excited

by the normal incident plane wave and only the two com-

pressional waves are involved. The solid and fluid displace-

ments and the pressure can be written as a function of the

amplitude of these waves �similar to Allard’s
2

methodology�.
Nine unknowns are then involved �eight amplitude un-

knowns and the reflection coefficient R at the air–porous

interface�. The problem can be solved by way of the nine

following relations. At the rigid backing interface, one has

two relations: cancellation of the solid and total

displacement
13 �defined by u

t= �1−��u+�U�. At the two po-

rous substructure interface, four continuity relations are in-

volved �solid and total displacement, in vacuo stress tensor
13

and pressure�. At the air–porous interface there are three re-

lations: the air displacement is equal to the porous structure

total displacement, the in vacuo stress is null, and the pres-

sure is continuous. It is then possible to solve analytically

this nine linear equation system with Cramer’s determinant,

to find the amplitudes of the eight waves and then to deduce

the analytical expressions of the solid displacement and the

pressure. The energetic indicator of Tables I and II can be

deduced through a formal spatial integration.

It is interesting to first analyze the physics of the prob-

lem in order to point out the interest of energetic indicators.

All the results presented in this section correspond to the

analytical ones. Figures 2 and 3, respectively, present the

partial absorption of the left and the right layer in the

�1;500� Hz frequency band. �1� means nondimensional pa-

rameter. The classical absorption coefficient is defined as the

ratio of the absorbed power over the incident one. Each one

of these six partial absorption coefficients involves the re-

striction of this ratio to a particular mechanism for a consid-

ered layer. For example, the dash-dotted curve of Fig. 2 rep-

resents the dissipation by viscous effects in the first layer:

�vis
l =

Wvis
l

Wvis
l + Wstruct

l + Wth
l + Wvis

r + Wstruct
r + Wth

r
�1 − R2� .

�40�

The l and r exponents are related to the left and right layer,

respectively. These figures clearly show that viscous effects

FIG. 1. Configuration of the problem.

TABLE III. Material properties.

Material 1 Material 2

� �1� 0.952 0.937

 �N s m−4� 21300 50485

�� �1� 1.9 2.57

� ��m� 100 57.41

�� ��m� 300 61.62

�1 �kg m−3� 38.4 95.66

E �kPa� 30 66

�s �1� 0.04 0.105

d �cm� 5 5
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FIG. 2. Partial absorption coefficient of the first layer. Solid line: Structural

dissipation; dashed line: Thermal effects; and dash-dot line: Viscous effects.
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FIG. 3. Partial absorption coefficient of the second layer. Solid line: Struc-

tural dissipation; dashed line: Thermal effects; and dash-dot line: Viscous

effects.
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C. Convergence analysis

Several convergence studies of poroelastic finite-

element schemes were published in the past.
15–17

The meth-

ods proposed in these works could be considered as qualita-

tive in the sense that the convergence was shown and

analyzed but not compared to a model. In this paper, an

alternative method is proposed on a simple multilayer case.

The main objective of this section is to study the conver-

gence of the finite element method with the energetic indica-

tors and to obtain quantitative estimation of the validity of

the discretization by a comparison to a theoretical conver-

gence model. A finite-element scheme is of order d if

�X − Xh�I � C�I,��hd, �41�

where X and Xh are the exact and discretized solution, � · �I is

the norm associated with indicator I. h is the spatial discreti-

zation step. C�I ,�� is a quantitative parameter of the conver-

gence and d corresponds to the order of the interpolation set.

Relation �41� is more tractable in logarithm representation:

log��X − Xh�I� � log�C�I,��� + d log�h� . �42�

Hence the logarithm of the relative error is an affine function

of the logarithm of the discretization step whose slope �re-

spectively, y intercept� is d �respectively, log�C�I ,����. The

problem is discretized with both �u ,U� and �u , P� linear el-

ements with a regular spatial mesh. The numerical simula-

tions have been done in a frequency range from

100 to 3500 Hz with a 25 Hz step. For each frequency the

substructures are meshed with the same number of nodes.

This number of nodes goes from 5 to 300. Hence, more than

80 000 numerical simulations �137�296�2� were per-

formed. Three-hundred nodes for each layer are of course not

necessary to obtain an adequate solution in terms of indus-

trial classical approximation. It is nevertheless interesting

from a numerical point of view as it confirms for very refined

meshes the results obtained for standard ones.
18

Figure 6 �respectively, Fig. 7� presents the convergence

of the mean total energy �respectively, mean total dissipated
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FIG. 5. Ratio of the left layer over the right one. Solid line: Total dissipated

power and dashed line: Mean total energy.
FIG. 4. Ratio of the mean total energy in the solid phase over the fluid one. 
Solid line: first layer and dashed line: Second layer.

correspond to the major dissipation mechanism. It is a gen-

eral comment which is well known for sound-absorbing ma-

terials. In particular, it is interesting to notice that, at the 
resonance frequency of the solid wave �around 90 Hz�, the 
viscous effects vanish thereby reducing the global absorption 
of the system. In addition, the resonance of the fluid wave 
�around 200 Hz� corresponds to a maximum of absorption of 
the material induced by a strong contribution of viscous ef-

fects. In addition, the relative influence of thermal and struc-

tural effects mainly depends on the properties of the materi-

als: In the left layer, structural effects are predominant and in 
the right layer, thermal effects are predominant. This differ-

ence is of course explained by the comparison of structural 
coefficients � s and acoustical parameters of both materials.

Figure 4 presents the ratio of the mean total energy in 
the solid phase over the one of the fluid phase. It is of inter-

est to obtain the resonance of the solid-borne waves corre-

sponding to a maximum of this function. The maximum in 
the first and second layers do not perfectly coincide as the 
properties of the Biot waves are different, but they are close 
due to the boundary conditions between the structures induc-

ing a strong coupling of the solid phases of both materials. It 
can also be noticed that for higher frequencies, the energy is 
mainly in the fluid phase as suggested by Zwikker and 
Kosten

14 
and Biot.

1,2

Figure 5 presents both the ratio of total mean energy and 
dissipated power of the first layer over the second one. En-

ergy is of course mainly in the first layer than in the second 
one. It can be easily explained by pointing out that the acous-

tical wave enters by the left layer and that the second struc-

ture is bonded then vanishing the solid and fluid displace-

ments at the end of the material. A noticeable difference 
between the conservative curve and the dissipative one can 
be observed. There is no physical reason for an agreement of 
these indicators and it can be checked that the one corre-

sponding to dissipated powers is most influenced by the reso-

nance of the solid and fluid waves.
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energy� of the whole structure at 1 kHz in a log–log repre-

sentation. The error is plotted as a function of the discretiza-

tion step. In the considered case, both material layers have

the same discretization step to simplify the graphical repre-

sentation, nevertheless additional numerical investigation not

shown here for sake of conciseness allows one to generalize

these results even when the discretization steps of the two

layers are different.

It can be noticed that both relative errors tend to zero

with the discretization step. This means that both �u ,U� and

�u , P� discretization converge toward the exact analytical

value. Hence, even if there is an energetic ambiguity with the

mixed formulation, the authors want to underline once more

that there is no doubt about the results of the finite-element

discretization. In addition, it is also interesting to add a com-

ment on the order of the convergence. The two proposed

results �Figs. 6 and 7� are representative of the whole set of

simulations and one can identify an affine function of slope

around 1. This result means that the order d of the conver-

gence of linear finite element for these two energetic indica-

tors is equal to unity. Figures 6 and 7 enable one to identify

the value of the convergence parameters C�I ,�� as the expo-

nential of the y intercept of the linear interpolation line. This

value is a function of � as the physical parameters of the

model are themselves functions of the pulsation.

A fitting process has been done on the whole set of

simulations. It is as follows: For each frequency, relations

�42� are fitted and d and C�I ,�� are obtained. Figure 8 shows

the evolution of these two parameters C�I ,�� and d versus

the frequency for the kinetic energy of the fluid phase of the

second substructure. The value of C�I ,�� is divided by 60 in

order to plot the two evolutions on the same graph. It can be

noticed that for both formulations the order d is really close

to one for each frequency thereby validating that the ener-

getic convergence of the finite-element scheme for linear po-

roelastic elements is unity. This has been observed for all the

other indicators. In addition, function C�I ,�� is always a

crossing function of �. The spatial step must be shortened

with increasing frequencies. It can also be noticed that the

frequency evolution of C�I ,�� can be fitted through a linear

interpolation in this case. It is unfortunately not possible to

obtain a general interpolation for C�I ,�� law available for all

indicators.

This numerical study proposed a methodology to obtain

the quantitative parameters of the convergence of linear finite

elements for the proposed indicators. This result shows that

the proposed energetic indicators may be used to evaluate the

convergence of finite element schemes and that the order of

convergence is equal to one for all of them. Even if this

result could seem natural, it has never been checked. Further

investigations must be undertaken in order to model the evo-

lution of C�I ,�� and it is a perspective of this paper.

VI. CONCLUSION

This paper was devoted to the rigorous obtention of

stored energies �kinetic and strain� and dissipated ones for

porous materials described by the Biot–Allard model ex-

−9 −8 −7 −6 −5 −4
−8

−7

−6

−5

−4

−3

−2

Discretization step, logarithm scale

N
o

rm
o

f
re

la
ti
v
e

e
rr

o
r,

lo
g

a
ri
th

m
s
c
a

le

FIG. 6. Convergence of the mean total stored energy. Solid line: �u ,U�
formulation and dashed line: �u , P� formulation.
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pressed in �u ,U� and �u , P� formulations. It has been shown

that the classical techniques dealing with the real and imagi-

nary parts of the variational formulations are not valid and

must be handled with care. The methodology was based on

the mechanics and thermodynamics of open porous

continua.
11

Both kinetic and strain mean energies have been

given and separated into solid and fluid parts. The expres-

sions of energies dissipated over a cycle were also provided

for the three dissipation mechanisms. These expressions

could be very useful to identify the contributions of the dif-

ferent dissipation mechanisms to the sound absorption or the

damping induced by a sound package.

A numerical example has been considered to illustrate

the theoretical results. First, the validity of the analytical

expressions given in the preceding sections has been demon-

strated. Second, the convergence of the finite element

method has been shown to be of order one for the considered

energetic indicators. A methodology to obtain the quantita-

tive parameters of the convergence has also been applied to a

simplified case and must be furthered. It seems then interest-

ing to use these indicators to evaluate the convergence of

finite element methods.

APPENDIX: TOPICS ON BIOT–ALLARD MODEL

This Appendix provides the expressions of the inertial

and constitutive parameters of the Biot–Allard model All

these expressions can be found in Allard.
2

This model allows

one to find the expressions of the coefficient used in the

manuscript as a function of the material properties of Table

III. These expressions are given for a circular frequency �.

The viscous effects are modeled through b̃ coefficient

whose expression is

b̃ = j���0��̃ − ��� , �A1�

where �� is the geometric tortuosity, � is the porosity, and �0

is the density of the air. �̃ is the dynamic tortuosity defined

by

�̃ = 1 −
j�

���0�
�1 −

4j��
2 �a�0�

����2
, �A2�

 is the flow resistivity, �a is the dynamic viscosity of air,

and � is the viscous characteristic length. The thermal prop-

erties are given by the dynamic compressibility K̃eq:

K̃eq =
�P0

� − �� − 1��1 +
8�a

j��Pr��0

�1 +
j�0�Pr��

2

16�a

� ,

�A3�

where �� is the thermal characteristic length, Pr is the

Prandtl number, P0 is the ambient pressure, and � is the ratio

of specific heats of air. For sound-absorbing materials, one

has

Q̃ = ��1 − ��K̃eq, R̃ = �2K̃eq. �A4�

The structural mechanical parameters N and Â are given

by

N =
E�1 + j�s�

2�1 + ��
, Â =

2N�

1 − 2�
. �A5�
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