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I. INTRODUCTION

Porous materials are commonly used in noise control issues as passive devices for reducing both structure and airborne sound. Today, most of the vibroacoustic prediction tools are able to account for the coupling of structures with a porous medium. These tools are mainly based on Biot-Allard's 1,2 model. In noise control analysis, it is often desirable to understand how energy is stored and how power flows from one system component to the other. Two sets of poroelastic formulations can be distinguished: The first one deals with displacement formulations 1,2 and the second one is concerned with mixed formulations. [START_REF] Simon | Evaluation of u-w and u-finite element formulation for the dynamic response of saturated porous media using one-dimensional models[END_REF][START_REF] Atalla | A mixed displacement-pressure formulation for poroelastic materials[END_REF][START_REF] Atalla | Enhanced weak integral formulation for the mixed ͕u,P͖ poroelastic equations[END_REF] The finite-element modeling of porous material by the way of ͕u,U͖ [START_REF] Panneton | An efficient finite element scheme for solving the three-dimensional poroelasticity problem in acoustics[END_REF][START_REF] Göransson | A 3d, symmetric finite element formulation of the Biot equations with application to acoustic wave propagation through an elastic porous medium[END_REF] techniques or ͕u, P͖ [START_REF] Atalla | A mixed displacement-pressure formulation for poroelastic materials[END_REF][START_REF] Atalla | Enhanced weak integral formulation for the mixed ͕u,P͖ poroelastic equations[END_REF] techniques. ͕u, P͖ finite-element methods have shown their efficiency compared to displacement formulation [START_REF] Atalla | A mixed displacement-pressure formulation for poroelastic materials[END_REF][START_REF] Atalla | Enhanced weak integral formulation for the mixed ͕u,P͖ poroelastic equations[END_REF] and a key point to improve them is to study their convergence and their physical interpretation. Due to the biphasic nature of porous materials and also to the fact that in mixed pressure-displacement formulations the fields are of different nature, the derivation of the expressions of energies and powers in these media is not obvious; in particular they cannot be obtained through separating the real and imaginary parts of the variational formulations. In the past, only equations related to the dissipated powers have been presented in the case of Biot-Allard's ͕u, P͖ formulations. [START_REF] Sgard | A numerical model for the low frequency diffuse field sound transmission loss of double-wall sound barriers with elastic porous linings[END_REF][START_REF] Dazel | An extension of complex modes for the resolution of finite-element poroelastic problems[END_REF][START_REF] Dazel | Application of generalized complex modes for the calculation of the forced response of three dimensionnal porous structures[END_REF] The first objective of this paper is to rigorously derive the expressions of both stored and dissipated energies in poroelastic materials based on the theorem of kinetic energy in the framework of ͕u , U͖ and ͕u , P͖ formulations of Biot-Allard's poroelasticity equations. The second objective of this paper is to propose a quantitative convergence analysis of finite element scheme with the help of these indicators. This analysis shows that these indicators are of order one and can advantageously be used to check the validity of finite-element schemes.

In the following, the considered porous medium are usual sound absorbing materials like fibrous aggregates and foams. As acoustical applications are considered, the porous skeleton is assumed to be fully saturated by air. According to Biot's theory, the porous medium is considered as a superposition of a solid phase and fluid phase described by homogenized fields. K ͑respectively, W͒ denotes the total kinetic ͑respectively, strain͒ energy of the porous media. The separation of these two quantities into a solid part and a fluid part must be handled with particular care since one deals with homogenized quantities. In the porous material, three dissipation mechanisms associated with viscous and thermal effects together with structural damping occur. Unlike stored energies, the derivation of the dissipated powers into a solid and fluid part is more tractable since the physical phenomenon is intrinsically linked to a particular phase ͑solid phase for structural damping and fluid phase for viscous and thermal effects͒.

In this paper, a temporal dependency e jt is chosen. For a given quantity X, an index 0 will represent its complex amplitude so that X = X 0 e jt . R͑͒ and I͑͒ denote the real part and imaginary part functions of complex numbers, the star exponent is associated with the complex conjugation. a͒ Electronic mail: olivier.dazel@univ-lemans.fr Moreover, for all inertial and constitutive coefficients appearing in the model, a ͑ ˜͒ above a coefficient indicates that it is complex-valued and frequency-dependent. Y r and Y i refer to the real part and imaginary part of Y ˜, respectively.

The classical techniques, dealing with the real and imaginary parts of variational formulations, must be handled with care in the case of poroelastic problems. Hence, the methodology of our derivation is to express in the time domain the kinetic energy theorem and the thermodynamics first principle. Both of these theorems are expressed in the case of the ͕u , U͖ formulation as this one is fitted for a clear explanation and separation of the different physical mechanisms. This first step is, by itself, not original and has been applied in previous works for geomaterials. 1,[START_REF] Coussy | Mechanics of Porous Continua ͑Wiley[END_REF] Nevertheless, it has never been applied to acoustical materials involving frequency-dependent parameters and the link with the poroelastic ͕u , U͖ variational formulations has never been established. This first step is also interesting as the different notations and mechanisms can be defined. Once the temporal expressions of stored energies and dissipated powers are written, their mean value over a vibrating cycle can easily be obtained. The expressions of these indicators in the case of the ͕u , P͖ formulation are directly derived from the one of the displacement formulation through a variable change. Hence, no energetic demonstration is done in the case of the mixed formulation, but the expressions are derived from the displacement ones.

This paper is organized as follows. First, the equations of motion and stress-strain relationships for a saturated poroelastic material are recalled ͑Sec. II͒. Then the expressions of stored and dissipated energies are derived in the case of ͕u , U͖ formulation ͑Sec. III͒. These expressions are then provided in the case of the ͕u , P͖ formulation ͑Sec. IV͒.A simple example is then presented in order to illustrate and a quantitative and original convergence investigation of a finite-element scheme, based on the proposed indicators, is finally described in Sec. V.

II. OVERVIEW OF BIOT'S EQUATIONS

For sake of clarity, Biot-Allard's poroelasticity equations are first recalled in order to identify the different terms appearing in the expressions of the energies given in the following.

A. Equations of motion

The equations of motion of ͕u , U͖ formulation are 1

-2 1 u = ١ • s ͑u,U͒ + 2 12 ͑U -u͒ + jb ˜͑u -U͒, ͑1a͒ 
-2 2 U = ١ • f ͑u,U͒ + 2 12 ͑u -U͒ -jb ˜͑u -U͒. ͑1b͒
s ͑u , U͓͒ respectively, f ͑u , U͔͒ denotes the partial stress

1 = ͑1-͒ s , 2 = f , 12 =-f ͑␣ ϱ -1͒. ͑2͒
is the porosity, s is the skeleton material density, f is the interstitial fluid density, and ␣ ϱ refers to geometric tortuosity.

12 accounts for the interaction between the inertia forces of the solid and fluid phase. ͑j͒b ˜͑u -U͒ represents the contribution of viscous forces. It is worth noting that the real part b r and imaginary part b i of b ˜are respectively associated with the dissipative part of viscous forces and with the modification of tortuosity due to the added mass effect associated with the viscous behavior of the fluid in the pores. In order to simplify Eqs. ͑1a͒ and ͑1b͒ an apparent inertial mass can be introduced, hence the last two terms on the right-hand side of Eq. ͑1͒ can be grouped; this new coefficient provides a more compact writing but hides the two different phenomena ͑geometry and viscosity͒ in the real part ͑denoted by 12 Ј ͒.

B. Constitutive relations

In order to identify all the macroscopical coefficients, stress-strain relations must be considered. They read: 1,12

s ͑u,U͒ = A ˜١ • uI +2N ˆs ͑u͒ + Q ˜١ • UI, ͑3a͒ f ͑u,U͒ = R ˜١ • UI + Q ˜١ • uI. ͑3b͒
s ͑u͒ is the strain tensor of the fluid phase and I is the iden- tity tensor of rank 3. All the constitutive coefficients but N âre also complex and frequency dependent and their expression can be found in Biot and Willis's work. [START_REF] Biot | The elastic coefficients of the theory of consolidation[END_REF] Their complex and frequency-dependent nature is due to thermal effects; the real part corresponds to conservative effects ͑stress͒ and the imaginary part to thermal dissipative effects. It is important to note that A ˜is frequency dependent but can be split into two terms as

A ˜= A ˆ+ Q ˜2 R ˜, ͑4͒
where A ˆis linked to the property of the solid in vacuo and Q ˜2 / R ˜can be related to a restoring elastic force induced by the fluid phase on the solid phase. One can then introduce the in vacuo solid stress tensor:

ˆ͑u͒ = A ˆ١ • uI +2N ˆ͑u͒. ͑5͒
Unlike the partial stress tensor of the solid part, ˆ͑u͒ is independent of the motion of the fluid phase; in addition its constitutive coefficients do not depend on frequency since the contribution of the fluid phase has been withdrawn. This tensor plays an important role in the mixed formulation. Another interesting property is that in all cases, the ratio Q ˜/ R ˜is real so that a useful nondimensional real parameter can be defined tensor of the solid ͑respectively, fluid͒ phase. 1 , 2 , and 12 represent homogenized densities. They are given by

= Q R ˜= Q r R r = Q i R i R. ͑6͒
In order to take into account dissipation in the porous skeleton a hysteretic model is often used and it is then assumed that

A ˆ= A r + jA i = A͑1+j s ͒, N ˆ= N r + jN i = N͑1+j s ͒, ͑7͒
where s is the skeleton structural damping coefficient. Note that other damping models can be substituted. In order to make a distinction between conservative and dissipative effects let ˆr s ͑u͓͒ respectively, ˆi s ͑u͔͒ be the in vacuo tensor associated to the real ͑respectively, imaginary͒ part of coefficients.

III. EXPRESSIONS OF ENERGIES AND POWERS IN THE CASE OF ˆU,U‰ FORMALISM

A. Theorem of kinetic energy

The theorem of kinetic energy should be first expressed for Biot's equations. The methodology is inspired from the one presented in Ref. 11 and is based on the mechanics and thermodynamics of open continuous media. This paper extends Coussy's purpose to the case of acoustic materials and gives explicit expressions of all the terms of both ͕u , U͖ and ͕u , P͖ formulations which are not given in detail in the previous references.

The theorem of kinetic energy is a particular case of the theorem of virtual powers. This theorem stipulates that for any material subdomain and for any velocity field whether actual or virtual, the sum of the powers of external, inertia, and internal forces is zero; the kinetic energy corresponds to the case of the actual velocity field. In order to obtain the expression of theorem of virtual powers, the temporal point of view must be considered; hence, by introducing v ͑respectively, V͒, the complex velocity field of the solid ͑respectively, fluid͒ phase, Eq. ͑1͒ is rewritten in the time domain as

1 dR͑v͒ dt + 12 Ј d dt R͑V -v͒ = R͑١ • s ͑u,U͒͒ -b r R͑v -V͒, ͑8a͒ 
and 2 dR͑V͒ dt

+ 12 Ј d dt R͑v -V͒ = R͑١ • f ͑u,U͒͒ -b r R͑V -v͒. ͑8b͒ K = 1 2 ͵ ⍀ 1 R 2 ͑v͒ + 2 R 2 ͑V͒ -12 Ј R 2 ͑V -v͒d⍀.

͑9͒

In order to distinguish the powers of external and internal forces, Green's second formula is used and the term corresponding to the right-hand side of Eqs. ͑8a͒ and ͑8b͒ then reads:

P ext = Ͷ ץ⍀ R͑ s ͑u,U͒͒ • R͑v͒ •nd⌫ + Ͷ ץ⍀ R͑ f ͑u,U͒͒ • R͑V͒ •nd⌫, ͑10͒ P int = ͵ ⍀ R͑ s ͑u,U͒͒:R͑d s ͒ + R͑ f ͑u,U͒͒:R͑d f ͒ -b r R͑v -V͒ 2 d⍀, ͑11͒
where d s and d f are the time derivatives of strain tensors associated with the solid phase and fluid phase, respectively. The kinetic energy theorem is then in its classical form:

P ext = P int + DK Dt . ͑12͒

B. Expression of the first law

For dissipative media, the only use of the kinetic energy theorem is not sufficient to detail and separate the different aspects of energy stored and exchanged by the porous media. It is necessary to use the first law of thermodynamics, which expresses the conservation of energy in all its forms. This principle states that at any time, the material derivative of the total energy E is equal to the sum of the work rate P ext of the external forces acting upon the porous material and of the rate Q 0 of external heat supply. The total energy is in fact the sum of the kinetic energy K defined in the following and of the internal energy E associated with both the deformation of the media and the random, disordered motion of molecules at atomic scale:

DE Dt = P ext + Q 0 . ͑13͒
In the classical models used in acoustics of porous media, it is always assumed that this internal energy is only due to deformation effects without modification of the temperature of the matter. This is due to the high ratio of thermal conductivity to thermal capacity in both media which causes all the heat produced by dissipation mechanisms to go outside of the porous medium without warming it up.

By combining Eqs. ͑12͒ and ͑13͒, one obtains

DE Dt = Q 0 + P int . ͑14͒ 
Hence, the integration over a cycle of equations ͑12͒ and ͑13͒ leads to

In order to obtain the kinetic energy theorem, Eq. ͑8a͒ ͓respectively, ͑8b͔͒ is multiplied by R͑v͓͒respectively, R͑V͔͒, both equations are integrated on the porous domain ⍀ and the sum of the two obtained equations is performed. The resulting term corresponding to the left-hand side of Eqs. ͑8a͒ and ͑8b͒ can be interpreted as the total derivative of the total kinetic energy K defined by

͵ T P ext dt = ͵ T P int dt =-͵ T Q 0 dt. ͑15͒
The interpretation is as follows: If over a cycle, mechanical energy is algebraically provided to the system, an equal amount of heat is released by the porous medium; in other words, no energy is stored in the porous media. The transformation of nature of energy is due to the dissipation phenomena inside the porous medium which is more easily understandable by detailing P int . The latter is the sum of four terms:

P int = dW def -P vis -P str -P th ͑16͒

dW def corresponds to the conservative elastic effects defined by

dW def = ͵ ⍀ ˆr s ͑R͑u͒͒:R͑d s ͒ + R r ١ • R͑u + U͒ ١ • R͑v + V͒d⍀. ͑17͒
dW def is the material derivative of the strain energy W def defined by

W def = 1 2 ͵ ⍀ ˆr s ͑R͑u͒͒:R͑ s ͒ + R r ͑١ • R͑u + U͒͒ 2 d⍀.

͑18͒

P vis , P str , P th are the powers dissipated by viscous effects, structural damping, and thermal effects. They read:

P vis = ͵ ⍀ b r R 2 ͑v -V͒d⍀, ͑19a͒
P str = ͵ ⍀ ˆi s ͑I͑u͒͒:R͑d s ͒d⍀, ͑19b͒

P th = ͵ ⍀ R i ١ • I͑u + U͒ ١ • R͑v + V͒d⍀. ͑19c͒

C. Separation of energies stored in the solid and fluid part

The distinction between the solid and fluid is now undertaken to separate the contribution of each phase to K and W def .

The definition ͑9͒ of the kinetic energy K comprises three terms. The first one can be interpreted as the kinetic energy of the solid phase K s :

K s = 1 2 ͵ ⍀ 1 R 2 ͑v͒d⍀. ͑20͒
The last two terms represent the kinetic energy of the fluid phase K f :

K f = 1 2 ͵ ⍀ 2 R 2 ͑V͒ -12 Ј R 2 ͑V -v͒d⍀.

͑21͒

Let us now consider the strain energy. In Eq. ͑18͒, two terms appear. The first term ͑referred to in the following as W ˆdef s ͒ can easily be defined as the strain energy of the in vacuo solid phase. To interpret the second part, the stressstrain relation of the fluid phase must be considered. Since

- P R ˜= ١ •u+ ١ •U, ͑22͒
the second term can be expressed and defined as

W ˆdef f = 1 2 2 R r͵ ⍀ R 2 ͩ P R ˜ͪd⍀, ͑23͒
which can be interpreted as the strain energy of a closed fluid media. Nevertheless neither the solid is in vacuo, nor the media is closed. The best way to separate the solid and fluid phase is to go back to the partial stress tensor. Hence:

W def s = 1 2 ͵ ⍀ R͑ s ͑u,U͒͒:R͑ s ͑u͒͒d⍀ = 1 2 ͵ ⍀ ˆr s ͑R͑u͒͒:R͑ s ͒ + Q r ͑١ • R͑u + U͒͒ ١ • R͑u͒d⍀
is defined as the strain energy of the solid phase. The strain energy of the fluid phase reads:

W def f = 1 2 ͵ ⍀ R͑ f ͑u,U͒͒:R͑ s ͑u͒͒d⍀ = 1 2 ͵ ⍀ R r ͑١ • R͑u + U͒͒ ١ • R͑U͒d⍀.
Concerning the dissipated powers, there is no need to separate them into solid and fluid phases.

D. Time-averaged expressions

All the expressions given in the following are instantaneous values. As harmonic excitations are considered, it is more common to present time-averaged values. Table I summarizes the time-averaged expressions of kinetic and strain energies together with energies dissipated over a cycle through the considered mechanism. This energy is defined by W with the index corresponding to the considered mechanism. ͗.͘ is the time-average operator. For this formulation it is straightforward to check that these time-averaged expressions of the stored energies and dissipated powers are the ones that can be obtained with the help of the real and imaginary part of the variational formulations.

IV. EXPRESSIONS OF ENERGIES AND POWERS IN THE CASE OF ˆu,P‰ FORMULATION

In order to transpose the previous results obtained in the case of ͕u , U͖ formulation to the ͕u ; P͖ formulation, [START_REF] Atalla | A mixed displacement-pressure formulation for poroelastic materials[END_REF] a change of variable is performed. It is based on a combination of both the constitutive relation and the equation of motion of the fluid phase. Hence:

U = ˜22 2 ١ P - ˜12 ˜22 u ⇔ U 0 = ˜22 2 ١ P 0 - ˜12 ˜22 u 0 .

͑24͒

Recall that the apparent Biot densities are defined by

˜11 = 1 - ˜12 ; ˜22 = 2 - ˜12 . ͑25͒
In order to obtain the expressions of the strain energies and thermal and structural dissipated powers, it is necessary to calculate ١ •U 0 . It is directly given by the constitutive relation of the fluid phase:

١ •U=- R ˜P -١ •u⇔ ١ •U 0 =- R ˜P0 -١ •u 0 .

͑26͒

A. Kinetic energies and viscous dissipated power

It is possible to obtain directly both kinetic energies and viscous dissipated energies by considering the following complex quantity

X = ͑4 / 2 ͒͗K s ͘ + ͑4 / 2 ͒͗K f ͘ -j͑1 / 2 ͒W vis .
Hence, X can be written as a function of the dis- placement amplitude:

X = ͵ ⍀ ͑ ˜11 ͉u 0 ͉ 2 + ˜12 u 0 * U 0 + ˜12 U 0 * u 0 + ˜22 ͉U 0 ͉ 2 ͒d⍀.

͑27͒

By using Eq. ͑24͒, one obtains

X = ͵ ⍀ ˜͉u 0 ͉ 2 + 2 ˜22 * 4 ͉١P 0 ͉ 2 + 2j 2 I ͩ ˜12 ˜22 ͪ u 0 * ١ P 0 d⍀. ˜= ˜11 - ˜12 2 ˜22
. ͑29͒

In order to use the modified ͕u , P͖ formulation 5 it is necessary to recall the definition of the dynamic tortuosity 2 ␣ ˜and its consequence:

␣ ˜= ˜22 2 . ⇒ I ͩ 12 22 ͪ = I ͩ 1 ␣ ˜ͪ . ͑30͒
Hence,

X = 2 ͵ ⍀ ˜͉u 0 ͉ 2 + 2 22 * 4 ͉١P 0 ͉ 2 + 2j 2 I ͩ ␣ ˜ͪu 0 * ١ P 0 d⍀ ͑31͒ ␣ ˜= ␥ ˜+ h ͩ 1+ Q R ˜ͪ ⇒ I ͩ ␣ ˜ͪ = I͑␥ ˜͒. ͑32͒
By identifying real and imaginary parts of X, it is possible to separate kinetic energies and viscous dissipated powers:

͗K͘ = 2 4 ͵ ⍀ R͑ ˜͉͒u 0 ͉ 2 + R ͩ 2 22 * 4 ͪ ͉١P 0 ͉ 2 - 2 2 I ͩ ␣ ˜ͪI͑u 0 * ١ P 0 ͒d⍀. ͑33͒
The last expression can be separated into solid and fluid parts,

͗K s ͘ = 2 4 ͵ ⍀ 1 ͉u 0 ͉ 2 d⍀, ͑34͒ ͗K f ͘ = 2 4 ͵ ⍀ R͑ ˜-1 ͉͒u 0 ͉ 2 + R ͩ 2 22 * 4 ͪ ͉١P 0 ͉ 2 - 2 2 I ͩ ␣ ˜ͪI͑u 0 * ١ P 0 ͒d⍀. ͑35͒
It is possible to define ˜f = ˜-1 in order to condense the former expression.

The imaginary part of X allows for the obtention of the viscous dissipated energy:

W vis =-2 ͵ ⍀ I͑ ˜͉͒u 0 ͉ 2 -I ͩ 2 22 4 ͪ ͉١P 0 ͉ 2 + 2 2 I ͩ ␣ ˜ͪR͑u 0 * ١ P 0 ͒d⍀. ͑36͒
This last expression agree with the ones given by Sgard et al. 8

B. Strain energy and thermal dissipation

Let us now consider the expressions of strain energies together with thermal and structural dissipated powers. First, 

͗K s ͘ 2 4 ͐ ⍀ 1 ͉u 0 ͉ 2 d⍀ ͗K f ͘ 2 4 ͐ ⍀ 2 ͉U 0 ͉ 2 -12 Ј ͉u 0 -U 0 ͉ 2 d⍀ ͗W def ͘ 1 4 ͐ ⍀ ˆr s ͑u 0 ͒ : s ͑u 0 * ͒ + R r ͉ ١ •u 0 + ١ •U 0 ͉ 2 d⍀ ͗W ˆdef s ͘ 1 4 ͐ ⍀ ˆr s ͑u 0 ͒ : ͑u 0 * ͒d⍀ ͗W ˆdef f ͘ R r 4 ͐ ⍀ ͉ ١ •u 0 + ١ •U 0 ͉ 2 d⍀ ͗W def s ͘ 1 4 ͐ ⍀ ˆr s ͑u 0 ͒ : ͑u 0 * ͒ + Q r ͉١ •u 0 ͉ 2 + Q r R͑١ •U 0 ١ •u 0 * ͒d⍀ ͗W def f ͘ R r 4 ͐ ⍀ R͑١ •u 0 ١ •U 0 * ͒ + ͉١ •U 0 ͉ 2 d⍀ W vis b r ͐ ⍀ ͉u 0 -U 0 ͉ 2 dS W struct ͐ ⍀ ˆi s ͑u 0 ͒ : ͑u 0 * ͒d⍀ W th R i ͐ ⍀ ͉ ١ •u 0 + ١ •U 0 ͉ 2 d⍀ ͑28͒
has been introduced by Atalla et al. [START_REF] Atalla | A mixed displacement-pressure formulation for poroelastic materials[END_REF] and is defined by ͗W ˆdef s ͘ and W struct remain unchanged as they depend only on the solid displacement. A second set of expressions can easily be expressed by using Eq. ͑26͒,

͗W def ͘ = 1 4 ͵ ⍀ ˆr s ͑u 0 ͒: s ͑u 0 * ͒ + 2 R r ͉R ˜͉2 ͉P 0 ͉ 2 d⍀, ͑37a͒ ͗W ˆdef f ͘ = 2 R r 4͉R ˜͉2 ͵ ⍀ ͉P 0 ͉ 2 d⍀, ͑37b͒ W th = 2 R i ͉R ˜͉2 ͵ ⍀ ͉P 0 ͉ 2 d⍀. ͑37c͒
In order to obtain Eqs. ͑37b͒ and ͑37c͒, two intermediate results are given:

͵ ⍀ ͉١ •U 0 ͉ 2 d⍀ = ͵ ⍀ ͩ - R ˜* P 0 * -١ •u 0 * ͪ ϫ ͩ - R ˜P0 -١ •u 0ͪ d⍀ = ͵ ⍀ 2 ͉R ˜͉2 ͉P 0 ͉ 2 +2R ͩ ١ •u 0 * P 0 R ˜ͪ + 2 ͉١ •u 0 ͉ 2 d⍀, ͵ ⍀ R͑١ •u 0 ١ •U 0 * ͒d⍀ =-͵ ⍀ R ͩ R ˜* ١ •u 0 P 0 * ͪ + ͉١ •u 0 ͉ 2 d⍀.
Therefore,

͗W def s ͘ = 1 4 ͵ ⍀ ˆr s ͑u 0 ͒:͑u 0 * ͒ -Q r R ͩ 2 R ˜* ١ •u 0 P 0 * ͪ d⍀, ͑38͒ ͗W def f ͘ = R r 4 ͵ ⍀ R ͩ ١ •u 0 . P 0 * R ˜* ͪ + 2 ͉R ˜͉2 ͉P 0 ͉ 2 d⍀. ͑39͒
All the results for the modified ͕u , P͖ formulation are summarized in Table II.

C. Discussion

It is necessary to underline that the ͕u , P͖ expressions of missible field each one of these two motion equations. Hence, two bilinear formulations are then obtained. The global mixed formulation is obtained by adding equations of the solid and fluid phase. It is interesting to note that every combination of these two equations could have been used. Several differences occur while comparing this sum to the expressions given in Sec. IV B. [START_REF] Atalla | A mixed displacement-pressure formulation for poroelastic materials[END_REF][START_REF] Atalla | Enhanced weak integral formulation for the mixed ͕u,P͖ poroelastic equations[END_REF][START_REF] Sgard | A numerical model for the low frequency diffuse field sound transmission loss of double-wall sound barriers with elastic porous linings[END_REF] Despite the remarks of this section, it is fundamental to indicate that the numerical results obtained through the finite-element discretization of the mixed formulations based on Ref. 4 are correct even if the energetic interpretation of these formulations must be handled with care. This is confirmed in Sec. V.

V. APPLICATION TO A MULTILAYERED PROBLEM

A. Presentation of the problem

The following is devoted to the adaptation of the analytical energetic indicators proposed in the preceding sections to a discretized problem. The convergence of finite element schemes is often made through global indicators, it is then interesting to use the proposed ones. They are complementary to the mathematical L 2 ones ͑mean square pressure or velocity, for example͒ which do not have physical significance. It is then necessary to investigate in which way they are able to check the validity of a finite-element discretization.

The configuration of interest is a monodimensional two layer problem depicted in Fig. 1. The second layer is bonded on a rigid wall and the first one is excited by a normalized pressure plane wave. The properties of the two porous media are given in Table III and the Appendix presents the expres- 
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the stored energies proposed in Sec. IV B are not the ones which can be obtained by taking the real part of the classically called mixed poroelastic variational formulations. [START_REF] Atalla | A mixed displacement-pressure formulation for poroelastic materials[END_REF] This identification, well known as a classical vibration problem ͓as well as the ͕u,U͖ formulation͔, is not valid in this case. The reason for this difference lies in the derivation of the mixed formulation, [START_REF] Atalla | A mixed displacement-pressure formulation for poroelastic materials[END_REF] which is not obtained from the differentiation of a Lagrangian density dealing with the whole porous material ͑solid and fluid phase͒. The methodology is in fact in two steps; the first one is the obtention of motion equations in terms of ͕u, P͖ fields for each phase. The second step of the method of Attala et al. is to multiply by an ad-sions of the coefficients of the Biot-Allard 2 model. This problem is numerically interesting as the acoustical behavior of these two porous materials is more complex than the case for a single porous structure. The second advantage is that an exact analytical solution can be obtained. Hence, the accuracy of the discretization scheme can be estimated by a comparison to the exact analytical solution of the problem considered as reference. It is not the case of the convergence analysis of poroelastic finite element models of the literature for which the reference solution is a numerical overmeshed discretized result.

B. Physical considerations

This simple problem can be solved analytically and the methodology is as follows. The shear waves are not excited by the normal incident plane wave and only the two compressional waves are involved. The solid and fluid displacements and the pressure can be written as a function of the amplitude of these waves ͑similar to Allard's 2 methodology͒. Nine unknowns are then involved ͑eight amplitude unknowns and the reflection coefficient R at the air-porous interface͒. The problem can be solved by way of the nine following relations. At the rigid backing interface, one has two relations: cancellation of the solid and total displacement 13 ͓defined by u t = ͑1-͒u + U͔. At the two porous substructure interface, four continuity relations are involved ͑solid and total displacement, in vacuo stress tensor [START_REF] Dazel | An alternative Biot's displacement formulation for porous materials[END_REF] and pressure͒. At the air-porous interface there are three relations: the air displacement is equal to the porous structure total displacement, the in vacuo stress is null, and the pressure is continuous. It is then possible to solve analytically this nine linear equation system with Cramer's determinant, to find the amplitudes of the eight waves and then to deduce the analytical expressions of the solid displacement and the pressure. The energetic indicator of Tables I and II can be deduced through a formal spatial integration.

It is interesting to first analyze the physics of the problem in order to point out the interest of energetic indicators. All the results presented in this section correspond to the analytical ones. Figures 2 and3, respectively, present the partial absorption of the left and the right layer in the ͓1 ; 500͔ Hz frequency band. ͑1͒ means nondimensional parameter. The classical absorption coefficient is defined as the ratio of the absorbed power over the incident one. Each one of these six partial absorption coefficients involves the restriction of this ratio to a particular mechanism for a considered layer. For example, the dash-dotted curve of Fig. 2 represents the dissipation by viscous effects in the first layer:

␣ vis l = W vis l W vis l + W struct l + W th l + W vis r + W struct r + W th r ͑1-͉R͉ 2 ͒.

͑40͒

The l and r exponents are related to the left and right layer, respectively. These figures clearly show that viscous effects 

C. Convergence analysis

Several convergence studies of poroelastic finiteelement schemes were published in the past. [START_REF] Dauchez | Convergence of poroelastic finite elements based on Biot displacement formulation[END_REF][START_REF] Hörlin | A 3D hierarchical FE formulation of Biot's equations for elasto-acoustic modelling of porous media[END_REF][START_REF] Rigobert | Investigation of the convergence of the mixed displacement-pressure formulation for three-dimensional poroelastic materials using hierarchical elements[END_REF] The methods proposed in these works could be considered as qualitative in the sense that the convergence was shown and analyzed but not compared to a model. In this paper, an alternative method is proposed on a simple multilayer case. The main objective of this section is to study the convergence of the finite element method with the energetic indicators and to obtain quantitative estimation of the validity of the discretization by a comparison to a theoretical convergence model. A finite-element scheme is of order

d if ʈX -X h ʈ I Ϸ C͑I,͒h d , ͑41͒
where X and X h are the exact and discretized solution, ʈ • ʈ I is the norm associated with indicator I. h is the spatial discretization step. C͑I , ͒ is a quantitative parameter of the convergence and d corresponds to the order of the interpolation set. Relation ͑41͒ is more tractable in logarithm representation: log͑ʈX -X h ʈ I ͒Ϸlog͓C͑I,͔͒ + d log͑h͒. ͑42͒

Hence the logarithm of the relative error is an affine function of the logarithm of the discretization step whose slope ͑respectively, y intercept͒ is d ͑respectively, log͓C͑I , ͔͒͒. The problem is discretized with both ͕u , U͖ and ͕u , P͖ linear elements with a regular spatial mesh. The numerical simulations have been done in a frequency range from 100 3500 Hz with a 25 Hz step. For each frequency the substructures are meshed with the same number of nodes. This number of nodes goes from 5 to 300. Hence, more than 80 000 numerical simulations ͑137ϫ 296ϫ 2͒ were performed. Three-hundred nodes for each layer are of course not necessary to obtain an adequate solution in terms of industrial classical approximation. It is nevertheless interesting from a numerical point of view as it confirms for very refined meshes the results obtained for standard ones. [START_REF] Dazel | Component mode synthesis for porous media[END_REF] Figure 6 ͑respectively, Fig. 7͒ presents the convergence of the mean total energy ͑respectively, mean total dissipated correspond to the major dissipation mechanism. It is a general comment which is well known for sound-absorbing materials. In particular, it is interesting to notice that, at the resonance frequency of the solid wave ͑around 90 Hz͒, the viscous effects vanish thereby reducing the global absorption of the system. In addition, the resonance of the fluid wave ͑around 200 Hz͒ corresponds to a maximum of absorption of the material induced by a strong contribution of viscous effects. In addition, the relative influence of thermal and structural effects mainly depends on the properties of the materials: In the left layer, structural effects are predominant and in the right layer, thermal effects are predominant. This difference is of course explained by the comparison of structural coefficients s and acoustical parameters of both materials.

Figure 4 presents the ratio of the mean total energy in the solid phase over the one of the fluid phase. It is of interest to obtain the resonance of the solid-borne waves corresponding to a maximum of this function. The maximum in the first and second layers do not perfectly coincide as the properties of the Biot waves are different, but they are close due to the boundary conditions between the structures inducing a strong coupling of the solid phases of both materials. It can also be noticed that for higher frequencies, the energy is mainly in the fluid phase as suggested by Zwikker and Kosten [START_REF] Zwikker | Sound Absorbing Materials ͑Elsevier[END_REF] and Biot. 1,2 Figure 5 presents both the ratio of total mean energy and dissipated power of the first layer over the second one. Energy is of course mainly in the first layer than in the second one. It can be easily explained by pointing out that the acoustical wave enters by the left layer and that the second structure is bonded then vanishing the solid and fluid displacements at the end of the material. A noticeable difference between the conservative curve and the dissipative one can be observed. There is no physical reason for an agreement of these indicators and it can be checked that the one corresponding to dissipated powers is most influenced by the resonance of the solid and fluid waves. energy͒ of the whole structure at 1 kHz in a log-log representation. The error is plotted as a function of the discretization step. In the considered case, both material layers have the same discretization step to simplify the graphical representation, nevertheless additional numerical investigation not shown here for sake of conciseness allows one to generalize these results even when the discretization steps of the two layers are different.

It can be noticed that both relative errors tend to zero with the discretization step. This means that both ͕u , U͖ and ͕u , P͖ discretization converge toward the exact analytical value. Hence, even if there is an energetic ambiguity with the mixed formulation, the authors want to underline once more that there is no doubt about the results of the finite-element discretization. In addition, it is also interesting to add a comment on the order of the convergence. The two proposed results ͑Figs. 6 and 7͒ are representative of the whole set of simulations and one can identify an affine function of slope around 1. This result means that the order d of the conver-gence of linear finite element for these two energetic indicators is equal to unity. Figures 6 and7 enable one to identify the value of the convergence parameters C͑I , ͒ as the exponential of the y intercept of the linear interpolation line. This value is a function of as the physical parameters of the model are themselves functions of the pulsation.

A fitting process has been done on the whole set of simulations. It is as follows: For each frequency, relations ͑42͒ are fitted and d and C͑I , ͒ are obtained. Figure 8 shows the evolution of these two parameters C͑I , ͒ and d versus the frequency for the kinetic energy of the fluid phase of the second substructure. The value of C͑I , ͒ is divided by 60 in order to plot the two evolutions on the same graph. It can be noticed that for both formulations the order d is really close to one for each frequency thereby validating that the energetic convergence of the finite-element scheme for linear poroelastic elements is unity. This has been observed for all the other indicators. In addition, function C͑I , ͒ is always a crossing function of . The spatial step must be shortened with increasing frequencies. It can also be noticed that the frequency evolution of C͑I , ͒ can be fitted through a linear interpolation in this case. It is unfortunately not possible to obtain a general interpolation for C͑I , ͒ law available for all indicators.

This numerical study proposed a methodology to obtain the quantitative parameters of the convergence of linear finite elements for the proposed indicators. This result shows that the proposed energetic indicators may be used to evaluate the convergence of finite element schemes and that the order of convergence is equal to one for all of them. Even if this result could seem natural, it has never been checked. Further investigations must be undertaken in order to model the evolution of C͑I , ͒ and it is a perspective of this paper.

VI. CONCLUSION

This paper was devoted to the rigorous obtention of stored energies ͑kinetic and strain͒ and dissipated ones for porous materials described by the Biot-Allard model ex- pressed in ͕u , U͖ and ͕u , P͖ formulations. It has been shown that the classical techniques dealing with the real and imaginary parts of the variational formulations are not valid and must be handled with care. The methodology was based on the mechanics and thermodynamics of open porous continua. [START_REF] Coussy | Mechanics of Porous Continua ͑Wiley[END_REF] Both kinetic and strain mean energies have been given and separated into solid and fluid parts. The expressions of energies dissipated over a cycle were also provided for the three dissipation mechanisms. These expressions could be very useful to identify the contributions of the different dissipation mechanisms to the sound absorption or the damping induced by a sound package.

A numerical example has been considered to illustrate the theoretical results. First, the validity of the analytical expressions given in the preceding sections has been demonstrated. Second, the convergence of the finite element method has been shown to be of order one for the considered energetic indicators. A methodology to obtain the quantitative parameters of the convergence has also been applied a simplified case and must be furthered. It seems then interesting to use these indicators to evaluate the convergence of finite element methods.

APPENDIX: TOPICS ON BIOT-ALLARD MODEL

This Appendix provides the expressions of the inertial and constitutive parameters of the Biot-Allard model All these expressions can be found in Allard. 2 This model allows one to find the expressions of the coefficient used in the manuscript as a function of the material properties of Table III. These expressions are given for a circular frequency .

The viscous effects are modeled through b ˜coefficient whose expression is b ˜= j 0 ͑␣ ˜-␣ ϱ ͒, ͑A1͒

where ␣ ϱ is the geometric tortuosity, is the porosity, and 0 is the density of the air. ␣ ˜is the dynamic tortuosity defined by ␣ ˜=1-j ␣ ϱ 0 ͱ1-4j␣ ϱ 2 a 0 ͑⌳͒ 2 , ͑A2͒

is the flow resistivity, a is the dynamic viscosity of air, and ⌳ is the viscous characteristic length. The thermal properties are given by the dynamic compressibility K ˜eq :

K ˜eq = ␥P 0 ␥ -͑␥ -1͒ͫ1+ 8 a j⌳ЈPr 0 ͱ1+ j 0 Pr⌳Ј 2 16 a ͬ , ͑A3͒
where ⌳Ј is the thermal characteristic length, Pr is the Prandtl number, P 0 is the ambient pressure, and ␥ is the ratio of specific heats of air. For sound-absorbing materials, one has

Q ˜= ͑1-͒K ˜eq , R ˜= 2 K ˜eq . ͑A4͒
The structural mechanical parameters N and A ˆare given by

N = E͑1+j s ͒ 2͑1+͒ , A ˆ= 2N 1-2 . ͑A5͒
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 2 FIG. 2. Partial absorption coefficient of the first layer. Solid line: Structural dissipation; dashed line: Thermal effects; and dash-dot line: Viscous effects.
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 3 FIG. 3. Partial absorption coefficient of the second layer. Solid line: Structural dissipation; dashed line: Thermal effects; and dash-dot line: Viscous effects.
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 5 FIG. 5. Ratio of the left layer over the right one. Solid line: Total dissipated power and dashed line: Mean total energy.

FIG. 8 .

 8 FIG.6. Convergence of the mean total stored energy. Solid line: ͕u , U͖ formulation and dashed line: ͕u , P͖ formulation.

TABLE I .

 I Summary of the energy expressions in the case of ͕u , U͖ formulation.

TABLE II .

 II Summary of the energy expressions in the case of modified ͕u , P͖ formulation.
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