Olivier Dazel 
email: olivier.dazel@univ-lemans.fr
  
Bruno Brouard 
  
Nicolas Dauchez 
  
Alan Geslain 
  
Claude-Henri Lamarque 
  
AFree Interface CMS Technique to the Resolution of Coupled Problem Involving Porous Materials, Application to aMonodimensional Problem

This paper proposes aComponent Mode Synthesis technique for the resolution of problems involving coupled substructures including porous materials. This technique is based on normal modes. Amodal subfamily is se-lected for each substructure. Attachment modes are added in order to take into account the influence of non preserved modes. These attachment modes concern both the interface between substructures through interaction forces as well as the external excitation on substructures. Asimple criterion based on the evaluation of aresidual vector is proposed and allows an automatic selection of the number of preserved modes. The method is compared to an analytical model in the case of two 1D configurations. The ability of the method to handle coupled systems is shown. The proposed approach perfectly matches with the analytical solution.

Introduction 1.Context

Porous materials are heterogeneous media made up of a porous elastic skeleton saturated by afl uid. Assembled structures including porous materials are commonly used in manye ngineering applications in order to dissipate acoustical or mechanical energy (sound absorption, sound insulation, damping) [ 1,[START_REF] Dauchez | Investigation and modelling of damping in aplate with abonded porous layer[END_REF][START_REF] Dazel | Expressions of dissipated powers and stored energies in poroelastic media modeled by [bold u],[bold U] and [bold u],P formulations[END_REF]. In these structures, damping is often due to the inner dissipation mechanisms of the porous material and the optimization of noise control solutions based on the use of such materials requires the development of robust predicting tools.

The dynamical behaviour of porous structures is classically obtained from homogenized models and particularly Biot-Allard'st heory [4,5,6,1] which is based on continuous fields mechanics approach. The homogenized porous media is modeled as the superposition of twocontinuous fields whose inertial and constitutive coefficients are givenb yp henomenological relations. In manyi ndustrial and physical cases, the response of an aggregate structure including porous media to external forces cannot be obtained analytically and it is necessary to use numerical methods to solvet he problem. Finite element method is then often used to discretize the poroelastic variational formulation [7,8,[START_REF] Panneton | An efficient finite element scheme for solving the three-dimensional poroelasticity problem in acoustics[END_REF]10,11,12,13]. All of these formulations consider the solid displacement u s as unknown of the problem and theyd i ff er by the choice of the second field. Some of them [7, 8, 9, 10, 13] (also called displacement formulations)consider an other displacement (fluid, relative flow, total displacement)t hereby leading to a6 degrees of freedom (dof )p roblem; other ones [11,12] (called mixed formulations)propose to use the interstitial pressure P and correspond to a4dof per node problem. However, these numerical models lead to large size linear systems (frequencyd ependent and complexv alued). The development of adapted techniques which can reduce the computational cost of the problem to be solved is then of the utmost importance. Different solutions have still been investigated [START_REF] Hörlin | A3Dhierarchical FE formulation of Biot'sequations for elasto-acoustic modelling of porous media[END_REF]15,16] based on the improvement of the finite element discretization or the use of specificassumptions.

Another wayt or educe the complexity of the models is to develop aC omponent Mode Synthesis (CMS)t echnique [17,[START_REF] Craig | Areview of time-domain and frequencydomain component-mode synthesis methods[END_REF][START_REF] Hurty | Dynamic analysis of structural systems using component modes[END_REF][START_REF] Craig | Substructure coupling for dynamic analysis and testing[END_REF] for structures involving porous materials. The CMS technique consists in dividing an aggregate structure into substructures on which am odal analysis technique is individually performed. The first modes of each substructure are only considered and attachment modes associated to the static response of the non preserved modes are added to obtain ag lobal modal basis of the whole structure. Manyreviews on the subject have been undertaken [17,[START_REF] Craig | Areview of time-domain and frequencydomain component-mode synthesis methods[END_REF][START_REF] Hurty | Dynamic analysis of structural systems using component modes[END_REF][START_REF] Craig | Substructure coupling for dynamic analysis and testing[END_REF][START_REF] Tournour | Validation, performance, convergence and application of free interface components mode synthesis[END_REF][START_REF] Tournour | Pseudostatic corrections for the forced vibroacoustic response of astructure-cavity system[END_REF][START_REF]Nastran advanced dynamics analysis user'sg uide[END_REF] and the reader can refer to them.

CMS techniques where mainly used for solid and fluid structures buttheir application to porous material is more recent [START_REF] Dazel | An extension of complexmodes for the resolution of finite-element poroelastic problems[END_REF][START_REF] Dazel | Application of generalized complexm odes to the calculation of the forced re-sponse of three dimensional poroelastic materials[END_REF][START_REF] Sgard | Amodal reduction technique for the finite element formulation of Biot's poroelasticity equations in acoustics applied to multilayered structures[END_REF] and only devoted to the case of single porous structure. Sgard et al. [START_REF] Sgard | Amodal reduction technique for the finite element formulation of Biot's poroelasticity equations in acoustics applied to multilayered structures[END_REF] proposed ad ecoupled modal analysis for mixed formulations which appears limited for three dimensional problems and nevera pplied to coupled systems. Dazel et al. [START_REF] Dazel | An extension of complexmodes for the resolution of finite-element poroelastic problems[END_REF][START_REF] Dazel | Application of generalized complexm odes to the calculation of the forced re-sponse of three dimensional poroelastic materials[END_REF] proposed ag eneralized complexmodes technique for poroelastic problems for {u s ,P}problems. More recently the authors present an ew displacement formulation [START_REF] Dazel | An alternative Biot's displacement formulation for porous materials[END_REF] (called total formulation or {u s , u t } formulation)a nd resolution techniques based on normal modes. The difference between these last twoa pproaches first lies in the simplicity to compute the eigenmodes of the problem: the first technique wasbased on an extended space and complexm odes as the second one is based on normal modes, easier to compute for a non-specialist.

The purpose of this paper is to propose afree interface CMS technique based on normal modes to calculate the forced response of structures involving porous materials. This technique is based on classical concept of substructuring techniques butt he originality is to apply it to the case of frequencydependent problems. Normal modes associated based on the discretized spatial operators of each phase are first computed so as to avoid frequencyd ependent coefficients. As as election of them is not sufficient to approximate the solution of the problem, attachment modes are added. Some of them are associated to junction degrees of freedom and others are associated to the excitation (also considered in references [START_REF] Tournour | Validation, performance, convergence and application of free interface components mode synthesis[END_REF][START_REF] Tournour | Pseudostatic corrections for the forced vibroacoustic response of astructure-cavity system[END_REF]). Modal shapes are multiplied and combined at each frequencytotakeinto account for frequencyd ependent coefficients. As econd originality of this paper is to propose an automatic selection procedure. It is then successfully applied to monodimensional problems.

Section 2p resents the CMS technique of interest. The technique is then applied to aporous-porous (resp. porousair)multilayered problem in section 3(resp. 4).Section 5 concludes the paper.

Theoretical part

Discrete nodal problem

The structure of interest is composed of only 2s ubstructures. In all the paper and so as to simplify reading of the manuscript, notations relative to the second substructure correspond to the primed of the ones of the first substructure; theythereby won'tbedefined explicitly.Ifmore than 2s ubstructures are involved, generalization of this methodology can be proceeded. The discrete problem in the frequencydomain can be written in the form

  [A][ 0 ][ λ ] [ 0 ][ A ][ λ ] [ λ ] t [ λ ] t [ 0 ]      u u f    =    F F 0    . ( 1 
)
u is the discretized field vector (orp hysical coordinates vector)o fl ength n,[ A ]i st he discrete matrix of the first substructure and F is the external force acting on the first substructure. In equation ( 1),Lagrange multipliers are involved to ensure continuity relations (force and displacement)a tthe interface between the twosubstructures. The number of these relations correspond to the number of degrees of freedom at the interface and is denoted by n j .This number is rather small compared to n and n . f is an additional unknown vector of length n j associated to the coupling conditions and -[λ][f]can be interpreted as the force from substructure 2onsubstructure 1.

Modal representation

This paragraph presents the formal modal decomposition of substructure 1. The discrete modal decomposition in the frequencydomain of the response u(E,ω)toanexcitation E can be written in the following form:

u(E,ω) = m i=1 Φ i q i (E,ω) S(E,ω) + n i=m+1 Φ i q i (E,ω) H(E,ω) . ( 2 
)
Φ i (i = 1.
.n)a re the eigenmodes and q i (i = 1..n)a re the modal coordinates. From ap urely mathematical point of view, there is equivalence between the problem in physical or modal coordinates as fara st he modal basis [Φ] = [Φ i ] i (i=1..n) is complete. In most cases, these modes are the first one (i.e. the one with the lowest eigen-frequencies).

The other modes only contribute through their flexibility.

Excitation force E on substructure 1i st he sum of the twofollowing terms: F is associated to known external excitation and F to interaction forces with substructure 2. This second force has n j non-null components. Let ξ be the vector of length n j of the unknown forces at the interface. One has

F = 1 j ξ, (3) 
with [1 j ]t he n × n j matrix in which 1 j corresponds to ab oolean vector of length n in which the only non null value is associated to dof j of the interface. One then obtains n j + 1additional modes (called attachment modes); n j of them (denoted by H(1 j , 0))a re associated with the interface and one (denoted by H(F, 0))a ssociated to the external excitation. The discrete displacement field can then be approximated by

u(E,ω) ≈ m i=1 Φ i q i +H(F,0)q F + H(1 j , 0) ξ. (4)
q F is the unknown contribution of the attachment mode associated to the excitation. Note that this contribution is equal to 1atzero frequency. [Φ]corresponds to the matrix of the first m modes of substructure 1. Attachment mode associated to the force H(F, 0) is added to the modal family. q is the m + 1unknown vector of contributions of the modes.

General modal resolution procedure

Problem (1) can be rewritten in the following form:

  [A][ 0 ] [ 0 ][ A ] [ λ ] t [ λ ] t   u u =    F + F F + F 0    , F = -[ λ ][f], F = -[λ ][f]. (5) 
F and F are the interaction forces between the substructures and have non null values only at the degree of freedom corresponding to the interface (and although theyare in the right hand side of equation (5),t heyr emain unknowns of the problem).

As interaction forces are unknowns of the problem, elimination should be done. Continuities of displacements corresponds to the last row-block of problem (5) and one has

Φ b |H b (F, 0) q + H b (1 j , 0) ξ + Φ b |H b (F , 0) q + H b (1 j , 0) ξ = 0, (6) 
with

H b (1 j , 0) = λ t H(1 j , 0) Φ b = λ t Φ , H b (F, 0) = λ t H(F, 0). ( 7 
)
Interaction force vector ξ is then solution of the problem

H b (1 j , 0) -H b (1 j , 0) [R b ] ξ = Φ b |H b (F, 0) q + Φ b |H b (F , 0) q . ( 8 
)
[R b ]i san j ×n j matrix which can be inverted to express ξ as afunction of the modal contributions. The nodal displacements are finally givenby

u u ≈ Ψ q q , ( 9 
)
with

Ψ = [Φ|H(F, 0)] [0] [0] [Φ |H (F , 0)] + H(1 j , 0) R b -1 Φ b |H b (F, 0) -H (1 j , 0) R b -1 Φ b |H b (F, 0) (10) 
H(1 j , 0) R b -1 Φ b |H b (F , 0) -H (1 j , 0) R b -1 Φ b |H b (F , 0) .
Fora ny contributions q and q ,t he methodology ensures the continuity relations on displacement and force for the unknown nodal vector in [START_REF] Panneton | An efficient finite element scheme for solving the three-dimensional poroelasticity problem in acoustics[END_REF].T he projection of problem (1) in which Lagrange multipliers, nowuseless, are omitted on the [Ψ]family leads to areduced problem. This technique is called FICMT (Force Interface Corrected Modal Technique). In order to evaluate its accuracy, it is compared to methods of the literature. If attachment modes H(F, 0) are not considered, only the correction at the interface is taken into account; it corresponds to Craig and Chang technique [17,[START_REF] Craig | Areview of time-domain and frequencydomain component-mode synthesis methods[END_REF] and this technique is denoted ICMT (Interface Corrected Modal Technique). If no correction is considered (Direct Modal Technique or DMT), problem ( 1) is projected on the matrix of free-modes aggregated with an identity matrix for Lagrange multipliers.

Automatic selection of the modes

One keypoint of modal techniques is to findthe adequate number of modes in the selection of each modal basis. Some empirical criterion are often used (asf or example to preservem odes with eigenfrequencies lower to twice the frequencyo fe xcitation). In this section an automatic selection procedure is proposed. The idea of the method is to compare the accuracyofthe modal solution in terms of residual.

Let Ǔ (displacement vector (oflength nn j )ofthe first substructure of degrees of freedom which do not belong to the boundary), Ǔb (common displacement vector)b et he solution of the modal problem obtained with aselection of m and m modes. One residual vector can be computed for each substructure,

R = [ Ǎ][ 0 ] [ 0 ][ Ǎ b ] Ǔ Ǔb - F Fb R = [ Ǎb ][ 0 ] [ 0 ][ Ǎ ] Ǔb Ǔ -Fb F . ( 11 
)
These residuals (which should be null if the displacements correspond to the exact ones)a llowt oc ontrol the number of modes for each substructure. There is aneed of two scalar parameters ε and ε that must be chosen. If R >ε, the number of modes for the first substructure is not sufficient and m is incremented. Similar procedure can be done for second substructure. Hence, the modal families can be selected separately for the twos ubstructures. In the case of abandwidth frequencyresolution, the method is as follows. 1m ode is selected for both substructures and the modal resolution is undertaken. If the criterion condition are verified the following frequencyi sc onsidered. In the other case amode is added to the substructure having the maximum R /ε ratio and the modal resolution is done another time. The procedure is continued until the criterion are reached for both substructures; when it is the case the following frequencyisconsidered. Choice of ε and ε is crucial and is the keyp oint of this automatic selection procedure. Examples are giveninthe application section.

Porous-porous structure

In this section, the monodimensional problem (depicted in Figure 1) of twop orous structures bonded onto ah ard backing is studied. Each piece, of thickness 2cm, is discretized by finite-element using the {u s , u t } formulation. N and N elements are respectively considered for the first and second layer.Properties of the media are giveninT able I.

Discretized problem in physical coordinates

The nodal problem (1) for the case of interest reads [13]

          P [K 0 ][ 0 ] [ 0 ][ 0 ] λ s 0 [ 0 ] K eq [K 0 ] [0][ 0 ] 0 λ t [ 0 ][ 0 ] P [ K 0 ][ 0 ]λ s 0 [ 0 ][ 0 ] [ 0 ] K eq [K 0 ] 0 λ t λ t s 0 t λ t s 0 t 00 0 t λ t t 0 t λ t t 00         -ω 2         ρ s [ M 0 ] γ ρ eq [M 0 ] [0][ 0 ] 00 γ ρ eq [M 0 ] ρ eq [M 0 ] [0][ 0 ] 00 [ 0 ][ 0 ] ρ s [ M 0 ] γ ρ eq [M 0 ] 00 [ 0 ][ 0 ] γ ρ eq [M 0 ] ρ eq [M 0 ] 00 0 t 0 t 0 t 0 t 00 0 t 0 t 0 t 0 t 00           •    u s u t u s u t f s f t    =    F s F t F s F t 0 0    (12) 
Physical parameters areobtained with the Biot-Allard theory and expressions can be found in Appendix A1. For each porous structure solid and total displacement are discretized with linear finite element and the same mesh is used. The values of [K 0 ]a nd [M 0 ]c an be found in Appendix A2. Dirichlet conditions are imposed on the second substructure; hence n = 2(N + 1) and n = 2N . u s and u t (resp. u s and u t )c orrespond to the solid and total displacement nodal vector which are both of length N + 1(resp. N )f or the first (resp. second)s ubstructure. As {u s , u t } formulation [13] is considered the continuity relations are simple and λ s = λ t (resp. λ s = λ t )i sav ector of length N + 1(resp. N )w hose only non-null component is 1( resp. -1) at the last (resp. the first)i ndex.

Hence, the last twol ines correspond to the continuity of the solid and total displacements. f s and f t correspond to interaction forces (for the solid in-vacuo and the pressure) and are both scalar unknowns of the problem. Concerning forces in the right hand side, the only non-null value is a unit force on the first degree of freedom of F t .

Modal shapes of the problem and DMT

The each one of the porous, the solid and total displacements should be approximated by amodal decomposition. If no correction is applied for non preserved modes (DMT), displacements are expressed in their modal form and Lagrange multipliers are kept. Hence, one has

   u s u t u s u t f s f t    =       [Φ][ 0 ] [ 0 ][ 0 ][ 0 ] [ 0 ][ Φ ] [ 0 ][ 0 ][ 0 ] [ 0 ][ 0 ][ Φ ][ 0 ] [ 0 ] [ 0 ][ 0 ] [ 0 ][ Φ ][ 0 ] [ 0 ][ 0 ] [ 0 ][ 0 ][ I 2 ]          q s q t q s q t f s f t    . ( 13 
)
In all the paper [I k ]denotes the identity matrix of size k.

The same number of modes is preserved for the solid and total displacement and the modal matrix of ( 13) is of size (2(N + N + 1) × 2(M + M + 1)).

Attachment modes, frequency dependance, ICMT and FICMT

The first step of ICMT and FICMT is to calculate the attachment modes associated to the static contributions of non preserved modes. Fort he problem of interest, 5a ttachment modes need to be calculated. Concerning substructure 1, one attachment mode related to excitation is needed. Forboth substructures, twoattachment modes are associated to the interface, the first (resp. second)one corresponding to the in-vacuo excitation (resp. the pressure).

It can be shown that this first and second attachment modes are proportional with respect to elastic coefficients. Hence, the method to obtain them is first to compute solutions associated to shape matrices [K 0 ]and [K 0 ]and then to divide by the adequate elastic modulus.

Concerning substructure 1, [K 0 ]isnot invertible as the first mode Φ 1 is not elastic butac onstant displacement rigid body motion. To avoid this problem, let nowconsider the following matrices:

P = I n+1 -Φ 1 Φ t 1 M 0 K P 0 = P t K 0 P , F P t = P t F t . ( 14 
)
[P]isaprojection matrix which filter the rigid mode Φ 1 .

[K P 0 ]isnot invertible butlet u P be the displacement vector of length N obtained while solving the problem obtained by removing last line and column of [K P 0 ]a sw ell as the last line of F P t .One then defines

u F = P u P 0 , S F = m i=2 F t t k i 2 Φ i H F = u F -S F . ( 15 
)
H F is not exactly the static contribution of higher modes at frequency ω buti th as to divided by ac ompressibility.

As K eq is frequencyd ependent, this should be done with care. The modal contributions q s i and q t i at frequency ω to modal forces F s i and F t i are solution of the equations [13] Pk 2 i q s i -ω 2 ( ρ s q s i + γ ρ eq q t i ) = F s i ,, K eq k 2 i q t iω 2 ( γ ρ eq q s i + ρ eq q t i ) = F t i .

(

) 16 
Neglecting inertial effects induces that q s i = F s i / Pk 2 i and q t i = F t i / K eq k 2 i .These tworelations indicates that the elastic properties that should be considered are the one of the current frequencyand not the one at null frequency. Hence, H F should be divided by K eq to obtain the attachment mode.

While applying symmetry and linearity properties, it is straightforward to calculate the pressure (resp. in-vacuo) attachment mode H 0 / K eq (resp. H 0 / P )atthe interface between porous 1and 2.

Forsecond substructure, let nowdefine

u 0 = [K 0 ] -1 1 1 , S 0 = n i=1 Φ i (1) k i 2 Φ i H 0 = u 0 -S 0 . ( 17 
)
[K 0 ]isreal symmetric and positive-definite so that there is no problem of existence in the preceding equations. Hence, it is nowpossible to build the matrices and vectors of eq. ( 9).Inthe following equations, indexinparenthesis corresponds to the dimension of vectors and matrices.

H(F, 0) =    0 N+1 H F K eq    (2N+2×1) H b (F, 0) =    0 H F (N + 1) K eq    (2×1) . ( 18 
)
The N + 1i ndexi sa ssociated to the last dof of substructure 1w hich corresponds to the interface. Forb oth substructures twoa ttachment modes are needed; the first (resp. second)o ne is associated to the continuity of the in-vacuo (resp. pressure)force, 

H(1 j , 0) =     H 0 P 0 0 H 0 K eq     (2N+2×2) H (1 j , 0) =     H 0 P 0 0 H 0 K eq     (2N ×2) . ( 19 
)
K eq + H 0 (1) K eq     (2×2)
.

This matrix is diagonal due to the decoupling of in-vacuo stress and pressure in {u s , u t } formulation. The first index of the second substructure is associated to the interface and the modal matrices at the boundary read:

Φ b = Φ(N + 1) 0 0 Φ(N + 1) (2×2m) Φ b = -Φ (1) 0 0 -Φ (1) (2×2m ) . ( 21 
)
Now, all elements of problem (9) are known. Modal solutions though ICMT and FICMT can be obtained.

Results

Figure 2and 3respectively present the solid and total displacement of the structures at 1500 Hz. 2modes are used for the the first substructure and 1mode is considered for the second substructure. Fort he solid displacement the ICMT and the proposed approach perfectly match with the analytical solution. Forthese twomethods, the correction at the interface between the twop orous materials allows an on null stress at the interface. Fort he DMT,o ne can observet hat the space derivative of the displacement at the interface is null. It is ac onsequence of the only use of free interface modes. As imilar remark can be done for the force correction: The space derivative of the total displacement is null at the left interface for DMT an ICMT while it coincides for the FICMT.C oncerning the displacement shape, the difference between the ICMT and the FICMT is more important for the total displacement than for the solid one (Atthe air-porous interface, the difference is equal to 15% for the total displacement and a detail on the left substructure for the total displacement is provided in Figure 4).This can be understood as the force correction concerns the pressure for the case of interest.

Figure 5represents the absorption coefficient as afunction of frequency. The first resonance is at 600 Hz and the second one at 1800 Hz. The three modal techniques are compared and for each one of them only 1m ode in each substructure is considered. It can be noticed that the DMT does not provide accurate results in this case. The ICMT agrees till the first resonance, and then diverges from the analytical solution and the FICMT is in good agreement till the second resonance. Hence the static correction for the contribution of higher modes to the excitation allows to maintain the performance of the technique in aa dditional 700 Hz frequencyrange. After the second resonance there is aneed for an additional mode and there is no doubt that the resonance of amode cannot be replaced by astatic correction. As intermediate conclusion, it appears that the FICMT is the most accurate techniques among these three and that it is able to limit the number of kept modes to the adequate ones.

The automatic selection procedure is nows tudied and this method is only studied for the case of FICMT technique as the twoo ther techniques are less accurate. Figure 6(resp. 7represents the evolution of the residual error ε 1 and ε 2 (resp. the number of preserved modes for the first and second substructure)a saf unction of frequency. Forfrequencies lower to 555 Hz, only one mode were retained for both structures. In this range the residual error increases with frequencyuntil the residual error on the left substructure reach the tolerance. Am ode is the added to the left part. This induces ahuge decrease of the residual error of the first substructure. Even if the range of the figure does makei tn oticeable, the error on the second substructure also decreases (from 0.0198 to 0.0168). In the second frequencypart, 2modes are considered for the left structure and one for the right one. It can also be noticed that the error is not always increasing with the frequency. Around 2300 Hz several modes are added; one to the left at 2270 Hz and one to the right at 2420 Hz. The total displacement shape is plotted at 2300 Hz in figure 8for different number of modes to understand the influence of added modes.

Figure 9proposes the error on the absorption coefficient as afunction of frequencyfor different values of the residual error criterion. It can be noticed that this error does not coincide with the residual one (there is no mathematical or physical reason for this). Nevertheless, the more the residual criterion is weak and the lower is the error on the absorption coefficient. Nevetheless, for this problem, errors are very weak (itw as shown that 1m ode in each substructure is sufficient until 1800 Hz.).

Case of porous-air structure

The monodimensional problem of one porous layer lying overa na ir plenum is studied. This problem is the same than the one of the preceding section and depicted in Figure 1but the second porous layer is replaced by an air cavity.The porous layer is discretized by finite-element using the {u s , u t } formulation. The air medium is discretized using displacement formulation and u a denotes the dof vector.Asthere is analogy between this problem and the preceding one, similar notations are used.

Implementation of the problem

Nodal problem in physical coordinates reads

      P [K 0 ][ 0 ] [ 0 ]0 s [ 0 ] K eq [K 0 ] [0] λ t [0][ 0 ] K 0 [ K 0 ] λ a 0 t s λ t t λ a t 0     ••• -ω 2     ρ s [M 0 ] γ ρ eq [M 0 ] [0] 0 s γ ρ eq [M 0 ] ρ eq [M 0 ] [0] 0 t [0][ 0 ] ρ 0 [ M 0 ] 0 a t 0 s t 0 t t 0 a 0       •    u s u t u a f c    =    F s F t F a 0    . ( 22 
)
u s and u t are both N + 1length and u a is of size N. K 0 is the adiabatic bulk modulus of air,and ρ 0 is the air density. f c corresponds to interaction forces between both media. λ t and λ a are defined similarly to the preceding section. Hence, the last line is associated to the continuity of total and air displacements at the interface. Eigen-modes of the porous substructure are computed as proposed in section III. 

   u s u t u a f c    =     [Φ][ 0 ] [ 0 ] 0 [ 0 ][ Φ ] [ 0 ] 0 [ 0 ][ 0 ][ Φ ] 0 0 t 0 t 0 t 1        q s q t q a f c    . ( 23 
)
Attachment modes linked to the excitation are independent from the second substructure; theyare then not modified

H(F, 0) =    0 N+1 H F K eq    (2(N+1)×1) H b (F, 0) =    0 H F (N + 1) K eq    (2×1) . ( 24 
)
Regarding the interface, the in-vacuo force of the porous is null and only the continuity of pressure is concerned inducing that only 1attachment mode is necessary for both structures. One has

H(1 j , 0) =    0 N+1 H F K eq    (2(N+1)×1) H (1 j , 0) = H 0 K 0 (N ×1) (25) 
and [R b ]isonly ascalar,

R b = H 0 (N + 1) K eq + H 0 (1) K 0 (1×1) . ( 26 
)
The modal matrices at the boundary then read

Φ b = Φ(N + 1) (1×m) ,, Φ b = -Φ (1) (1×m ) . ( 27 
)

Results

The proposed example considers ap orous layer of material Aa nd 5cmt hickness and an air plenum of 10 cm. the external force correction is noticeable as the displacement at the interface: FICMT is nearly closed to the analytical solution as the error of ICMT and DMT is around 20%. AccuracyofFICMT is also shown in this example. Similarly to preceding section, Figure 11 presents the absorption coefficient as af unction of frequencya nd Figure 12, the associated number of preserved modes with the automatic procedure. The result for ε = 0.2i si nter-esting and it can be observed that modes are added near the resonances (i.e. when theyc ontribute to the response of the structure). For ε = 0.4, adiscontinuity is observed in the absorption coefficient. The reason is that the second mode for the porous is added after 500 Hz instead of 150 Hz. Hence, in this frequencyrange, the numerical cost is lower (less mode than necessary)b ut this has an influence on accuracy.

Conclusion

An free interface CMS technique has been proposed for the resolution of problem with coupled substructures including porous media. This technique is based on normal modes. Additional attachment modes are added in order to takei nto account the influence of non preserved modes. These attachment modes concern both the interface between substructures as well as the external excitation on substructures. Frequencydependence of poroelastic coefficients has been taken into account in the frequencyloop. As imple criterion based on the evaluation of ar esidual vector has been implemented. This allows an automatic selection of the number of preserved modes.

The method has been validated in comparison with analytical model on two1Dconfigurations involving twolayers of porous material bonded onto ah ard backing or a porous layer with an air plenum to demonstrate the ability of the method to handle coupled systems. It is also compared to the direct modal technique without correction (DMT)a nd to the Craig and Chang technique ICMT (Interface Corrected Modal Technique)w here correction is applied only at the interface. Even if results are not presented in this paper the technique has been validated on a wide range of materials. Other monodimensional configurations have been studied and confirms the convergence of the method.

It is shown that the proposed approach perfectly matches with the analytical solution for an umber of modes corresponding to the one which should be excited. Considering absorption coefficient, discrepancies between different methods appear above the first resonance mode butthe proposed technique matches with the analytical solution. It wasnecessary to consider such simple problems to ensure the validity of the method butthese examples are not the best one to check for the efficiencyinterms of computational cost. It is aperspective of this paper and further works consists in applying this technique to 2D and 3D problems to better quantify the efficiencyo ft his method. In particular shear wavesw ill be involved. It should also be applied in configurations where the substructures have ah igh ratio of interface to interior degree of freedom to investigate its performance.

Appendix A1. Topics on Biot-Allard model

This appendix provides the expressions of the inertial and constitutive parameters of the Biot-Allard model. All these expressions can be found in Allard [1]. This model allows to findt he expressions of the coefficient used in the manuscript as afunction of the material properties. These expressions are givenfor acircular frequency ω.

The density terms are first reminded. Theyare givenby ρ 1 =(1φ)ρ s ,ρ 2 = φρ 0 ,ρ 12 = -φρ 0 (α ∞ -1).(A1)

φ is porosity, ρ s is skeleton material density, ρ 0 is interstitial fluid density and α ∞ refers to geometric tortuosity. ρ 12 accounts for the interaction between the inertia forces of the solid and fluid phase.The apparent inertial mass can be introduced:

ρ 12 = ρ 12 - b jω , ρ 22 = ρ 2 -ρ 12 .
The viscous effects are modelled through b coefficient whose expression is b = jωφρ 0 ( αα ∞ ), (A2) α is the dynamic tortuosity defined by

α = 1 - jφσ α ∞ ρ 0 ω 1 - 4jα 2 ∞ η a ρ 0 ω (σΛφ) 2 .
(A3) σ is the flowresistivity, η a is the dynamic viscosity of air and Λ is the viscous characteristic length. The equivalent density ρ eq and coupling coefficient are givenby

ρ eq = ρ 22 φ 2 , γ = φ ρ 12 ρ 22 - 1 -φ φ . ( A4 
)
The thermal properties are givenb yt he dynamic compressibility K eq , K eq = (A5)

γP 0 γ -(γ -1)   1 + 8η a jΛ Prωρ 0 1 + jρ 0 ωP rΛ 2 16η a   -1 ,
where Λ is the thermal characteristic length, Pr is the Prandtl number, P 0 is the ambiant pressure, γ is the ratio of specificheats of air.For sound absorbing materials, one has

Q = φ(1 -φ) K eq , R = φ 2 K eq . ( A6 
)
The structural mechanical parameters N and  are given by

N = E(1 + jη s ) 2(1 + ν) , Â = 2Nν 1 -2ν , P = Â + 2N. (A7)
The twocompressional wavesofthe porous medium are defined by their wave number δ i and the ratio of the total displacement overthe solid one µ i .Theyare defined by 

δ 2 i = δ 2 s2 + δ 2 eq ± δ 2 s2 + δ 2
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 1 Figure 1. Configuration of the problem.

Figure 2 .

 2 Figure 2. Solid displacement of the twoporous structures. Solid: analytical solution; Dash-dot: DMT;Dash: ICMT; Circles: FICMT.

Figure 3 .

 3 Figure 3. Total displacement of the twoporous structures. Solid: analytical solution; Dash-dot: DMT;Dash: ICMT; Circles: FICMT.

Figure 4 .Figure 5 .

 45 Figure 4. Total displacement of the twoporous structures, detail near the excitation. Solid: analytical solution; Dash-dot: DMT; Dash: ICMT;Circles: FICMT.

Figure 6 .

 6 Figure 6. Error with at runcation criterion on the residual ε 1 = ε 2 = 0.1. Solid: Error relative to the left substructure; Dash-dot: Error relative to the right substructure.

Figure 7 .

 7 Figure 7. Number of selected modes versus frequency. Solid: Modes of the left substructure ε = 0.1; Dash-dot: Modes of the right substructure ε = 0.1.

Figure 8 .

 8 Figure8. Total displacement at 2300 Hz. Solid: Analytical solution; Dash-dot: Solution with (2;1)m odes; Dash: Solution with (2;2)modes; Circles: Solution with (3;2)modes.

Figure 9 .

 9 Figure 9. Error on the absorption coefficient versus frequency. Dash: ε = 0.1; Solid: ε = 0.5; Dot: ε = 2.

Figure 10 .Figure 11 .

 1011 Figure 10. Total displacement of the porous structure and air displacement. Solid: analytical solution; Dash-dot: DMT;Dash: ICMT ;Circles: FICMT.

Figure 12 .

 12 Figure 12. Number of selected modes versus frequency. Solid: Modes of the porous substructure ε = 0.2; Dash-dot: Modes of the air substructure ε = 0.2; Dash: Modes of the porous substructure ε = 0.4.

eq 2 -4δ 2 eq δ 2 s1 2 ,= ρ 1 -ρ 12 - ρ 2 12ρ 2 h

 22122 ρ 12 , ρ s = ρ + γ 2 ρ eq (and h correspond to the length of the elements.

Table I .

 I Parameters of porous material A and B.

	Mat	Porosity	Flowresistivity	Tortuosity	Viscous characteristic	Thermal characteristic
			φ		σ (N m -4 s)	α ∞	length Λ (m)	length Λ (m)
	A		0.97	87000	1.52	3.710 -5	1.210 -4
	B		0.97	40000	1.06	0.56 10 -4	0.112 10 -3
	Mat				Density	Yo ung'smodulus	Loss factor	Poisson coefficient
					ρ 1 (kgm -3 )	E(Pa)	η s	ν
	A				31	1.43 10 7	0.055	0.3
	B				130	0.44 10 7	0.3	0.1
	Porous total displacement [m]	5 6 7 8 9	-8 x10		
	-0.04	-0.035	-0.03 Position [m]	-0.025	-0.02

  The eigen-modes of the air substructure are obtained by solving the generalized eigenvalue problem associated to matrix [K a ]a nd [M a ].T he eigenvectors are normalized with respect to [M a ]. ForD MT,d isplacements are expressed in their modal form and Lagrange multipliers are kept,