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Abstract

Simulating the propagation of sound in non-uniform flows remains challenging, especially for large, three-dimensional
problems. To account for the sound refraction due to gradients of velocity and temperature, one has to solve the
Linearised Euler Equations (LEE) which can be computationally expensive in three dimensions. Alternatively, one
can use the Linearised Potential Equation (LPE) which is much cheaper but is limited to potential, isentropic flows.
In this paper, a hybrid model combining the LEE and the LPE is proposed in order to simulate the sound propagation
in sheared flows at a reasonable computational cost. The LEE are applied only in regions with strong sheared mean
flows, the LPE is used everywhere else. The coupling between the LEE and the LPE consists in imposing relations
for the characteristic waves propagating at the interface between the LEE and the LPE regions. In this study, the
hybrid model is implemented in a high-order finite element solver in the frequency domain. Its performance is first
assessed by simulating the propagation of planes waves in a uniform mean flow and the acoustic radiation from a
semi-infinite duct in a strongly sheared non-isothermal jet flow. No significant spurious noise is produced at the LEE-
LPE interfaces. The applicability of the hybrid model to industrial problems is then demonstrated by simulating the
propagation of fan noise through the jet flow exiting from a turbofan exhaust. The use of the proposed hybrid model
does not affect the propagation of the sound field while reducing the memory footprint by more than one order of
magnitude compared to a full three-dimensional LEE simulation.

Keywords: p-FEM, linearised Euler equations, linearised potential equation, aeroacoustics

1. Introduction

Simulating the sound propagation in a non-uniform flow is important to predict noise emissions from various
engineering systems, such as turbofan engines or ventilation systems. A number of propagation models are available
for this purpose [1]. Amongst them, the linearised Euler equations (LEE) support the acoustic, hydrodynamic and
entropy waves, as well as their linear interactions. They also provide a full description of the refraction of acoustic5

waves as they propagate through a sheared mean flow. The LEE have been solved extensively both in the time domain
[2, 3] and the frequency domain [4, 5, 6]. A downside of this model, when solved in the time domain, is the presence
of hydrodynamic instabilities, which can be difficult to handle since they can dominate the acoustic field. Another
major drawback is the computational cost associated to the resolution of the LEE. When including all three types of
waves, one has to solve for the perturbations of density, momentum and pressure. In the frequency domain, this results10

in very large linear systems of equations that require massive amounts of memory to solve using modern direct solvers
such as MUMPS or PARDISO (iterative solvers are, as yet, not sufficiently robust for this type of applications).

The Linearised Potential Equation (LPE) provides a simplified model to describe the sound propagation in a mean
flow. It is based on the assumption that vorticity and entropy effects are absent from both the base flow and the linear
perturbations. In this case one can write a differential equation for the acoustic velocity potential. Being a scalar15

equation, the LPE is much less costly to solve than the LEE. The LPE forms the basis for several commercial codes
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Preprint submitted to Journal of Sound and Vibration September 5, 2019

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0022460X19305139
Manuscript_874d1c665b538eb19d0a884b60085a55

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0022460X19305139
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0022460X19305139


that are used routinely in industry. However, the main limitation of this model is that it does not account for the
refraction of sound through a sheared mean flow.

In this paper, a hybrid model which combines the LEE and LPE is proposed in order to address their respective
shortcomings. The rationale is to use the LEE only in regions with strong shear mean flows, and to use the LPE20

everywhere else. With this hybrid approach, the computational cost is significantly reduced compared to a full LEE
model and it provides a way to circumvent the inherent limitation of the LPE. The key to formulate such a hybrid
model is the derivation of coupling conditions at the interface between the LEE and LPE regions. These conditions
are obtained by writing characteristic wave relations through the LEE-LPE interface.

Several computational methods have been developed specifically to solve the LEE or the LPE, either in the time25

domain or in the frequency domain [7]. The present work will focus on frequency-domain simulations and use a
high-order finite element method that has been developed both for the LPE [8, 9] and the LEE [6].

This paper is organized as follows. The next section presents the LEE and LPE, together with the associated
variational formulations. Section 3 is concerned with the hybrid model and describes how the LEE and LPE models
are coupled. The high-order finite element method used to solve both the LPE and the LEE is presented in Section30

4. The performance of the hybrid numerical model is verified in Section 5 by simulating the propagation of a set
of acoustic plane waves in a uniform mean flow, and the sound scattering from a semi-infinite duct in a strongly
sheared non-isothermal flow. The applicability of the hybrid model to a turbofan exhaust is demonstrated in Section
6. Concluding remarks and perspectives of this work are given in Section 7.

2. Governing equations35

2.1. Linearised Euler Equations (LEE)

We consider a perfect gas with isentropic disturbances (no viscous effect nor heat transfer). The density ρ′,
the velocity vector u′ = (u′, v′,w′), and the pressure p′ represent small perturbations around a steady mean flow of
density ρ0, velocity u0 = (u0, v0,w0) and pressure p0. The behavior of these perturbations is governed by the linearised
Euler equations. In three-dimensional Cartesian coordinates, these equations can be written in conservative form as:

∂q
∂t

+
∂Aq
∂x

+
∂Bq
∂y

+
∂Cq
∂z

= 0 , (1)

where q = [ρ′, (ρu)′, (ρv)′, (ρw)′, p′c]T is the unknown vector, pc = (p/p∞)1/γ is the non-dimensional pressure defined
by Goldstein [10], p∞ is a reference pressure, γ is the specific heat ratio, and ·T is the transpose operator. The flux ma-
trices A, B and C, defined from the steady mean flow properties, are given in Appendix A. These equations are solved
in the frequency domain, assuming an implicit time dependence for the solution vector q(x, t) = q(x, ω) exp(iωt)
where ω is the angular frequency. The LEE become:

iωq +
∂Aq
∂x

+
∂Bq
∂y

+
∂Cq
∂z

= 0 . (2)

For a domain ΩLEE delimited by the boundary ΓLEE, the variational formulation is defined as:∫
ΩLEE

ψ†
(
iωq +

∂Aq
∂x

+
∂Bq
∂y

+
∂Cq
∂z

)
dΩ = 0 , (3)

where ψ is the test function vector and ·† denotes the Hermitian transpose. Integrating by parts the flux terms leads to:∫
ΩLEE

(
iωψ†q −

∂ψ†

∂x
Aq −

∂ψ†

∂y
Bq −

∂ψ†

∂z
Cq

)
dΩ +

∫
ΓLEE

ψ†Fq dΓ = 0 , (4)

where F = Anx + Bny + Cnz is the normal flux matrix, and n = (nx, ny, nz) is the unit outward normal vector on dΓ.
The boundary conditions on ΓLEE are prescribed through a decomposition of the normal flux F into characteristic

waves. The main idea of this flux splitting method is to separate incoming and outgoing waves [11]. The waves
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entering the LEE domain are imposed whereas the exiting waves are left free. The characteristics are defined by the
eigenvalues and eigenvectors of the normal flux matrix F:

F = WΛW−1 , (5)

with

Λ = diag(u0 · n,u0 · n,u0 · n,u0 · n− c0,u0 · n + c0) and W =

 0 0 1 1 1
τ1 τ2 u0 u0 − c0n u0 + c0n
0 0 0 pc0/ρ0 pc0/ρ0

 , (6)

where pc0 = (p0/p∞)1/γ. τ1 and τ2 are two unit orthogonal vectors tangential to the surface ΓLEE. The eigenvalues
in Λ are the phase speeds of the different characteristic waves. The flux matrix F can be decomposed into two flux
matrices F+ and F− containing the outgoing and incoming characteristics, respectively. It yields:

F = F+ + F− = WΛ+W−1 + WΛ−W−1 , (7)

where the diagonal matrices Λ± contain either the positive or negative eigenvalues. The norm flux Fq can then be
written as follows:

Fq = WΛ+W−1q + WΛ−W−1q = WΛ+ q̂ + WΛ− q̂ (8)

where q̂ = W−1q = [q̂h1, q̂h2, q̂e, q̂−a , q̂
+
a ]T represents the amplitudes of the characteristic waves, namely the two

vorticity waves q̂h1 and q̂h2, the entropy wave q̂e and the acoustic waves q̂−a and q̂+
a propagating in the negative and

positive directions, respectively.40

The second term on the right-hand side of (8) corresponds to the characteristic waves entering the computational
domain. To implement a given boundary condition, this term has to be rewritten as a function of the outgoing charac-
teristics and any source term. For more details on this approach for the implementation of boundary conditions, the
reader is referred to [11, 12]. In Section 3 we will show how this approach is used to couple an LEE region to an LPE
region.45

2.2. Linearised Potential Equation (LPE)
For an inviscid, adiabatic, isentropic and irrotational flow, the velocity field u can be written as the gradient of a

scalar potential φ. The mean and fluctuating velocity vectors are thus defined as u0 = ∇φ0 and u′ = ∇φ′, respectively.
The acoustic velocity potential φ′ is governed by the linearised potential equation:

ρ0
D0

Dt

 1
c2

0

D0φ
′

Dt

 − ∇ · (ρ0∇φ
′) = 0 , (9)

where D0/Dt = iω + u0 · ∇ is the material derivative, c0 is the speed of sound and ρ0 is the mean flow density. For a
computational domain ΩLPE with boundary ΓLPE, the variational formulation reads:∫

ΩLPE

ρ0

c2
0

D0ψ

Dt
D0φ

′

Dt
+ ρ0∇ψ · ∇φ

′

 dΩ +

∫
ΓLPE

ρ0

c2
0

ψ(u0 · n)
D0φ

′

Dt
− ρ0ψ

∂φ′

∂n
dΓ = 0 , (10)

where ψ is the test function, · is the complex conjugate and n is the unit outward normal vector on dΓ.
To better understand how the boundary conditions can be applied it is useful to develop the boundary integral as

follows:∫
ΓLPE

ρ0

c2
0

ψ(u0 · n)
D0φ

′

Dt
− ρ0ψ

∂φ′

∂n
dΓ =

∫
ΓLPE

ρ0

c2
0

ψ

(
iω(u0 · n)φ′ + ((u0 · n)2 − c2

0)
∂φ′

∂n
+ (u0 · n)u0⊥ · ∇⊥φ

′

)
dΓ , (11)

where u0⊥ = u0 − (u0 · n)n is the part of u0 that is tangential to the surface ΓLPE. The gradient ∇⊥ operates only in the
plane tangential to the surface (i.e. along the directions τ1 and τ2).

In order to impose a boundary condition for the LPE, it is necessary to replace the normal derivative of φ′ by50

the appropriate terms involving φ′, ∇⊥φ′ or known quantities. For instance, for a vibrating surface, one would write
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u0 · n = 0 and ∂φ′/∂n = V where V is the imposed normal velocity. In the next section, we will see how to calculate
∂φ′/∂n to couple an LPE region to an LEE region.

Finally, Perfectly Matched Layers (PML) are used around the boundary of the computational domain to absorb
any outgoing waves and to represent sound radiation to the far field. The PML can also be used to generate a sound55

field entering the computational domain, such as duct modes. The reader is referred to references [13, 14] for further
details.

3. Coupling of LEE and LPE propagation models

The coupling between the LEE and LPE involves finding well-posed boundary conditions at the interface between
the LEE and the LPE regions. For this purpose, we follow an approach similar to that proposed in [15]. The coupling60

method proposed in this paper is explained for the configuration shown in Figure 1. The domain Ω is composed of
two non-overlapping subdomains, namely the LEE subdomain ΩLEE and the LPE subdomain ΩLPE. The subdomain
boundaries are denoted ΓLEE and ΓLPE, with the unit outward normal vectors nLEE and nLPE.

As explained above, for the LEE we need to specify the characteristic waves propagating into the domain ΩLEE.
The number of incoming characteristics depends on u0 · nLEE and we have to consider two distinct cases. Note that in65

the following we assume a subsonic base flow (|u0| < c0).

ΩLEE ΩLPE

ΓLEE ΓLPE

nLEE

nLPE

LEE LPE

Figure 1: Rectangular domain Ω composed of two subdomains ΩLEE and ΩLPE.

3.1. Outflow (u0 · nLEE > 0)

If at a point on the boundary ΓLEE the flow is going from the LEE region into the LPE region, i.e. u0 · nLEE > 0,
there is only one characteristic wave propagating into the LEE domain. Namely, only the acoustic characteristic q̂−a ,
which has a negative phase speed u0 · nLEE − c0, needs to be specified. In addition, for the LPE region, we need to
rewrite the normal derivative of φ′. We therefore need two coupling conditions at the interface ΓLEE. The continuity
of pressure and normal velocity are imposed for this purpose:

p′LEE = p′LPE , u′LEE · nLPE = u′LPE · nLPE . (12)

The rationale for choosing these conditions is that they involve the quantities (pressure and normal velocity) that are
needed on a surface to fully specify the acoustic field using Kirchhoff’s integral theorem.

We have to rewrite the LEE quantities in terms of the characteristic wave amplitudes q̂. For this purpose, we use
q = Wq̂ together with equation (6) to write:

ρ′LEE = q̂e + q̂−a + q̂+
a , (13a)

(ρu)′LEE = τ1q̂h1 + τ2q̂h2 + u0q̂e + (u0 − c0n)q̂−a + (u0 + c0n)q̂+
a , (13b)

p′c,LEE =
pc0

ρ0

(
q̂+

a + q̂−a
)
. (13c)
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Conversely, the LPE quantities should be rewritten in terms of the velocity potential φ′ as:

p′LPE = −ρ0
D0φ

′

Dt
, u′LPE · nLPE =

∂φ′

∂nLPE
. (14)

We now substitute these expressions in (12) to get:

c2
0
(
q̂+

a + q̂−a
)

= −ρ0

[
iωφ′ + (u0 · nLPE)

∂φ′

∂nLPE
+ u0⊥ · ∇⊥φ

′

]
, (15)

c0

ρ0

(
q̂+

a − q̂−a
)

= −
∂φ′

∂nLPE
. (16)

These two equations can then be rearranged to obtain the required quantities:

q̂a
− =

u0 · nLEE + c0

u0 · nLEE − c0
q̂+

a +
ρ0/c0

u0 · nLEE − c0

(
iωφ′ + u0⊥ · ∇⊥φ

′) , (17)

∂φ′

∂nLPE
=

−2c2
0/ρ0

u0 · nLPE + c0
q̂+

a −
1

u0 · nLPE + c0

(
iωφ′ + u0⊥ · ∇⊥φ

′) . (18)

We can use the above expression for q̂−a to specify the second term on the right-hand side of equation (8). We can
also rewrite the boundary integral for the LPE region on the boundary with the LEE region:∫

ΓLPE

ρ0

c2
0

ψ(u0 · nLPE)
D0φ

′

Dt
− ρ0ψ

∂φ′

∂n
dΓ =

∫
ΓLPE

−2(u0 · nLPE − c0)ψq̂+
a +

ρ0

c0
ψ(iωφ′ + u0⊥ · ∇⊥φ

′)dΓ , (19)

3.2. Inflow (u0 · nLEE < 0)70

When the mean flow is going from the LPE region into the LEE region, there are four characteristics waves that
enter the LEE region, and that need to be specified, namely q̂h1, q̂h2, q̂e and q̂−a . In addition, we have to specify ∂φ′/∂n,
so we have to prescribe five conditions on the interface between the two regions. We impose the continuity of all the
field variables on ΓLPE, namely: density, velocity and pressure:

ρ′LEE = ρ′LPE , u′LEE = u′LPE , p′LEE = p′LPE , (20)

which provides exactly the right number of conditions on the interface.
Firstly, we can note that, using the continuity of pressure and normal velocity, we can follow the same derivation as

shown above to obtain the conditions (17) and (18). Therefore, these two conditions apply irrespective of the direction
of the mean flow.

Secondly, to specify the amplitude of the entropy characteristic wave, we note that in the LPE region p′LPE = c2
0ρ
′
LPE.75

It then follows from equation (20) that p′LEE = c2
0ρ
′
LEE. Using equations (13a) and (13c) it is straightforward to show

that q̂e = 0. This is expected since there is no entropy wave in the LPE region.
Finally, to specify the amplitudes of the two vorticity waves we use the remaining two conditions from (20)

concerning the continuity of the tangential components of velocity:

u′LEE · τ1 = u′LPE · τ1 , u′LEE · τ2 = u′LPE · τ2 . (21)

Projecting (13b) on the vectors τ1 and τ2 we get:

(ρu)′LEE · τ1 = q̂h1 + (u0 · τ1)(q̂+
a + q̂−a ) , (ρu)′LEE · τ2 = q̂h2 + (u0 · τ2)(q̂+

a + q̂−a ) .

Subtracting ρ′LEEu0 · τ1 and ρ′LEEu0 · τ2 to either of these equations, using (13a) and recalling that we found q̂e = 0
lead to:

q̂h1 = ρ0u′LEE · τ1 = ρ0u′LPE · τ1 = ρ0
∂φ′

∂τ1
, (22a)

q̂h2 = ρ0u′LEE · τ2 = ρ0u′LPE · τ2 = ρ0
∂φ′

∂τ2
. (22b)
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In practice, the vectors τ1 and τ2 are taken in the LPE domain in order to easily compute the derivatives of φ′ in
equations (22):

τ1 = τ1LPE , τ2 = τ2LPE. (23)

The incoming vorticity waves into the LEE region are therefore defined in terms of the tangential derivatives of the
velocity potential in the LPE region. It could seem counterintuitive to induce vorticity waves in the LEE region from80

an LPE region where there is no vorticity. But attempting to use q̂h1 = q̂h2 = 0 in the test case shown in Section 5.1
resulted in less accurate results than the conditions derived above.

4. High-Order Finite Element Model

4.1. Presentation of p-FEM

The coupled variational formulations (4) and (10) are discretized using a hierarchical H1-conforming high-order85

finite element method based on Lobatto shape functions. The details of this finite element method (FEM) are not
presented here and only its key features are recalled. For an exhaustive description of the numerical scheme, the
reader is referred to the references [8, 9] as well as the textbooks [16, 17]. This high-order FEM provides significant
reductions in memory and CPU time when compared to conventional finite element models [18, 8] and has been shown
to deliver comparable, and in some cases even superior, performance compared to high-order Trefftz methods on a90

variety of Helmholtz problems [19, 20]. The benefits of p-FEM (e.g. low dispersion error, exponential p-convergence)
are also retained in the presence of background mean flows [21].

A key property of the high-order FEM is that it is possible to eliminate the degrees of freedom associated with the
bubble shape functions since these degrees of freedom do not interact with neighboring elements [17]. This technique,
called condensation, allows to reduce the size of the global linear system before it is assembled and solved, hence95

reducing the memory requirements. The p-FEM shape functions provide an additional benefit. Their ‘hierarchic’
nature implies that the shape functions at order pFEM form a subset of the shape functions at order pFEM + 1. This key
property implies that p-FEM can easily handle local order variations: two adjacent elements can coexist with different
polynomial orders. This is in contrast with high-order Lagrange interpolation functions which cannot handle easily
different orders for two contiguous elements. To ensure the continuity of the numerical solution, the order attributed100

to a given edge or face shared by several elements is chosen based on a so-called conformity rule [16].

4.2. A priori error indicator

For an improved efficiency, p-adaptive solutions are considered in this work. The element order distribution is
automatically assigned at each frequency, prior to the calculation, based on the flow properties and the element size.
Bériot et al. introduced an efficient a-priori error indicator for Helmholtz problem solved with p-FEM [8]. With105

this approach, the numerical error incurred on a given element is estimated based on the numerical error measured
on a single, one-dimensional element with representative wavenumber k and length h. Despite its apparent sim-
plicity, this indicator was shown to efficiently control the global numerical error in realistic two-dimensional and
three-dimensional problems with strong mesh non-uniformities. The adaptive approach consists in selecting the in-
terpolation order pFEM in each element so that the L2 interpolation error remains below a user-defined target error ET110

in the 1D element. In practice, one does not need to solve the 1D model for every element of the mesh, since the
order p(kh, ET ) required to have an actual error below the target ET can be tabulated in terms of the mesh resolution
kh and the error level ET (see [8] for more details). This method was later extended to the linearised potential equa-
tion model in [9] and to the linearised Euler equations in [6]. Recently, a novel version of this error indicator was
introduced, which enables anisotropic p-refinement [22]. This strategy allows to control the error on elements with115

strong distortion and, in turn, makes the simulation largely independent of badly shaped elements in the mesh. In
addition, anisotropic p-refinement also provides significant cost reductions for flow acoustics applications, where the
wave properties are strongly direction dependent.

We discuss here the application of the error indicator to coupled LEE- LPE problems. This is a non-trivial issue,
because the time harmonic perturbations described in the LEE do not only contain acoustic waves but also include120

vorticity and entropy waves.
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In two dimensions, the dispersion relations for the acoustic, hydrodynamic and entropy waves read [23]:

ka,h,e = ka,h,e

(
cos θw
sin θw

)
, with ka =

k0

1 + M0 cos(θw − θ0)
, kh = ke =

k0

M0 cos(θw − θ0)
, (24)

where k is the wavenumber vector, θw designates the plane wave orientation and k0 = ω/c0. The direction and
velocity of the mean flow are given by the angle θ0 and the Mach number M0 = |u0|/c0. Note that the entropy and
hydrodynamic waves, which are purely convected, are ruled by the same dispersion relation.

The different wavenumber vectors obtained for a Mach number M0 = 0.5 and a mean flow orientation θ0 = π/4125

are illustrated in Figure 2(a). For acoustic waves ka, represented by gray arrows, the Doppler effect induced by
the presence of the mean flow is clearly visible: the wavenumber decreases for downstream propagation (when
cos(θw − θ0) > 0) and increases for upstream propagation (when cos(θw − θ0) < 0). This corresponds to longer and
shorter wavelengths, respectively. Hydrodynamic and entropy waves, on the other hand, indicated by turquoise ar-
rows, are propagating in the direction of the flow. Their accurate discretization poses severe difficulties. In particular,130

in the limit case where they propagate almost perpendicularly to the mean flow, i.e. for small values of |θw − θ0|, their
wavelength tends to zero.

(a) Wave vectors at M0 = 0.5, θ0 = π/4

-4 -2 0 2 4

-4

-2

0

2

4

(b) LEE normalized length scales

Figure 2: (a) Acoustic (gray) and hydrodynamic/entropy (turquoise) wave vectors normalized by k0 = ω/c0 for a given mean flow magnitude and
orientation (symbolized by the black arrow). (b) Range of normalized length scales λ?a,h,e = 2πk0/ka,h,e obtained from the dispersion relations (24),
as a function of the Mach number.

Figure 2(b) presents the normalized admissible wavelengths (defined as λ?a,h,e = λa,h,ek0 = 2πk0/k) obtained from
the dispersion relations (24), in logarithmic scale, as a function of the Mach number. From this representation, the
LEE may in fact be seen as a multi-scale operator, supporting multiple physical features co-existing at different135

length scales. As is known, in the presence of sheared flows, the acoustic disturbances are not irrotational anymore
and become coupled with the hydrodynamic disturbances due to entropy and vorticity waves [24]. However, these
vortical solutions present a wide range of length scales λ?h,e =]0, 2πM0]. The resolution of the smallest structures
(corresponding to close-to perpendicular propagation and/or to regions approaching no-flow conditions) would rapidly
lead to computationally intractable solutions.140

Beyond these practical cost considerations, a more fundamental issue is that hydrodynamic instabilities, of Kelvin–
Helmholtz (K-H) type, may be present [25]. With linear models like the LEE, the K-H instabilities exhibit an expo-
nential growth which may, in some occasions, completely obscure the acoustic solution downstream of the source.
This has led to the development of dedicated mitigation strategies, such as the gradient term suppression (GTS)
method [26], to avoid the development of vorticity shedding at the trailing edge and suppress the hydrodynamic in-145

stabilities from the computed solution. However, this type of methods modify the original LEE formulation, which
may change the physics of the sound interaction with the vorticity field. Computing the solution in the frequency
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domain allows the suppression of the temporal growth of the instability waves [27], but a spatially growing vortical
wave is generally still observed, and it is difficult to infer to which extent it is physical or not. Previous numerical
works have investigated the behaviour of the LEE solutions formulated in the frequency domain. In [5], Özyörük and150

Tester examined the sound scattering through a realistic jet flow, by performing successive h-refinements of the grid.
They concluded that the sound radiation pattern is not altered noticeably by the development of the hydrodynamic in-
stability. However, they also argue that a 2-3 dB amplification effect should be expected on the radiated peak pressure
levels, when allowing the development of the instability waves in the shear layer. In Iob et al. [28], the grid size for
the time-harmonic LEE is chosen based solely on the acoustic dispersion properties. Although no instability waves155

are observed in the jet mixing region (as they fall beneath the grid resolution limits) satisfactory results were obtained
compared to a semi-analytical reference model. Finally, in [6], the radiated far-field acoustic pressure is shown to be
almost invariant to successive p-refinements applied in the shear-layer region.

What these previous studies suggest is that resolving the full range of acoustic admissible wavelengths (corre-
sponding to the gray region in Figure 2(b), namely λ?a = 2π[1 − M0, 1 + M0]) is sufficient to capture the main char-160

acteristics of the sound radiation through a sheared flow. In this work, we therefore apply the same approach. The
element order is determined solely based on the dispersion properties of the acoustic waves, invariably in the LEE
and LPE domains, using the a priori error indicator from reference [22]. Unless a strong grid refinement is applied in
the shear layer region, this strategy amounts to neglecting the influence of sub-acoustic wavelength structures on the
sound propagation.165

5. Numerical verification

In order to verify the coupling formulation presented in Section 3 and to evaluate the performance of the proposed
hybrid LEE-LPE numerical model, two three-dimensional test cases are examined. The first one considers the propa-
gation of a set of acoustic plane waves in a uniform mean flow while the second one focuses on the sound scattering
through a strongly sheared non-isothermal flow.170

All the computations reported hereafter were performed on a Dell Poweredge R730XD equipped with two Intel
Xeon E5-2667 CPUs with 16 cores running at 3.20 GHz and with 384 GB of memory. The unstructured meshes are
prepared using the open source mesh generator Gmsh [29]. The matrices are assembled using an in-house adaptive
p-FEM research code developed in Matlab (the assembly timings are therefore not reported). The resulting sparse
linear system of equations is solved sequentially using the fast, multi-frontal solver MUMPS v5.0.1 [30].175

5.1. Propagation in uniform flow

The first test case consists of a cube where time-harmonic plane waves propagate in the presence of a uniform mean
flow defined by a Mach number M0 = u0/c0 = 0.9, a density ρ0 = 1.225 kg/m3 and a speed of sound c0 = 340 m/s.
The computational domain is displayed in Figure 3(a). The cube has a side lc = 2 m and is centered on x0 = (0, 0, 0)T .
It is decomposed into an LEE region and an LPE region that do not overlap. The LEE region is the sphere of center
x0 and radius R = 0.25lc. The LPE region is the volume outside the sphere. In this study, the mean flow is oriented
in the x direction, i.e. u0 = (u0, 0, 0)T . A total of 36 plane waves are simulated separately in these calculations. Each
plane wave is defined by the scalar potential:

φ′analytic = A exp(−ik · x) with k = k(cos θ cosα, sin θ cosα, sinα) and k =
k0

1 + M0 cosα cos θ
, (25)

where A is the wave amplitude, and θ and α are the wave directions according to the reference frame of Figure 3(b).
The angles θ and α are uniformly distributed over the ranges θ ∈ [0, 2π] and α ∈ [0, π], with ∆θ = 2π/5 and ∆α = π/5.
The value of A is arbitrarily set to A = 100 m2/s. The FEM simulations are carried out with an unstructured mesh
composed of tetrahedral linear elements of size h = lc/8. The mesh contains 4224 elements in the LPE region and 453180

elements in the LEE region. The frequency range for the simulations is chosen so that the normalized wavenumber
k0h varies over the range [0.01, 10]. For each simulation, the polynomial order pFEM is constant in the computational
domain. Simulations are carried out with polynomial orders pFEM varying from 1 to 6.
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Figure 3: Representation of (a) the computational domain: LEE region inside the sphere and LPE region outside, and (b) the coordinate system
used for the definition of the plane waves.

The objective is to evaluate the influence of the LPE-LEE coupling on the pressure computed inside the compu-
tational domain. For this purpose, the pressure p′ obtained numerically is compared to the analytical solution panalytic
through the L2 relative error:

εp =


∫

Ω
|p′ − p′analytic|

2dΩ∫
Ω
|p′analytic|

2dΩ


1/2

with p′analytic = −ρ0

D0φ
′
analytic

Dt
. (26)

In the LPE domain, the relative error is also computed for the velocity potential φ′ as:

εφ =


∫

Ω
|φ′ − φ′analytic|

2dΩ∫
Ω
|φ′analytic|

2dΩ


1/2

. (27)

In practice, the relative error ε is evaluated in the LPE and the LEE domains for each of the 36 plane waves. In
each domain, the error εmax is then defined as the maximum value of the error ε for the 36 planes waves.185

The relative errors εmax computed in the LPE domain for the velocity potential and the pressure variables are
represented in Figures 4(a) and 4(b), as a function of the normalized wavenumber k0h for polynomial order pFEM
varying between 1 and 6. The amplitude of the error decreases as the polynomial order increases and the value of
k0h tends to 0. For the velocity potential, the amplitude of the error εmax has a convergence rate of O(k0h)pFEM+1

when k0h → 0, as expected [21]. The error on the LPE pressure converges like O(k0h)pFEM as k0h decreases. This190

loss of one order of convergence between the variables φ′ and p′ is expected. The acoustic pressure is calculated
using p′ = −ρ0Dφ′/Dt which involves the gradient of φ′. As a consequence, the convergence of p′ is one order
slower compared to φ′. Numerical tests performed with M0 = 0 have shown that one recovers a convergence rate
of O(k0h)pFEM+1 for the error εmax on both the pressure and the velocity potential. For the sake of conciseness, these
additional tests are not presented in this paper.195

The relative error εmax computed on the pressure variable in the LEE domain is plotted in Figure 4(c), as a function
of the normalized wavenumber k0h and the polynomial order pFEM. The amplitude of the error varies like O(k0h)pFEM

when k0h tends to 0. These variations are very similar to the ones obtained in the LPE domain in Fig. 4(b). This
demonstrates that the accuracy of the computation of the pressure field is not deteriorated at the transition between
the LPE domain and the LEE domain.200

5.2. Propagation in a sheared non-isothermal flow
The performance of the proposed hybrid propagation model is now verified on a problem involving a strongly

sheared non-isothermal flow. The acoustic radiation from a straight circular semi-infinite duct, under hot-jet exhaust
flow conditions is considered. The duct radius is rd = 1 m and the duct length is ld = 2.5 m. The duct wall is
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Figure 4: Maximum relative error εmax in the LPE domain for (a) the velocity potential φ′ and (b) the pressure p′ and (c) in the LEE domain for
the pressure p′, as a function of the Helmholtz number k0h, for polynomial orders + pFEM = 1, ◦ pFEM = 2, ∗ pFEM = 3, × pFEM = 4, B pFEM = 5
and � pFEM = 6. Dotted lines: asymptotic convergence slopes.

infinitely thin and hard-wall boundary conditions are applied on both sides. Inside the duct, a uniform hot-jet flow
is prescribed with ρ0d = 0.5245 kg/m3, c0d = 520 m/s and M0d = u0d/c0d = 0.5. The duct exits into a quiescent
medium characterized by a density ρ0∞ = 1.225 kg/m3, a speed of sound c0∞ = 340.27 m/s and a Mach number
M0∞ = u0∞/c0∞ = 0. The heat specific ratio is γ = 1.4. The Mach number flow profile outside the duct is given in
cylindrical coordinates by:

M0(r, z) = M0

[
1 −

(
M0∞ − M0d

M0∞ + M0d

)
tanh

(
rd − r
ζδ(z)

)]
,

where M0 = (M0d + M0∞ )/2, ζ = (2/5) cos2(β/2) is a parameter to control the shear layer profile, β = π/9 is the
spreading angle and δ is the shear layer thickness. The latter reads:

δ(z) = 2(z − zd) tan(β/2).

where zd is the duct tip position in z direction. The resulting Mach number is shown in Figure 5(a). The mean flow
density is continuously varied using the same hyperbolic tangent profile. Finally, the speed of sound distribution is
determined so as to maintain a constant hydrodynamic pressure p0 = ρ0c2

0/γ = 1.4183 × 105 Pa across the jet mixing
region.205

In this study, a three-dimensional computational domain Ω extending from z = 0 m to z = 5 m in the axial direction
and from and r = 0 to r = 3 m in the radial direction is considered. It is shown in Figure 5(a). The domain Ω is split
into two non-overlapping regions: an inner subdomain ΩLEE enclosing the shear layer where the LEE are used, and
an outer subdomain ΩLPE where the LPE applies. There are a number of aspects to consider when deciding where to
define the interface between these two regions:210

• The LEE subdomain should be as small as possible to minimize the computational cost.

• The LEE subdomain should be sufficiently large to encompass the region where the mean flow vorticity is
expected to have a significant influence on sound refraction, or where the presence of vorticity waves and
entropy waves is expected.

• In this study the LEE region is not extended inside the PML and is terminated slightly before the outer bound-215

ary. This allows us to avoid reformulating the coupling conditions inside the PML, where the handling of
hydrodynamic and entropy waves may pose additional difficulties.
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Figure 5: Acoustic radiation from a straight circular semi-infinite duct, under hot-jet exhaust flow conditions (a) Mean flow Mach number M0 and
LEE-LPE interface (solid lines), (b) Baseline mesh and order distribution from 2 to 6 used for the adaptive LEE-LPE solution with ET = 1% at
k0rd = 8.5 and (c) corresponding solution (real part of pressure) for the mode (m, n) = (5, 1), (d) Refined mesh with order distribution and (e)
corresponding solution obtained for the mode (m, n) = (5, 1).

Clearly, the first two points need to be addressed on a case-by-case basis and some preliminary tests might be necessary
to achieve the right balance between accuracy and efficiency.

For this test case, a conically shaped coupling interface is defined, shown by solid lines in Figure 5(a). It starts220

inside the duct, namely at z = zd − 0.3, and extends up to z = zd + 2.1, with the same spreading angle β as the shear
layer profile, so as to closely follow the growth of the shear layer thickness. At this interface, the conditions described
in Section 3 are imposed to adequately couple the two variational formulations.

The incoming acoustic wave is the duct mode (m, n) = (5, 1) with the angular frequency ω = 2892 rad/s. The
shortest acoustic wavelength is 0.56 m, and is equal to the largest vorticity wavelength. In this study, the computational225

domain is discretised with two meshes, namely a baseline mesh and a refined mesh. The baseline grid is shown in
Figure 5(b). The size of the mesh elements ranges from 0.25 m in the duct to 0.4 m at the outer boundary. The baseline
mesh is slightly refined at the duct trailing edge, with a mesh size of 0.02 m applied at the tip, in order to take the
geometric singularity into account. The grid comprises a total of 36 555 10-noded quadratic tetrahedral elements in
the physical region and 1 644 15-noded quadratic prism elements in the PML. The coupling interface involves 2 832230

6-noded quadratic triangle faces. The face order distribution obtained for a user-defined accuracy of ET = 1% is also
shown in Figure 5(b). The a-priori error indicator automatically adjusts the finite element basis to the mean flow and
the element size distribution, taking also into account the mesh curvature (see [22]). In the LEE region, the typical
order is pFEM = 3, except at the duct tip, where the minimal order pFEM = 2 is used. In the high-Mach number region
(M0d = 0.5), the typical order extends from pFEM = 3 to pFEM = 6, thus accounting for the acoustic wavelength235
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Figure 6: (a) Sound Pressure Level (in dB) obtained with the different models against the observer angle Φ ∈ [0◦, 180◦] along the control circle,
for the mode (5, 1) with jet flow condition M0d = 0.7641 and M0∞ = 0 at ω = 2892 rad/s. (b) Zoom in the lower directivity angles, in the vicinity
of the vortex sheet Φ ∈ [0◦, 60◦].

shortening induced by the background flow. In the far-field region, where the mesh is coarsened for an improved
efficiency, the order varies from pFEM = 3 to pFEM = 5. The refined mesh is designed in the same way as the baseline
mesh, except in the shear layer region where a strong mesh refinement is applied, with h = 0.05 m in domain ΩLEE.
The refined mesh, colored by the face orders distributed from 2 to 6, is presented in Figure 5(d). Note that the minimal
order pFEM = 2 is used in the shear layer region.240

Figures 5(c) and 5(e) present the numerical solutions (real part of pressure) obtained from the p-adaptive hybrid
model using the baseline and refined meshes respectively. The acoustic mode propagates in the duct, is refracted
through the vortex sheet and radiates to the far field. A small-amplitude spurious fluctuation is also visible at the
downstream end of the LEE region, but this does not have a significant influence on the directivity, see below.

At the duct tip, the shear-layer is responsible for the generation of the hydrodynamic Kelvin–Helmholtz instability,245

which develops as a vorticity shedding along the duct wake and decays after a finite distance, as the thickness of the
shear layer increases. The development and the attenuation of the vorticity shedding in the wake are, as expected,
much more noticeable on the refined mesh solution in Figure 5(e). However, qualitatively, the radiation patterns in the
far field is not altered noticeably by the instability waves.

More quantitative results are provided by comparing the numerical solutions obtained from the baseline and the250

refined grids on a 2 m-radius circle centered on the point (0, 0, ld)T . The circle is indicated by dashed lines in Fig-
ures 5(c) and 5(e). The sound pressure levels along this circle are shown in Figure 6 as a function of the angle Φ

measured from the z-axis pointing away from the duct (see Figure 5(c)). As a reference solution, an axisymmet-
ric (2.5D) solution of the LEE (see [6]) is also provided using a very high fixed order pFEM = 8. The two hybrid
LEE-LPE 3D solutions are overall in good agreement with this reference solution, the main features of the radiated255

sound field are present. The pressure trace inside the duct (Φ = [150◦, 180◦]) is closely matching. A slight difference
in magnitude is however observed along the main directivity lobe found at Φ ≈ 75◦. In particular, in Fig. 6(b), at
Φ = 60◦, the baseline mesh solution yields a typical amplification of about 1 dB when compared to the reference
and the refined mesh solutions, which are found in close agreement. Larger differences are also noticeable for lower
directivity angles, i.e. in the region of the shear layer located at Φ = 30◦, see Figure 6(b). This is due to the presence260

of the Kelvin–Helmholtz instability whose amplitude varies on the different meshes. Another important remark is that
no pressure jumps are visible when crossing the coupling interface, which indicates that the continuity of pressure is
properly enforced. An LPE scalar solution without LEE patch is also computed on the baseline mesh as a reference.
While it accurately predicts the solution inside the duct, it is unable to capture the main directivity lobe. Differences
of 5 to 10 dB with respect to the 2.5D LEE reference solution are found in this region (Φ ≈ 75◦), which illustrates265

that the LPE model alone is not a reliable approach for modeling noise radiation through heated jet flows.
Table 1 compares the performance of the different 3D methods in terms of number of degrees of freedom (DoFs),

memory footprint and solving time. The coupled LPE-LEE adaptive method applied to the baseline mesh involves
a total of 658 082 DoFs with condensation of the internal bubble shape functions. Solving the corresponding linear
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Method Mesh Number of DoFs ∗ Factorization Memory (Mb) Solving time (sec)
LPE only Baseline 318 840 12 481 56
LPE-LEE Baseline 658 082 36 310 127
LPE-LEE Refined 2 657 916 295 173 1 566
LEE only Baseline 1 594 200 272 631† N.A.

Table 1: Comparison of the computational costs of the different 3D models as obtained from the MUMPS linear solver, for the sound radiation from
a straight circular semi-infinite duct under hot-jet exhaust flow conditions, at k0rd = 8.5 (∗with condensation of internal bubble DoFs, †estimated
memory).

system required around 2 minutes using 36 GB of RAM. The discretization of the LEE patch alone, although repre-270

senting only a small part of the computational domain, induces an overhead factor of roughly 2 on the execution time
and a factor of 3 on the memory requirements of the linear solver, when compared to the full LPE solution performed
on the same mesh. This can be explained by the fact that the LEE subdomain contains five variables, compared to one
for the LPE scalar operator. Refining the LEE region, on the other hand, in order to fully resolve the vorticity shedding
along the wake of the duct, yields a drastic increase in the computational cost. In this example, the calculation using275

the refined mesh is one order of magnitude more computationally demanding, with up to 309 GB required for the
matrix factorization. In order to assess the gains brought by the proposed hybrid approach, a solution relying solely
on the LEE was also assembled on the baseline mesh, (although it could not be solved due to the lack of a PML
implementation in the current 3D LEE code). According to MUMPS memory estimation, this solution would have
required up to 272 GB of RAM. In this particular example, the proposed hybrid model therefore yields a memory280

reduction of a factor 7.5, without significantly deteriorating the solution accuracy.

6. Fan noise radiation through jet exhaust flow

The proposed method is now applied to predict the propagation of fan noise through the dual-stream jet flow
exhausting from a model-scale turbofan engine. This is an important application, as in modern high-bypass ratio
engines, the fan noise that radiates through the exhaust nozzle is considered one of the loudest sound sources [31].285

The geometry and mean flow data were generated in the framework of the European project TURNEX [32], and have
been investigated in several studies [5, 33]. The so-called short cowl nozzle geometry is analyzed here, under static
flow conditions.

6.1. Model preparation

The mean flow computation was performed solving the Reynolds-Averaged Navier–Stokes (RANS) equations290

with the k − ε turbulence model [5]. In Figure 7(a), the Mach number on the original CFD mesh is shown. The flow
is injected through the bypass duct (Mfan = 0.35, cfan = 349.6 m/s, ρfan = 1.22 kg/m3), while the core heated jet is
considered at rest (Mturb = 0, cturb = 530 m/s, ρturb = 0.48 kg/m3).

The mean flow vorticity obtained from the RANS, defined as |ω0| = |∇ × u0|, is given in Figure 7(b). Notable flow
shear exists in the boundary layers, nozzle exhaust areas as well as in the jet mixing regions.295

This mean flow field needs to be mapped onto the (typically coarser) acoustic mesh. Previous studies have high-
lighted the importance of an appropriate mean flow description to ensure an efficient aeroacoustic propagation [34]. In
particular, the thin boundary layers obtained from RANS which have a marginal impact on the acoustic propagation,
and are typically not resolved when mapped onto the acoustic mesh, need to be removed. To decide which CFD points
to keep and which to disregard, a measure of the normal distance to the wall is required. In this work, the wall-distance300

method proposed by Tucker [35] is used. In this approach, wall-normal distances are inferred from the solution of an
in-homogeneous Poisson equation with Dirichlet boundary conditions applied on the wall surfaces. The latter is car-
ried out using conventional linear finite elements on the original RANS mesh, and the resulting sparse linear system is
solved using an iterative conjugate gradient procedure. The wall-normal distances dn obtained using this strategy are
shown in Figure 7(c). It is worth emphasizing that, despite the geometry curvature, the wall-normal distance remains305

smooth throughout the domain. A wall-distance threshold of dn < 6 mm is applied for the boundary layer truncation
(BLT). When the location where an approximation is desired falls within this region, it is extrapolated from the CFD

13



(a) Mach number M0 (b) Vorticity magnitude |ω0 | = |∇ × u0 |

(c) Distance to wall dd (d) Vorticity (after BLT) + LEE-LPE Coupling interface

Figure 7: Turnex short cowl test case: (a) mean flow Mach number and (b) vorticity fields obtained from RANS for static approach condition
(courtesy of Brian Tester, ISVR), (c) distance to wall obtained by solving an inhomogeneous Poisson problem (see [35]), (d) vorticity magnitude
after boundary layer truncation, also showing the LEE-LPE coupling interface in blue obtained from the isoline |ω0 | = 200 s−1.

data outside of the boundary-layer region. The resulting mean flow vorticity magnitude, after application of the BLT,
is shown in Figure 7(d). No flow vorticity is visible in the near-wall regions, which indicates that the boundary layers
have been efficiently removed.310

Once the mean flow representation is finalized, the different regions of the proposed hybrid propagation model
may be assigned. The separation is applied automatically, based on an isoline of the vorticity magnitude, namely
|ω0| = 200 s−1 (see Figure 7(d)). The two strong shear flow regions, where |ω0| > 200 s−1, encompassing the bypass
and the core jet mixing regions, are modeled using the LEE, whereas the rest of the domain, namely, the in-duct and
far-field propagation regions, are modeled using the LPE. The value |ω0| > 200 s−1 is problem-specific and another315

value would have to be chosen for a different test case.

6.2. Numerical results

In the acoustic simulations, the computational domain extends from x = −0.36 m to x = 0.54 m and is surrounded
by a cylindrical PML of radius 0.3 m and of width 0.2 m. For this study, two acoustic meshes, referred to as fine and
coarse grids, are created using Gmsh [29], with a respective characteristic element size of h = 4 cm and h = 6 cm.320

A cross section of the two meshes is provided in Fig. 8(a) and 8(b). In both cases, in order to maintain an accurate
geometry and mean flow representation, a curvilinear quadratic mesh is generated, yielding 10-noded tetrahedrons in
the physical domain and 15-noded prisms in the PML. A mesh refinement hmin = h/5 is also applied at the tips of
the exhaust and core ducts, to account for the presence of a geometric singularity. The coarse mesh comprises 25 565
elements and 50 776 nodes, while the fine mesh involves 62 649 elements and 125 380 nodes.325

The mean flow obtained after the boundary layer truncation is mapped from the RANS structured grid onto the
acoustic quadratic mesh nodes, using bilinear interpolation. Figure 9(a) and 9(b) respectively present the interpolated
Mach number M0 and speed of sound c0 obtained on the coarse acoustic mesh (h = 6 cm). The mapped mean flow
remains smooth across the shear layers. The interface Γ separating the LPE from the two LEE domains is materialized
by thick solid lines. It can be verified that the regions of strong flow gradients are enclosed within the bypass and core330

LEE sub-regions.
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(a) Fine mesh h = 4 cm (b) Coarse mesh h = 6 cm

Figure 8: Meshes and element order distribution for the short-cowl nozzle TURNEX test case under static approach condition at f = 7497 Hz
(target accuracy ET = 1%). The LEE-LPE coupling interfaces in the bypass and core mixing regions are indicated with straight lines.

The frequency is set to f = 7497 Hz which corresponds to a Helmholtz number krfan of 26.5, following the
definition provided in [9]:

krfan =
2π f rfan

cfan (1 − Mfan)
.

Figure 8 also presents the face order distribution, as obtained from the a priori error indicator with a target accuracy
of ET = 1%. The adaptive approach automatically adjusts the polynomial order based on the frequency, the local grid
size and the local mean flow properties. The typical order is pFEM = 5 − 6 for the refined mesh and pFEM = 7 − 8 for
the coarse mesh. While the order is naturally elevated in higher flow speed regions, lower orders are used in the mesh335

refinement area but also in the heated core jet, where the speed of sound increases, as visible in Fig 9(b).
To model the noise contribution from the fan, a set of incoming annular acoustic duct modes (m, n) are generated in

the bypass cross-section at x = −0.348 m, using an active version of the PML. Three duct modes are considered in this
analysis, the plane wave mode (m, n) = (0, 1), and two well cut-on modes, namely (m, n) = (4, 1) and (m, n) = (9, 1).
All individual modes are prescribed at the inlet with a unit incident modal intensity. Figure 10 presents the real part340

of the pressure obtained with the hybrid adaptive model on the coarse mesh, for the three individual incident duct
modes. The solutions are qualitatively satisfactory, the pressure distribution is continuous throughout the domain and
the presence of the physical interface is not apparent. The duct modes, generated in the bypass duct, are refracted
through the shear layer and radiate to the far field. The mode (9, 1) radiates with a higher angle and is characterized
by one main directivity lobe, whereas the mode (4, 1) exhibits multiple secondary lobes. The mode (0, 1) on the other345

hand radiates at lower angles and thereby, a significant portion of the acoustic energy remains confined in the jet
flow. This makes the plane wave mode propagation particularly challenging to simulate, as the vorticity and acoustic
perturbations are expected to interact over a larger distance, downstream of the core and bypass mixing regions.

As discussed in Section 4.2, the proposed adaptive scheme adjusts the polynomial order so as to only resolve the
range of acoustic length scales. As a result, no K-H instabilities are visible in 10. By contrast, previous analysis350

performed on the same case (using fixed-order, over-resolved solutions) have consistently reported the presence of
spatially growing hydrodynamic perturbations in the bypass shear-layer [36].

In order to examine the numerical solutions in more detail, Figure 11 presents the sound pressure levels obtained
along a circular control line of radius 0.3 m, centered at the tip of the bypass duct. As a reference for the quantitative
verification of the three-dimensional LEE-LPE hybrid model, a full LEE axisymmetric (2.5D) solution is computed,355

using a mesh size h = 2 cm and a low target accuracy ET = 10−2%. The sound pressure levels obtained with the
proposed hybrid model on the fine mesh (h = 4 cm) are in close agreement with the reference solution. The main
directivity lobes and associated peak pressure levels are well predicted. The solution obtained using the coarse mesh
reveals larger differences with respect to the reference solution. This is thought to be related to the mean flow and
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(a) Mach number M0 (b) Speed of sound c0, m/s

Figure 9: Interpolated mean flow on the mesh with h = 6 cm for the short-cowl nozzle TURNEX test case under static approach condition. The
LEE-LPE coupling interfaces in the bypass and core mixing regions are indicated by black solid lines.

Method Mesh (pmin, pmax) Number of DoFs ∗ Factorization Memory (Mb) Solving time (min)
LPE-LEE 3D Fine (2, 8) 2 888 295 431 612† 68 (OOC)
LPE-LEE 3D Coarse (2, 10) 1 888 986 267 834 32
LEE only 3D Coarse (2, 10) 5 618 602 3 022 626† N.A.

Table 2: Comparison of the computational costs of the different 3D models as obtained from the MUMPS linear solver, for the TURNEX short-
cowl use case under hot-jet exhaust flow condition, at 7497 Hz (∗with condensation of internal bubble DoFs, †estimated memory, OCC designates
out-of-core computation).

geometric representation, which are more crudely represented on the coarse mesh. Furthermore, significant differences360

are noticeable at low directivity angles (Φ < 30◦) in the region of the shear layer, particularly for the mode (9, 0). This
is due to the presence of a localized K-H instability in the 2.5D reference solution, which is not apparent in the 3D
adaptive model. Overall, the proposed LEE-LPE adaptive model yields satisfactory results, the main features of the
sound radiated from the exhaust are well captured, even on the coarse mesh.

The computational cost of the different 3D numerical models is now investigated, see Table 2. The coarse mesh365

model with typical order pFEM = 7 − 8, involves 1 888 986 DoFs, of which roughly 50% (872 276 DoFs) are used
for the discretization of the shear flow regions in domain ΩLEE. It was solved in-core by the MUMPS library in 32
minutes on 16 threads and required 267 GB of physical memory.

The simulation on the refined mesh on the other hand, with typical element order pFEM = 5 − 6 required up to
2 888 295 DoFs, and was solved out-of-core in 68 minutes. This is in agreement with conclusions from previous stud-370

ies which have indicated that, at fixed accuracy, higher-order elements lead to lower memory requirements, especially
when static condensation is applied [19, 8, 22]. Whenever possible, coarse meshes should therefore be advocated, as
they allow to better exploit the accuracy of the high-order approximation basis. A three-dimensional full LEE model
was also assembled on the coarse mesh, as a reference. According to MUMPS estimates, the in-core factorization of
the resulting system matrix would have required approximately 3 TB of RAM. In this particular example, the proposed375

LPE-LEE hybrid model therefore allowed to reduce the memory footprint of the simulation by more than an order of
magnitude, without appreciably compromising the accuracy of the solution.

7. Conclusions

An efficient strategy has been proposed for the modeling of acoustic propagation through vortical flows. In this
approach, regions of high-shear flows, where vorticity and entropy effects are expected to play an important role, are380

modeled using the accurate, albeit expensive, linearised Euler equations, while the rest of the domain is modeled using
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(a) Mode (0, 1) (b) Mode (4, 1) (c) Mode (9, 1)

Figure 10: Real part of pressure obtained with the adaptive hybrid LEE-LPE model on the mesh h = 6 cm, at 7497 Hz for various incident modes
enforced in the bypass duct. The control circle used for the directivity measurements is also shown (dashed line).

(a) Mode (0, 1)

0

30

60

90

120

150

0

20

40

60

80

100

(b) Mode (9, 1)

0

30

60

90

120

150

0

20

40

60

80

100

Figure 11: Sound Pressure Level (in dB) against the position angle Φ ∈ [0◦, 165◦] along the control circle, for the short-cowl nozzle TURNEX
exhaust radiation at f = 7497 Hz.

the scalar linearised potential equation. Transmission conditions have been introduced to allow for an efficient cou-
pling at the physical interface between the two propagation models. To further enhance the computational efficiency,
the resulting coupled problem is discretized using a high-order adaptive Finite Element strategy, which adjusts the
polynomial order across the mesh automatically at each frequency, accounting for the local grid and mean flow prop-385

erties. Several numerical examples are provided which illustrate the performance of the method, including a lab-scale
turbofan exhaust application under realistic static flow conditions.

Other applications of this hybrid approach could be considered. For instance, LEE regions could be used to
represent sound propagation through boundary layers, while using the LPE for the propagation of sound in the rest of
the domain.390

A configuration that has not been considered in the present paper is the case where the interface corresponds to an
outflow boundary for the LEE region and vorticity or entropy waves are present in the LEE region. In this case it is
likely that the interface conditions formulated here will result in spurious reflections from the interface since it does
not act as a non-reflecting boundary condition for these waves. This effect remains to be assessed in more detail.

Another aspect that has not been addressed in the present paper is situations where the LEE-LPE interface extends395

into the Perfectly Matched Layer. In this case one would have to derive modified coupling conditions specifically for
the portion of the interface inside the PML since the governing equations have been modified to implement the PML.
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Appendix A. Flux matrices of linearised Euler equations

The flux matrices in equation (1) are defined as follows:

A =


0 1 0 0 0
−u2

0 2u0 0 0 ρ0c2
0/pc0

−u0v0 v0 u0 0 0
−u0w0 w0 0 u0 0
−pc0u0/ρ0 pc0/ρ0 0 0 u0

 (A.1)

B =


0 0 1 0 0
−u0v0 v0 u0 0 0
−v2

0 0 2v0 0 ρ0c2
0/pc0

−v0w0 0 w0 v0 0
−pc0v0/ρ0 0 pc0/ρ0 0 v0

 (A.2)

C =


0 0 0 1 0

−u0w0 w0 0 u0 0
−v0w0 0 w0 v0 0
−w2

0 0 0 2w0 ρ0c2
0/pc0

−pc0w0/ρ0 0 0 pc0/ρ0 w0

 (A.3)
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[5] Y. Özyörük, B. J. Tester, Application of Frequency-Domain Linearized Euler Solutions to the Prediction of Aft Fan Tones and Comparison

with Experimental Measurements on Model Scale Turbofan Exhaust Nozzles, Journal of Sound and Vibration 330 (16) (2011) 3846–3858.
[6] K. Hamiche, G. Gabard, H. Bériot, A High-Order Finite Element Method for the Linearised Euler Equations, Acta Acustica United With415

Acustica 102 (5) (2016) 813–823.
[7] R. J. Astley, R. Sugimoto, P. Mustafi, Computational Aero-Acoustics for Fan Duct Propagation and Radiation. Current Status and Application

to Turbofan Liner Optimisation, Journal of Sound and Vibration 330 (26) (2011) 3832–3845.
[8] H. Bériot, A. Prinn, G. Gabard, Efficient Implementation of High-Order Finite Elements for Helmholtz Problems, International Journal for

Numerical Methods in Engineering 106 (3) (2016) 213–240.420

[9] G. Gabard, H. Bériot, A. Prinn, K. Kucukcoskun, Adaptive, high-order finite-element method for convected acoustics, AIAA Journal 56 (8)
(2018) 3179–3191.

[10] M. E. Goldstein, An Exact Form of Lilley’s Equation with a Velocity Quadrupole / Temperature Dipole Source Term, Journal of Fluid
Mechanics 443 (2001) 231–236.

[11] R. Leveque, Finite volume methods for hyperbolic problems, Cambridge University Press, 2002.425

[12] R. L. Higdon, Initial-Boundary Value Problems for Linear Hyperbolic Systems, SIAM Review 28 (2) (1986) 177–217.
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