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On the use of leaky modes for the sound propagation modeling in an
open urban street canyon

Adrien Pelat,a) Simon Félix, and Vincent Pagneux
LAUM, CNRS, Université du Maine, avenue Olivier Messiaen, 72085 Le Mans, France.

One is interested in a multimodal approach to describe the sound propagation within an urban,
U-shaped, street canyon being considered as an open waveguide in which the sound may propagate.
The key point in such a multimodal formalism is the choice of the basis of local transversal modes on
which the acoustic field is decomposed. For a waveguide with a simple and bounded cross-section,
a complete orthogonal basis can be analytically obtained. The case of an open waveguide is more
difficult, since no such a basis can be exhibited. However, an open resonator, as for example the
U-shaped cross-section of a street, presents resonant modes with complex eigenfrequencies, owing
to radiative losses. This work first presents how to numerically obtain these modes. Results for the
transverse modes are also compared with solutions obtained by the Finite Elements Method (FEM)
with Perfectly Matched Layers (PML). Then, examples are treated to show how these leaky modes
can be used as a basis for the modal decomposition of the sound field in a street canyon.

PACS numbers: 43.20.Mv, 43.28.Js, 43.50.Vt

I. INTRODUCTION

The aim of the present work is the resolution of the
wave equation

(
~∇2 − 1

c20

∂2

∂t2

)
p = 0, (1)

in a long open rectangular enclosure (Fig. 1), to model
the sound propagation within a street canyon.
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x

Figure 1. A straight open waveguide as model of a street
canyon.

The investigation of sound propagation in urban envi-
ronments and streets has been the subject of extensive
researches in the past four decades, as the response to a
growing social demand.

After experimental observations? ? ? in the 60’s, the
earliest theoretical works on this topic were conducted in
the 70’s. Davies? , Lee? , Stenackers et al.? , and Lyon?

used image sources to study multiple sound reflections
in a street considered as a channel between two infinite

a)Electronic address: adrien.pelat.etu@univ-lemans.fr

walls. Later, image source method has been improved
considering scattering at façade irregularities? , diffusely
reflecting façades? or coherent image sources? . Other
energetic approach were also used in urban acoustics.
Kang? developped a radiosity based model, Bradley?

used ray tracing method, Picaut et al.? proposed a
method based on a diffusion equation governing sound
particles propagation. These energetic approaches give
statistical description of sound fields in urban environ-
ment and are able to model more or less accurately nu-
merous phenomena occcuring in streets. Since these ap-
proaches assume high frequency hypothesis, they cannot
describe sound fields when the wavelength is in the range
of street width. Furthermore, computation costs strongly
increase for complex geometries or for 3D problems.

As pointed out by some authors? ? , interference ef-
fects are significant for relatively narrow street canyons
(i.e. when the wavelength of the audible sound is of the
same order of magnitude as the street width). Hence,
wave methods present real interests for sound propaga-
tion modeling. Bullen and Fricke? ? , thirty years ago
studied the wave propagation in streets using an approxi-
mated 2D modal approach, notably to model junctions of
streets. To solve the wave equation in a 2D street, Finite
Elements or Boundary Elements methods? could as well
give solutions to the wave equation for realistic geome-
tries, but the high computation costs restrict their use
to low frequencies or to 2D approximations. The equiva-
lent sources approach? ? ? is field-based rather than ray-
based, and apprehends the resonant behaviour of a city
canyon. In this approach, a set of equivalent sources are
used to couple the free half space above the canyon to
the cavity inside the canyon. The finite differences in
time domain (FDTD) method describes the sound field
in 2D or even 3D problems? and can model a priori a
very large number of phenomena. The parabolic equation
coupled with FDTD method can also be useful to take
into account meteorological effects? . These wave meth-
ods, however, are based on strong approximations or, for
fully numerical methods, it lacks an explicit physical in-
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terpretation of the relationship between the properties of
the sound field and, e.g., the geometry of the street.

The aim of the present paper is to give a multi-
modal description of the wave propagation in a 3D street
canyon, this latter being regarded as a straight open
waveguide. In a modal approach within a uniform waveg-
uide, elementary solutions for the pressure are written as

pi(x, y, z) = ej(±kix−ωt)φi(y, z), (2)

where k2i = k2 − α2
i , <{ki} > 0, ={ki} > 0, k = ω/c0,

and (αi, φi) are the eigensolutions of the transverse eigen-
problem

~∇2
⊥φ = −α2φ, (3)

with proper boundary conditions, in the cross-section of
the waveguide. Then, a solution in the waveguide can be
built as a sum on these elementary solutions (the time
dependence exp(−jωt) is omitted):

p(x, y, z, ω) =
∑

i∈N∗
(aie

jkix + bie
−jkix)φi(y, z), (4)

and the coefficients ai and bi are found as functions of
the end conditions in the waveguide.

In the classical case of closed waveguides having simple
and bounded cross-section, a complete orthogonal modal
basis {φi} can be analytically obtained. The case of open
waveguides, as the one shown in Fig. 1, with a partially
bounded cross-section, is more difficult, since no such a
basis can be exhibited. However, a cross-section being
regarded as an open resonator also displays eigenmodes
with complex eigenfrequencies, owing to the radiation
losses.? ? ? ?

In this paper we propose to describe how the resonant
modes of the open cross-section of an open waveguide
(Fig. 1) can be used to give a multimodal formulation of
the sound propagation in long open enclosures. A general
method to compute the resonant frequencies and mode
shapes in the transversal open cross-section of the duct
is described. Results of the transverse problem are also
compared with FEM computations using PML. Then,
the multimodal propagation in a straight open waveg-
uide is formulated and numerical examples are given and
discussed.

II. EIGENMODES OF THE TRANSVERSE PROBLEM

A. Theory and formulation

The transverse modes of the open waveguide shown in
Fig. 1 are written as the solutions (α, φ) of the eigenprob-
lem (3) with boundary conditions

∂zφ = 0 if z = 0 and |y| > L/2, (5a)
∂zφ = 0 if z = d and |y| < L/2, (5b)
∂yφ = 0 if y = ±L/2 and 0 < z < d (5c)

in the cross-section of the waveguide, regarded as a 2D
rectangular cavity Ω1 open on the semi-infinite space

Ω2. Moreover, φ is an outgoing wave at infinity. A
similar problem, with elastic waves, has been treated by
Maradudin and Ryan? and part of the following equa-
tions are derived from this work (Fig. 2).
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Figure 2. The cross-section of a street canyon seen as a 2D
open rectangular cavity.

In the cavity (z ≥ 0), the general solution satisfying
boundary conditions can be written as a discrete sum of
functions,

φ(y, z ≥ 0) =
∑

n∈N
An cos (βn(z − d))ψn(y) (6)

with d the depth of the cavity, β2
n = α2 −

(
nπ
L

)2 and

ψn(y) =
√

2− δn0 cos

(
nπ

L

(
y − L

2

))
, (7)

where δmn is the Kronecker symbol.
Above the cavity (z ≤ 0), the general solution is writ-

ten as the spatial Fourier transform

φ(y, z ≤ 0) =
1

2π

+∞∫

−∞

Bej(αyy−αzz) dαy, (8)

where α2
z = α2 − α2

y with <{αz} ≥ 0 and ={αz} ≥ 0.
Writing the continuity of φ and its normal derivative

∂zφ in the interface plane z = 0 leads to the following set
of equations for the coefficients An:

∀(m,n) ∈ N2,

Am cos(βmd) = j
∑

n∈N
Πmn(α)βnAn sin(βnd), (9)

with Π a matrix, function of α and the aspect ratio d/L
(see details in Appendix A).

Finally, Eq. (9) can be written in the matricial form

D ~A = ~0, (10)

where An = An sin(βnd) and

Dmn(α) = cot(βmd)δmn − jΠmnβn. (11)

Then, the eigenvalues of the transverse eigenproblem are
the values αi of α for which det(D) = 0, and the eigen-
functions φi are given by the corresponding set of coeffi-
cients A(i)

n , satisfying Eq. (10) with D = D(αi).
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B. Numerical resolution

After truncation of Eq. (10) at a finite-size matricial
problem, zeros of the determinant of D are numerically
located in the complex α-plane to compute eigenvalues
αi of the transverse problem (Fig. 3).
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Figure 3. Spectrums of complex eigenvalues of the transverse
problem for two different values of the aspect ratio: (a) d/L =
1.4, (b) d/L = 2. ’◦’: symmetric modes, ’×’: antisymmetric
modes, ’4’: eigenvalues computed with FEM (color online).

Owing to the radiation losses in the infinite space Ω2

(above the waveguide), eigenvalues are complex, lying
in the lower half-plane.? ? ? ? The spectrum displays
families of eigenvalues corresponding to either symmet-
ric (blue circles ’◦’) or antisymmetric modes (red crosses
’×’). An analogy with the classical, real, modes of the
simple problem with a Dirichlet condition (φ = 0) at
z = 0 instead of the exact radiating condition used in
Sec. II.A, allows us to label the complex modes φi - at
least the modes with eigenvalue located close enough to
the real axis in the complex α-plane - with a couple of
integers denoting the number of vertical and horizontal
nodal lines (Fig. 4). Following this terminology, the fam-

ilies displayed in Fig. 3 are the φ(p,q) with p constant.
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Figure 4. Symmetric mode φ(2,1) (real part, imaginary part
and modulus). The indices (2, 1) are chosen following an anal-
ogy with the classical eigenmodes in a closed cavity with a
Dirichlet condition φ = 0 on the upper boundary: these in-
dices denote the number of vertical and horizontal nodal lines.

Fig. 3 shows the spectrum of eigenvalues for two
differents values of the aspect ratio of the cavity: (a)
d/L = 1.4, and (b) d/L = 2. The pattern in both plots
is similar, exhibiting the families of modes φ(p,q) with
p constant. However, in the “deeper” cavity, with the
aspect ratio d/L = 2, the confinement of the modes
is more important, thus, eigenvalues αi have a smaller
imaginary part than in the cavity with aspect ratio 1.4.

For comparison, a finite element method is used
to solve the transverse eigenproblem (3). The semi-
infinite space above the cavity is bounded with Perfectly
Matched Layers (PML), as used by Koch? in a similar
problem (Fig. 5).
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Figure 5. Geometry of the domain with PML in the FEM
computations.

The results shown in this paper (Figs. 3-b and 6)
have been obtained with parameters d′ = L/2, l′ = L,
dPML = L/2, and τy = τz = 1 + j (see Appendix B). A
Dirichlet condition φ = 0 is imposed on the outer bound-
aries of the PML. Moreover, as the geometry of the cross-
section is symmetric about the z axis, only one half of
the domain is meshed, with the approriate symmetry or
antisymmetry condition imposed at y = 0. Computa-
tions have been performed using The Partial Differential
Equation toolbox from Matlabr.

The results of the two compared methods - the res-
olution of Eq. (10) and the FE Method - are in good
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Figure 6. Antisymmetric eigenfunctions φ(3,q), q > 0, and comparison with FEM computations. The PML domain is not shown
in the FEM results.

agreement (Fig. 3-b). The discrepancy between the re-
sults increases for larger values of the imaginary part
={αi}. However, eigenvalues that are less well-estimated
are associated to modes that will be strongly attenuated
when propagated in the waveguide. They are, then of
secondary importance when considering the transport of

energy on a sufficiently long distance. Moreover, it will
be shown in the following that the contribution of these
modes in the determination of the sets of coefficients {ai}
and {bi} is almost negligible.

A comparison between the eigenfunctions φi deduced
from the method detailed in § II.A and from the FEM
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computation shows also a good agreement (Fig. 6). Both
methods give very similar results, even when the error
on the imaginary part of αi becomes more significant
(Fig. 6, bottom). The figure also clearly shows that low
order modes weakly “radiate” in the infinite space Ω2:
the effect of the opening of the waveguide appears as a
small perturbation on the classical, non radiating, solu-
tions that would be obtained by applying an homoge-
neous Dirichlet condition at the top of the waveguide
(z = 0). For higher order modes, however, eigenfunc-
tions φi differ more and more from the “Dirichlet” solu-
tions. Patterns of nodal lines are more complex - con-
sequently, the indexation with indices (p, q) become less
relevant - and the confinement, that was strong for low
order modes, becomes weaker, with the energy increasing
near the interface z = 0.

Now that the transverse eigenmodes are determined,
they can be used to perform a multimodal formulation
of the sound propagation within a street canyon.

III. PROPAGATION ALONG THE STREET

As explained in Sec. I, the transverse modes φi can
be used, for given source and radiation conditions at the
ends of the waveguide, to built a solution of the wave
equation, as written in Eq. (4).

Because the transverse eigenvalues αi are complex with
={αi} < 0, the propagation constants ki are also com-
plex, with ={ki} > 0, even for real source frequency
ω. Then, all the modes φi exp(±jkix) in the waveguide
decrease exponentially while propagating, reflecting the
radiation losses during the propagation along the open
waveguide. This corresponds to leaky modes.

The two sets of coefficients {ai} and {bi} must be
found, as functions of the end conditions in the waveg-
uide. At the input end of the waveguide, a source con-
dition is defined as a given acoustic pressure distribution
in a plane x = constant, with frequency ω. For example,
at x = 0: p(0, y, z, ω) = p0(y, z) exp(jωt). At the output
end of the waveguide is given a radiation condition.

A. Input condition

Let call Pi(x) = ai exp(jkix)+ bi exp(−jkix) the coeffi-
cients in the development in series (4). Since the modes
φi are not orthogonal, the initial field p0(y, z, ω) cannot
be projected on the {φi} as it is classicaly made to find
the {Pi(0)}. Thus, after truncation at a finite number N
of terms in the development (4), a least square method
is thus used to find these coefficients? :

~P (0) =
(

Λ(φ)
)−1

~p
(φ)
0 , (12)

where the i-th component of ~P (0) is Pi(0) and

Λ
(φ)
ij =< φi|φj >, (13a)

p
(φ)
0i =< φi|p0 >, (13b)

with the product

< f |g >=

∫∫
f̄g dΩ. (14)

Practically, we consider source conditions p0(y, z, ω)
with a support included in Ω1, i.e., inside the street
canyon. Thus, for convenience when determining ~P (0),
we consider the restriction of the eigenfunctions φi to the
domain Ω1, that is,

∀(y, z) ∈ [−L
2
,
L

2
]× [0, d],

φi(y, z) =
∑

n∈N
A(i)
n cos

(
β(i)
n (d− z)

)
ψn(y), (15)

and the product < | > above is defined as

< f |g >=

d∫

0

L/2∫

−L/2

f̄g dydz. (16)

Note that in the case of real orthogonal modes, as in
classical closed waveguides, the least square method gives
the usual projection coefficients Pm =< φm|p >.

B. Output condition

Let Qi(x) = jki(ai exp(jkix) − bi exp(−jkix)) be the
coefficients in the development of the x-component of ~∇p.
One assumes that at the output end of the waveguide,
say, at x = xend, the condition is given as an admittance
matrix Yend fulfilling ~Q(xend) = Yend ~P (xend).

Again, as for the formulation at the input end, and
due to the non-orthogonality of the eigenmodes, the ma-
trix Yend, for some complex end conditions, may not be
straightforwardly calculated. However, usual end condi-
tions - rigid end, non radiating open end, anechoic ter-
mination - can be easily formulated with this type of
admittance matrix, generalization for all modes of the
usual admittance for the plane wave? . For the results
we will consider anechoic termination, i.e. bi = 0.

C. Solutions for {ai} and {bi}

Now that an input condition ~P (O) and an output con-
dition Yend are known, the vectors ~a and ~b of the {ai}
and {bi} in Eq. (4) can be calculated? ? :

~a = (1− δ)−1 ~P (0), (17)
~b = −δ(1− δ)−1 ~P (0), (18)

where δ = D1(Yend +Yc)
−1(Yend−Yc)D1, D1 is diagonal

with terms D1i = exp(jkixend), Yc is diagonal with terms
Ycn = jki. Thus, with these solutions for ~a and ~b, the
pressure field in the open waveguide can be calculated.
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However, terms exp(−jkix) can be the source of numer-
ical problems of convergence. Then, defining ~̃b = D−11

~b,
the pressure field is written

p(N)(x, y, z, ω) =

N∑

i=1

(aie
jkix + b̃ie

jki(xend−x))φi(y, z),

(19)
with N ≤ N . This new formulation depends only on D1,
not onD−11 , and on exponentials with positive arguments
x or L− x.

IV. RESULTS

In the following, for simplicity, we will consider the
wave field downstream from a source in an infinite waveg-
uide. Then, there are no back propagated waves: bi = 0.

A. Input condition

The initial condition at x = 0 is the pressure distribu-
tion shown in Fig.7 (left part) and given by

p0(y, z) =

3∑

k=1

1

σk
√

2π
e
−(y−yk)2−(z−zk)2

2σ2
k , (20)

where σk ∈ R+ and (yk, zk) ∈ [−L/2, L/2] × [0, d]. The
associated dimensionless frequency is kL/2π = 1.2. This
input condition is chosen as a non trivial solution for the
modal formulation.

Then, the {ai} are found by substituting Eq. (20) for
p0(y, z) in Eqs. (12-13). The modal reconstruction is
shown in Fig. 7. Using a basis of N = N = 30 modes
(we recall that N is the number of terms in the series
(19) and N is the size of the linear problem (12) in the
least square estimation of the {ai}, so that N ≤ N ), the
input pressure condition is well reproduced with a resid-
ual error of 3.6%. This error is due to the high order
depth modes of the first families that have deliberately
not been considered in the modal basis because of their
weak of relevance in the propagation. Furthermore, it
will be shown in the following that omitting these modes
does not affect significantly the estimation of the {ai} for
the modes taken into account.

To evaluate the convergence of the method when in-
creasing the number N of modes taken into account in
Eq. (19), from aN = 30 modes basis, an error ε is defined
as

ε =

√√√√√
∫ d
0

∫ L
2

−L2
||p(N) − p0||2 dydz

∫ d
0

∫ L
2

−L2
||p0||2 dydz

, (21)

where p(N) is the modal solution obtained with N modes
(Eq. 19), and p0 the reference field. The modes are sorted
by increasing value of the imaginary part of their propa-
gation constant ki, that is, from the least damped to the
most damped leaky mode propagating along the canyon
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Table I. Classification of the modes by increasing value of
={ki} at frequency kL/2π = 1.2.

Classification Couple (m,n) Classification Couple (m,n)

1st (1,0) 6th (0,1)
2nd (0,0) 7th (1,2)
3rd (2,0) 8th (2,2)
4th (1,1) 9th (0,2)
5th (2,1) 10th (1,3)

(Tab. I). This type of classification depends directly on
each eigenvalue and the source frequency.

The convergence of the reconstruction of the initial
condition p0(y, z) is shown in Fig. 8 (circles ’◦’). Natu-
rally in such a modal approach, depending on the source
distribution, each mode introduced in the computation
contributes differently to the reconstruction of p0(y, z).
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Figure 8. Evolution of the error indicator ε with the the
number of modes N taken into account in the computation
of the solution. ’◦’: the error is computed at x = 0, with ε
given in Eq. (21). ’4’: the error is computed at x = 10L, with
p(30)(10L, y, z, ω) as the reference field.
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B. Propagation within the waveguide

Assuming that the convergence is reached for N =
30, the field p(30)(x, y, z, ω) is now taken as the reference
field to compute an estimation error at abscissa x = 10L
(triangles ’4’ in Fig. 8). The variability, depending on
the initial condition p0(y, z), of the contributions of the
modes to the congergence is still visible, but, moreover, it
clearly appears that only a few modes - the less damped
modes - still contribue to the transport of energy at that
distance from the “source”. Practically, sorting the modes
as done in Tab. I is thus a good choice to increase the
convergence, as soon as one is interested by the wave
field in the street canyon at a sufficient distance from the
source.

Fig. 9 shows the field in the cross-section of the waveg-
uide at abscissa x = 10L, L the width of the waveguide.
The left plot is obtained using Eq. (19) and N = 30 - the
total number of modes used to perform the least square
estimation -, while the right plot is obtained using only
the first six modes, with the ordering defined above. Both
results are very close: the relative error between them,
defined as in Eq. (21), is less than 0.35%.
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Figure 9. Modal field at x = 10L using N = 30 modes (left)
and N = 6 modes (right).

Since only a few modes are necessary to describe the
field at certain distance from the source, it would be ad-
vantageous to use a reduced modal basis in the computa-
tion. Since modes are not orthogonal, the value of each
modal coefficient ai depends on the size of the “basis”
used in the least square estimation. One shows, however,
that this dependency is rapidly weak, in particular for
the first modes, that is, the less damped (Fig. 10). The
notation a(N )

i is used to denote the number of modes N
taken into account for the least square estimation of ai.

To evaluate the relevance of using a reduced modal
basis, two modal solutions of the wave equation in the
infinite street canyon with the initial condition (20) at
x = 0 are compared: the solution with N = N = 10,
and the solution with N = N = 30. The relative error
between these two solutions, as defined in Eq. (21), is
plotted in Fig. 11 as function of the distance from the
source plane.

Naturally, the source condition p0(y, z) is badly recon-
structed with a limited number of modes, and the relative
error near the plane x = 0 is thus significant. But the
error decreases rapidly, to be under 1% after less than
two widths. It follows that the acoustic field, rapidly, is
“carried” by a small number of modes, the less damped
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Figure 10. Evolution of the modal coefficients a3 (a) and a6
(b) with the number of modes N used for the least square
estimation.

modes, that are therefore well confined and guided in
the open geometry of the street canyon. This points out
a double interest of the modal formulation using leaky
modes in a street canyon; first, as a physically relevant
approach, describing the competitive effects of confine-
ment and radiation in such an open geometry; second,
as an efficient numerical method, since a few modes only
is used to accurately model the wave propagation in the
waveguide.

V. CONCLUSIONS

The problem of sound propagation in a urban street
canyon is solved using a multimodal formulation that
gives the acoustic field as a sum on the leaky modes
in the canyon. The leaky modes, that naturally reflects
the competitive effects of confinement and radiation of
the wave in such partially bounded geometries, can be
numerically determined. As these are complex modes
that decay exponentially while propagating, the number
of modes that effectively carry the wave field (emitted
by some source in the waveguide) decreases rapidly, so
that only a few modes, at a sufficiently large distance
from the source, is necessary to accurately model the
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Figure 11. Relative error (as defined by Eq. 21) between the
modal solution (19) with N = N = 10 and the same modal
solution with N = N = 30, as function of the distance from
the source plane.

wave propagation. This gives this approach a real inter-
est for numerical computations, in addition to its interest
as a physically meaningfull description of the street as a
partially confining and guiding medium for the acoustic
waves.

Appendix A: ESTABLISHEMENT OF EQ. (9)

Continuity equations in the interface plane z = 0, |y| <
L/2 are

φ(y, z = 0+) = φ(y, z = 0−), (A1)

and

∂φ(y, z = 0+)

∂z
=
∂φ(y, z = 0−)

∂z
. (A2)

A first relation between the {An} and B is found by
substituting Eqs. (6) and (8) for φ in combined Eqs. (5a)

and (A2):

∑

n∈N
Anβn sin (βnd)ψn(y) = −j 1

2π

+∞∫

−∞

Bαze
jαyy dαy,

(A3)
to find

B = j
∑

n∈N
Anβn sin (βnd)

Sn(αy)

αz
, (A4)

where

Sn(αy) =

L/2∫

−L/2

ψn(y)e−jαyy dy. (A5)

A second relation is found by using the continuity equa-
tion (A1):

∑

n∈N
An cos (βnd)ψn(y) =

1

2π

+∞∫

−∞

Bejαyy dαy, (A6)

whence it follows that

Am cos (βmd) =
1

2π

+∞∫

−∞

BS∗m(αy)dαy. (A7)

Then, Eqs. (A4) and (A7) leads to the set of linear,
homogenous equations (9) for the {An}: ∀m ∈ N,

Am cos(βmd) = j
∑

n∈N
Πmn(α)βnAn sin(βnd), (A8)

where

Πmn =
1

2π

+∞∫

−∞

S∗mSn
αz

dαy. (A9)

It is easily shown that, for real values of αy, Πmn

vanishes unless m and n have the same parity.? Then,
Eq. (9) breaks up into two sets of linear equations, one
governing the symmetrical eigenmodes (even functions of
y with even values of m and n), the other governing an-
tisymmetrical eigenmodes (odd functions of y with odd
values of m and n). The following equation gives a gen-
eral expression of Πmn for both even or odd indices m
and n:
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Πmn(α) = (−1)
3m+n

2

√
2− δm0

√
2− δn0

π

+∞∫

0

α2
y

αz(αy + mπ
L )(αy + nπ

L )
sinc

(
αy − mπ

L

2

)
sinc

(
αy − nπ

L

2

)
dαy. (A10)

Appendix B: FORMULATION IN THE PERFECTLY
MATCHED LAYERS

PML are used as a to avoid non-physical reflections
at the boundaries of a necessarily finite domain in a nu-
merical computation. The method works as follows: the
solution φ(y, z) of the eigenproblem (3) above the cav-
ity is analytically continued in the PML with respect to
variables (y, z) to complex variables (ŷ, ẑ). The extended
solution φ̂ satisfies

(
∂2

∂ŷ2
+
∂2

∂ẑ2

)
φ̂ = 0 (B1)

Complex variables (ŷ, ẑ) are now written

ŷ(y) =

y∫

0

τy(y′) dy′, ẑ(z) =

z∫

0

τz(z
′) dz′ (B2)

with <{τy,z} > 0, ={τy,z} > 0, and τy(y ≤ l′) = 1,
τz(z ≤ d′) = 1 (Fig. 5). The results in this paper have
been obtained with τy(y > l′) = τz(z > d′) = 1 + j.
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