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A coupled Modal - Finite Element method for the wave propagation
modeling in irregular open waveguides

Adrien Pelat,a) Simon Félix, and Vincent Pagneux
LAUM, CNRS, Université du Maine, avenue Olivier Messiaen, 72085 Le Mans, France.

In modeling the wave propagation within a street canyon, a particular attention must be paid to the
description of both the multiple reflections of the wave on the building façades, and the radiation
in the free space above the street. The street canyon being considered as an open waveguide with a
discontinuously varying cross-section, a coupled modal-FE formulation is proposed to solve the three-
dimensional wave equation within. The originally open configuration - the street canyon open in
the sky above - is artificially turned into a close waveguiding structure by using Perfectly Matched
Layers (PML) that truncate the infinite sky without introducing numerical reflection. Then the
eigenmodes of the resulting waveguide are determined by a FEM computation in the cross-section.
The eigensolutions can finally be used in a multimodal formulation of the wave propagation along
the canyon, given its geometry and the end conditions at its extremities : initial field condition at
the entrance and radiation condition at the output.

PACS numbers: 43.28.Js,43.20.Mv

I. INTRODUCTION

As a medium of sound propagation, the center of ur-
ban areas consists of interconnected confined spaces - the
street canyons - in which the sound is both confined (the
space is enclosed by buildings) and radiated into free
space (the canyon is open on the sky above). In modeling
the sound propagation within a street canyon, the effects
of the open ceiling must be taken into account. In the
high frequency approximation the height of the canyon
is either assumed as infinite9,10,12 or, equivalently, the
opening at the top is represented by a perfectly absorp-
tive ceiling11. At lower frequencies, the effect of the finite
height of the streets and the radiation of sound above is
considered in6,13,17. However, these works are restricted
to solutions of the two-dimensional wave equation in the
plane of the canyons cross-sections. Hornikx and Forssén
recently extended these results to solve the 3D wave equa-
tion, in the case of infinite, uniform, canyons7. It is the
aim of the present study to take into account the ef-
fect of both the finite height of the street and the non-
uniformities of the buildings enclosing the canyon.

We consider the sound propagation in an open waveg-
uide as an idealized model of a street canyon. In such a
geometry, and more generally when the wave is not to-
tally confined by the guiding geometry or medium (we
can refer to other wave types as elastic waves in em-
bedded waveguide3 or electromagnetic waves in optical
fiber18), the modes of the waveguide become leaky, ow-
ing to the radiative losses in the infinite space - the sky
over the street in the context of urban noise. In a pre-
vious paper by the authors, it was shown how the leaky
modes can be used as a basis for a multimodal formu-
lation of the sound propagation within the open waveg-
uide15. The modes of the waveguide were calculated by
first deriving the dispersion relation for the frequencies of
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the resonances in a rectangular cavity open in an infinite
halfspace. Then, this dispersion relation was solved nu-
merically to give a set of eigenfrequencies and eigenfunc-
tions used for the mutimodal formulation of the sound
propagation. As detailed below, note that in this study,
the eigenmodes are obtained using the Finite Elements
Method (FEM).

Although this preliminary study15 suited its aim -
determining the leaky modes and their properties, and
showing, notably, how a limited number of these modes
can be sufficient to accurately model the wave field - it
might prove inadequate when considering more complex
problems, as varying cross-section waveguides because of
the non-straightforward mode matching at each cross-
sectional change.

Since the Perfectly Matched Layers1 (PML) enable to
efficiently truncate an open, infinite domain to design a
computational domain of finite dimensions, an alterna-
tive approach to15 is to turn the originally open waveg-
uide into a closed waveguiding geometry. Then the modes
of the resulting closed waveguide can be used for a modal
formulation of the wave propagation4. The modal-FE
method, developed in the following paper, consists, first,
in deriving the eigenmodes using a finite elements dis-
cretization of the cross-section. Then, an impedance ma-
trix formulation, similar to the one extensively studied
in "classical" waveguides2,5,14, is used to write the wave
propagation along the waveguide, given the input and
output conditions at the ends of the domain of interest.

II. 2D PRELIMINARY STUDY: WAVE PROPAGATION IN A
SEMI-INFINITE HALFSPACE

In order to clearly describe the principles of the modal-
FE method for modeling the wave propagation in par-
tially bounded elongated domains, the 2D case of the
propagation over an infinite ground is first considered
and analyzed in this section. In this simple case, analyt-
ical solutions can be used to validate the method. Let
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the ground be defined by z = constant, z the vertical co-
ordinate (the case of a ground with a piecewise constant,
range dependent, height, is considered later in the pa-
per). Over this boundary that is assumed to be perfectly
reflecting, one whishes to solve the wave equation(

∇2 + k2
)
p = 0, (1)

with k = ω/c0 the wavenumber and c0 the wave speed,
together with end conditions at the extremities of the
region of interest, say, x = 0 and x = L, x the range
coordinate (time dependence exp(−jωt) is omitted).

This problem in an open domain is now substituted by
the new problem of a bounded elongated domain, by in-
troducing a PML of finite width h in the z-direction,
with an homogenous Neumann condition at the end
(Fig. 1(a)). Eq. (1) becomes[

∂2

∂x2
+

1

τ

∂

∂z

(
1

τ

∂

∂z

)
+ k2

]
p(x, z) = 0, (2)

with τ(z) a complex scalar parameter fulfilling{
τ = τ0 if z > 0,

τ = 1 if z ≤ 0
(3)

(see details in App. A). In the sequel, it is chosen
τ0 = constant = A exp(jβ), with A > 0 and β ∈]0, π/2[
so that <{τ0}={τ0} > 0.

PML

z

z = 0

z = −l

x = 0 x = L

z = h

x

zn zn+1zn−1 zN = hz1 = −l

PML

zn′ = 0

1

ψn(z)

z

Physial domain

(a)

(b)

Figure 1. (a) The halfspace above a perfectly reflecting flat
boundary is represented by a 2D waveguide closed by a PML.
(b) The 1D cross-section is discretized on a N -nodes grid. A
first order interpolating polynomial ψn(z) corresponds to each
element n.

Then, the cross-section z ∈ [−l, h] is discretized on a
N -nodes grid: −l = z1 < z2 < . . . < zn′ = 0 < . . . <
zN = h (Fig. 1(b)), and the pressure field is developed
on a basis of first order interpolating polynomials ψn(z):

p(x, z) =
∑
n≥1

Pn(x)ψn(z) = t ~ψ ~P , (4)

where the components of ~P are the values of the pressure
at nodes zn: Pn(x) = p(x, zn). Following the develop-
ment (4), Eq. (2) is reformulated as

~P ′′ +
(
M−1K + k2

)
~P = 0, (5)

where ′′ denotes the second derivative with respect to x,
and mass and stiffness matrices M and K are given by,
respectively,

Mmn =

h∫
−l

τψmψn dz, (6a)

Kmn = −
h∫
−l

1

τ

∂ψm
∂z

∂ψn
∂z

dz. (6b)

A general solution of Eq. (5) can be written as function
of the eigenvalues α2

i , i ≥ 0, and eigenfunctions φi of the
matrix M−1K:

~P = Φ
(
D(x) ~C1 +D(L− x) ~C2

)
, (7)

where Φ = [φ0, φ1, φ2, . . .] and D(x) is a diagonal matrix
given by

Di(x) = ejkix, (8)

with ki =
√
k2 − α2

i (<{ki} ≥ 0, ={ki} ≥ 0). ~C1 and ~C2

are constant vectors determined by the end conditions
at x = 0 and x = L. Let assume that the condition
at x = 0 is defined as a given pressure field ~P0 and the
condition at x = L as an admittance matrix YL fulfilling
~Q(L) = YL ~P (L), with ~Q the vector of the components of
∂xp in the basis {ψn}. Then, the constants ~C1 and ~C2

are

~C1 = (I − δ)−1Φ−1 ~P0, (9a)
~C2 = −D−1(L)δ ~C1, (9b)

where

δ = D(L) (YLΦ + ΦΓ)
−1

(YLΦ− ΦΓ)D(L), (10)

with Γij = jkiδij . Note that the admittance matrix in
the input plane x = 0 can be written as function of the
output admittance matrix YL:

Y0 = ΦΓ(I + δ)(I − δ)−1Φ−1. (11)

A. Validation, convergence

1. Waveguide modes

In the simple case that is studied in this section, eigen-
modes (αi, φi) of the transverse eigenproblem[

1

τ

∂

∂z

(
1

τ

∂

∂z

)]
φ = −α2φ (12)
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can be calculated analytically. Eigenvalues are

α
(ana.)
i =

iπ

(τ0h+ l)
, i ≥ 0, (13)

while associated eigenfunctions are

φ
(ana.)
i (z) = cos

(
αi(τ0z + l)

)
. (14)

Eqs. (13) and (14) provide reference solutions for a study
of the validity and convergence of the finite element com-
putation shown above. Knockaert and De Zutter showed
the completeness of these eigenmodes in a parallel plate
waveguide with PML termination8.

Fig. 2(a) shows the spectrum of eigenvalues αi, ob-
tained both analytically (Eq. 13) and numerically (eigen-
values of M−1K). Parameters are l = 3, h = 2 (dimen-
sionless units), A = 1 and β = π/4, and the interval
z ∈ [−l, h] is discretized on a regular grid of 50 nodes, so
that ∆z = zn − zn−1 = 0.1. Note that in the initial case
of the semi-infinite halfspace, the spectrum of eigenvalues
is a continuum corresponding to the real axis.

In the spectrum of analytical eigenvalues (’◦’), we see
that the PML has two visible effects. First, it rotates the
continuum due to the complex stretching (App. A). Sec-
ond, it discretizes the continuum due to the truncation
of the PML at a finite width.

From Eq. (13) it can be easily shown that the angle
γ = tan−1

(
<{αi}
={αi}

)
between the tilted straight line and

the real axis is directly related to the PML parameters
A and β; notably, γ tends toward −β when the PML is
infinitely wide.

The numerical spectrum (’×’) obtained using the FEM
displays three families of eigenvalues in a typical pitch-
fork shape16. From the origin in the complex α-plane, the
first eigenvalues follow the path of the analytical eigen-
values and correspond to eigenfunctions located on both
the “physical” domain (z < 0) and the PML (Modes 1
to 4 of Fig. 2(b)). Then the spectrum splits, to display
two families of eigensolutions. Eigenvalues close to the
real axis correspond to eigenfunctions located mostly in
the lower, “physical”, part of the computational domain
(Mode 18 of Fig. 2(b)), while eigenvalues below the an-
alytical spectrum correspond to eigenfunctions located
mostly in the PML (Mode 13 of Fig. 2(b)).

When the number of nodes in the mesh N increases,
numerical eigenvalues converge to analytical solutions.
The convergence, however, is low, with a relative error

ε
(α)
i =

∣∣∣∣∣αi − α(ana.)
i

α
(ana.)
i

∣∣∣∣∣× 100 (15)

decreasing as ' 1/N or slower (Fig. 3(a)). In the same
way, the convergence of the eigenfunctions, as measured
by

ε
(φ)
i =

√√√√∫ h−l ‖φi − φ(ana.)
i ‖2 dz∫ h

−l ‖φ
(ana.)
i ‖2 dz

× 100, (16)

is also quite slow (Fig. 3(b)). Thus, even with a large
number of nodes in the FEM mesh, very few eigenvalues
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Figure 2. (a) Spectrum of the eigenvalues αi: ’◦’ analytical
eigenvalues, ’×’ FEM. (b) Examples of eigenfunctions, corre-
sponding to labeled eigenvalues in the sprectrum: (’−’) ana-
lytical eigenfunctions, (’− − −’) FEM. Parameters are l = 3,
h = 2 (dimensionless units), A = 1, β = π/4, and N = 50.

and eigenfunctions are accurately computed. However, in
this paper, we are interested in the propagation of waves.
Besides, as it will be shown in the following, using all the
found modes gives the method a satisfying convergence.

2. Computation of a pressure field

The validity and convergence of the modal-FE method
is studied in this paragraph by comparison between a ref-
erence pressure field and its computation with Eq. (7).
The chosen reference field, shown in Fig. 4(a), is the
solution of a “full FE” computation: the domain under
study is meshed with triangular elements, with a max-
imum mesh size (maximum length between two nodes)
mms = λ/10 = 0.05, λ the wavelength. At the input of
the waveguide, the source condition is an incident gaus-
sian beam, written as

P0n = exp

(−(zn − zs)2

2σ2
+ jk sin(θz)zn

)
, n ≥ 1, (17)
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Figure 3. (a) Convergence of the four first eigenvalues when
the number of nodes used in the mesh increases. (b) Conver-
gence of the corresponding eigenfunctions.

with zs = −1.5 the central point of the beam, σ = 0.4
the standard deviation (related to the beam width),
θz = −π/8 the angle of incidence and k = 12.56 the
wavenumber.

To compute this field using the modal-FE method, the
radiation condition at the output end of the computa-
tional domain is taken as the characteristic admittance
matrix Yc that can be easily deduced from Eqs. (9) and
(10) by imposing ~C2 = ~0 (no back travelling wave down-
stream from the source point): Yc = ΦΓΦ−1.

The convergence of the solution with the number of
nodes in the z-direction, as measured by

ε =

√√√√∫ 0

−l
∫ L

0
‖p− pref(x, z|xs, zs)‖2 dxdz∫ 0

−l
∫ L

0
‖pref(x, z|xs, zs)‖2 dxdz

× 100, (18)

is relatively rapid, with an error decreasing as 1/N2

(Fig. 4(b)). Besides, for a reasonable number of nodes
used to discretize the cross section (N = 100), the to-
tal error on the field is acceptable (ε = 5%) while only
two modes are accurately obtained. This implies that the
“spurious” modes (e.g., modes 11 and 18 in Fig. 2(b)) play
a substantial role for the convergence of the method, in
addition to the “physical” ones.

B. Propagation over a ground with a piecewise constant,
range dependent, height

Now that the modal-FE approach has been formu-
lated in a uniform case - the halfplane was grounded at
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Figure 4. (a) Reference field considered to evaluate the con-
vergence of the Modal-FE method is the “Full FE” solution
of an incident gaussian beam. (b) Convergence of the modal-
FE method with the number of nodes N in the cross-section
z ∈ [−l, h]. In these computations, l = 3 (dimensionless
units), zs = −1.5, σ = 0.4, θz = −π/8 and k = 12.56. PML
parameters are h = 2, A = 1 and β = π/4.

z = −l = constant - the case of an abrupt change of
the ground level, as shown in Fig. 5(a), is considered, so
that problems with irregular boundaries can be studied
in the following. At the discontinuity, the acoustic pres-
sure p and the longitudinal component of its gradient,
∂xp, satisfy the continuity conditions

p(u) = p(d) z ∈ S(u),

∂xp
(u) = ∂xp

(d) z ∈ S(u),

∂xp
(d) = 0 z ∈ S(d) r S(u)

(19)

where superscripts (u) and (d) denote variables associated,
respectively, to the section upstream and downstream
from the discontinuity. Substituting developments of p
and ∂xp on the basis {ψn} in Eqs. (19) straightforwardly
leads to the following matricial expressions of the conti-
nuity conditions

~P (u) = F ~P (d) (20a)
tF ~Q(u) = Q(d) (20b)

for the wave field, and

Z(u) = FZ(d) tF, (21)

for the impedance matrix Z (Z = Y −1 is the inverse of
the admittance matrix defined previously). When iden-
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tical FEM meshes (same node coordinates and same in-
terpolating functions) are generated both in S(u) and
S(d) ∩ S(u), the matching matrix F is simply Fij = δij ,
δij the Kronecker symbol.

PML
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Arg{P
A
−
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′ }
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Figure 5. (a) Cross-section discontinuity. (b) Validation of
the modal-FE method by a 2D FEM computation in the case
of cross-section expansion.

Then, the wave field over this discontinuity can be com-
puted, following three steps14:

• first, both the local waveguide modes upstream and
downstream from the discontinuity are solved as
described previously in the paper;

• second, given a radiation admittance or impedance
at the output of the computational domain, the
input admittance (or impedance) is computed by
using alternatively Eqs. (11) and (21);

• third, given an input condition, the pressure field
is computed down the street using alternatively
Eqs. (7) in straight segments with respect to the
x-axis, and Eqs. (20) at cross-section discontinu-
ities.

Fig. 5(b) shows an example of such a computation, and
the obtained pressure field is compared with the solution
of a “full FE” computation. At the entrance of the waveg-
uide, an incident gaussian beam with zs = −1.5, σ = 0.4,
θz = −π/10 and k = 8 (Eq. 17) is chosen as input condi-
tion. For the “full-FE” computation, the maximum mesh
size of the triangular mesh is mms = λ/10 = 0.0785, and

for the modal-FE computation, the discretization step in
the cross-section is ∆z = mms. Both methods give very
similar results. For example, on the line A-A’ defined by
z = constant = zs, both the real part and the phase of
the two solutions fit very well.

III. CASE OF A 3D OPEN WAVEGUIDE

In this section, the modal-FE formalism is extended
to the case of 3D irregular open waveguides. Such a ge-
ometry may represent a street canyon with buildings of
different sizes. As done before, PML are introduced to
substitute the original, open, problem to the problem of
a closed, irregular, waveguide. Following the same proce-
dure as described in the 2D case, the pressure field is de-
veloped on a basis of interpolating polynomials ψn(y, z):
p(x, y, z) = t ~ψ ~P , and ~P is the solution of the matricial
wave equation (5), with

Mmn =

∫
S

τψmψn dydz, (22a)

Kmn = −
∫
S

1

τ

(
∂ψm
∂y

∂ψn
∂y

+
∂ψm
∂z

∂ψn
∂z

)
dydz, (22b)

where S denotes the cross-section.

As in the 2D case, the modal-FE method is compared
with a FEM computation performed in a 3D waveguide
having a sudden width expansion (Fig. 6(a)). For the
FEM computation, third order interpolating polynomials
are used on a tetrahedric mesh with a maximum mesh
size mms = λ/1.36 = 0.25 (it leads to a ∼ 72000 dof dis-
cretized problem). For the modal-FE computation, the
maximal mesh size of the triangular mesh in the cross-
sections is mms = λ/10 = 0.034 (∼ 4800 dof). At the
input of the waveguide, the source condition is an inci-
dent gaussian beam, written as

P0n = exp

(−(yn − ys)2 − (zn − zs)2

2σ2
+ . . .

jk[sin(θy)yn + sin(θz)zn]

)
, (23)

with (ys, zs) = (0, 0.3) the central point of the beam,
σ = 0.2 the standard deviation (related to the beam
width), θy = −π/8 the angle of incidence with the y-axis,
θz = −π/15 the angle of incidence with the z-axis and
k = 18.48 the wavenumber. Again, the agreement be-
tween the two methods is good, with an error εA-A’ ' 4%
estimated on the line A-A’ (Fig. 6(b)).

An example of computation of the wave field in an
irregular open waveguide, displaying a street canyon, en-
closed by buildings with different sizes, is shown in Fig. 7.
The mean width of the canyon is 1 in dimensionless units,
with variations up to 15%. The buildings height vary
from 1 to 1.9. The wavelength of the source - a gaus-
sian beam as in previous results in the paper - is 0.3: the
half-wavelength is thus of the order of size of the wall
irregularities. The results clearly shows the waveguiding
effect, together with the radiative losses above the street.
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(N = 100), the total error on the field is acceptable (ε = 5%)
while only two modes are accurately obtained. waveguide. (b)
Validation of the modal-FE method by a 3D FEM computa-
tion in the case of a cross-section expansion, the two plots on
top show real parts of the solutions on a xy-plane with z = zs
and the two plots below show real parts of the solutions on
a x-plane with y = ys. Then, real part and phase of FEM
solution (solid line) and Modal-FE solution (dashed line) are
shown along the line A-A defined by (y, z) = (ys, zs).

The scattering by the the façades irregularities results in
a complex pattern of the pressure field.

IV. BEAT PHENOMENON BETWEEN TO PARALLEL
OPEN WAVEGUIDES

As it was shown above in the paper and in previous
work15, the modes of a canyon (seen as an open waveg-
uide) are determined as the resonances of the rectangu-
lar cross-section, l wide and 2l deep, open in an infi-
nite half-space (we choose l = 1, dimensionless units).
The mode φ(1,0) (one vertical nodal line - line on which
the eigenfunction is zero -, no horizontal nodal line) in
Fig. 8(a) with the associated eigenvalue α(1,0)l/2π =
0.5123−0.0016j is an example of such a resonance (FEM
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Figure 7. (color online) Example of a pressure field (modulus)
in an irregular open waveguide modeling a street canyon, at
six different heights. The mean width of the street is 1 (di-
mensionless units), with variation up to 15%, and the height
of the buildings vary from 1 to 1.9. The wavelength is 0.3.

computation). Therefore, if one consider two parallel
identical canyons separated by a distance e (we choose
e = 0.3), one can expect the global waveguiding structure
to exhibit coupled eigenmodes: a resonance of the origi-
nal, single, cross-section (Fig. 8(a)) will split into two dis-
tinct resonances when considering two parallel canyons.
One of the resonances corresponds to a symetrical eigen-
mode (mode φ(s)

(1,0) in Fig. 8(b) on the left, with the as-

sociated eigenvalue α(s)
(1,0)l/2π = 0.5138 − 0.0024j), with

respect to the plane of symmetry of the structure defined
by y = 0, while the other corresponds to an antisymetri-
cal eigenmode (mode φ(a)

(1,0) in Fig. 8(b) on the right, with

the associated eigenvalue α(a)
(1,0)l/2π = 0.5118− 0.0011j).

At the input (x = 0) of the two canyons structure, a
source condition is considered as the combination p0 =

φ
(s)
(1,0) + φ

(a)
(1,0). Because of the great similarity between

the eigenfunctions of both the symetrical and antisymet-
rical modes, the wave field in one canyon shows a similar
pattern as 2φ(1,0), while it almost vanishes in the second
canyon (Fig. 8(c)). Downstream from the source plane,
the field is computed by propagating the two modes of
the combination:

p(x, y, z) = φ
(s)
(1,0)e

jk(s)x + φ
(a)
(1,0)e

jk(a)x, (24)
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Figure 8. (a) Example of a resonance of a rectangular cavity
open in an infinite halfspace (real part). The eigenmode is la-
belled as (1, 0), refering to the number of vertical and horizon-
tal nodal lines15 (b) Corresponding coupled eigenmodes (real
part), in the case where two identical open rectangular cavities
are considered. One of the modes is symmetrical (left side),
while the other is antisymmetrical (right side), with respect
to the plane y = 0. (c) The combination p0 = φ

(s)
(1,0) + φ

(a)
(1,0)

as input condition.

where k(s) =

√
k2 − α(s)

(1,0)

2
and k(a) =

√
k2 − α(a)

(1,0)

2
.

The propagation constants k(s) and k(a) of the two modes
being slightly different (α(s)

(1,0) and α(a)
(1,0) are very close),

the modes, that originally interfere (x = 0) so that only
one of the canyons is excited, become out of phase while
propagate along the canyons, leading to an energy trans-
fer in the second canyon, where, originally, no field was
generated.

Fig. 9 gives two illustrations of this coupling between
the two canyons. In Figs. 9(a) and (b), the imaginary
part of the propagation constants k(s) and k(a) has been
artificially put to zero so that the modes do not decrease
exponentially. Fig. 9(a) show a horizontal cut of the
field at a height z = l/2 and Fig. 9(b) shows succes-
sive vertical cuts of the field at different distance x from
the source plane. At a distance x1 = |π/<{∆k}| with
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Figure 9. (a) and (b): the propagation constants k(s) and
k(a) of the modes have artificially been put to zero so that
the modes do not decrease exponantially. (a) Longitudinal
cut at z = l/2 of the field (modulus) downstream from the
source plane, (b) successive transversal cuts of the field (mod-
ulus) at different distance (x = 0, x = x1, x = 2x1) of the
source plane. (c) and (d): exact case where the propaga-
tion constants k(s) and k(a) are complex so that the modes
are leaky and lose energy while propagate along the canyons.
(c) Longitudinal cut at z = l/2 of the field (modulus) (d)
successive transversal cuts of the field (modulus) at different
distance (x = 0, x = x′1, x = 2x′1).

∆k = k(s) − k(a), the two modes are in opposite phase
and, as a consequence the field in the first canyon is al-
most zero, while it is maximum in the second one. Then,
at a distance x2 = 2x1, the two modes are in phase and
the field is maximum in the first canyon while it is al-
most zero in the second one. As the modes do not de-
crease while propagating, the successive energy transfers
between the two canyons lead to a beat phenomenon with
a space period 2x1.

Figs. 9(c) and (d) illustrate the exact case with com-
plex propagation constants so that the modes are leaky
and lose energy while propagating along the canyons.
As a consequence, there is no more beat phenomenon,
but only one significant energy transfer at a distance
x′1 = |π/∆k| where the field is larger in the initial silent
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canyon than in the excited one. At a distance x′2 = 2x′1,
the two modes are highly damped and the field is almost
zero within the two canyons.

V. ON THE EFFECT OF ABSORPTION AT THE WALLS

In the context of urban acoustics, absorption proper-
ties of buildings facades or ground surfaces must be taken
into account to accurately model sound fields. A simple
way to do this in the modal-FE formulation is to impose
an impedance condition at the walls of the open waveg-
uide:

∂np = jkζp, (25)

with ∂n the normal derivative. The reduced surface ad-
mittance ζ is assumed to be locally reacting, and can vary
with the frequency and position, as a function of the ma-
terial it describes. In the sequel, it is assumed that the
admittance does not depend on the longitudinal coordi-
nate x, or only as a piecewise constant function, so that
algebraic solutions for the impedance matrix or sound
field can still be written in each uniform (i.e., ∂xζ = 0)
segment.

Taking into account this new boundary condition, the
wave equation in its discretized form exhibits a new term,
compared to Eq. (5):

~P ′′ +
(
M−1(K +Q) + k2

)
~P = ~0, (26)

where the matrix Q is defined by

Qmn = jk
∫

Γ

ζψmψn dΓ, (27)

Γ the boundary of the cross-section. Q is a tridiagonal
sparse matrix. Then, a general solution (see Eq. (7)) of
Eq. (26) can be written as a function of the eigensolutions
(α2
i , φi) of the matrix M−1(K +Q).
To illustrate the effects of absorbing boundaries on the

eigenmodes and the sound field in the waveguide, we con-
sider in the following the canyon cross-section shown in
Fig. 10. The two vertical boundaries - the façades - are
splitted in two regions: the upper region, with a length
hα, has a uniform, finite, admittance, while the bottom
region (0 < z < d− hα) is perfectly reflecting. Then the
effect of varying the length hα of the absorbing region is
studied.

The dimensions of the cavity are d = l = 1 (dimension-
less units), the frequency is chosen such that λ = l/3, and
the value of the admittance is chosen as ζ ' 0.07 + 0.70j,
corresponding to a weakly absorbing material. All other
parameters are given in Table I.

Consider, first, the eigensolutions of M−1(K +Q), re-
stricted to the resonances of the open cavity such as the
indexed eigenfunctions φ(3,q) with q = 1, 2, 3, as they
were defined earlier in the paper, in the lossless case, cor-
responding to hα = 0 (For hα > 0, the modes are defined
by continuity in the complex α-plane). Fig. 11 shows
the evolution of the modulus of the three eigenfunctions
when hα increases.

y

z

PML

d

l

hα

Figure 10. The vertical walls of the canyon admit two types
of boundary conditions: the region below (0 < z < d− hα)is
perfectly reflecting (homogeneous Neumann condition), while
the region above (d − hα < z < d) has a finite admittance
(Eq. (25)).

Table I. Parameters used for calculating the results in Figs. 11
and 12 (dimensionless units).

mesh PML gaussian beam
mms N A β h (ys, zs) σ k
0.05 ∼1400 1 π/4 0.3 (0.15, 0.4) 0.2 18.85

hα = d

hα = 0.8d

hα = 0.6d

hα = 0.4d

hα = 0.2d

hα = 0

‖φ(3,0)‖ ‖φ(3,1)‖ ‖φ(3,2)‖

Figure 11. Evolution of three waveguide modes (modulus)
with the height hα of the absorbing part on the vertical sur-
faces.
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When hα is small compared with the street height d,
the presence of an absorbing region at the top of the
walls makes the modes more confined within the waveg-
uide: the eigenfunctions exhibit the same global pat-
tern, but the radiated field, above the waveguide, be-
comes substantially weaker. Indeed, the discontinuity of
impedance at z = d−hα, induced by the absorbing mate-
rial, enhances the effect of the geometrical discontinuity
at z = d.

When hα increases, the effect of increasing confine-
ment of the modes still occurs, but then fades in favor of
a new spatial distribution of the modes: the eigenfunc-
tions φ(p,q), first weakly perturbed by the small absorbing
region, gradually evolve to the modes of the problem with
the whole vertical boundary having a finite admittance
(hα = d). The confinement of these new modes looks
similar to the confinement of the original modes; at least
there is no more visible effect of enhanced confinement.

Furthermore, Fig. 11 shows that the transition from a
perturbed, confined, “rigid” mode to the corresponding
“lossy” mode observed when hα = d occurs later, that is,
for larger values of hα, when the order q of the mode is
lower. The effect of enhanced confinement due to the ab-
sorbing region is thus stronger for the lower order modes,
that are already more confined in the inital state.15

To deepen the qualitative observations made on the
waveguide modes, consider now the influence of hα on
the whole pressure field within the canyon. The canyon
is assumed to be uniform (ζ = constant) and infinitly
long, and the field is generated by an incident gaussian
beam (the beam parameters are in Table I). Six different
configurations, from hα = 0 to hα = d, are compared
through the decay of the energy flux along the canyon

W (x) =
1

S

∫
S

1

2
<{p~v∗} d~S (28)

with S = ld the cross-section area of the canyon and
d~S = dydz~ex (Fig. 12).
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Figure 12. Decay of the energy flux along the guide as mea-
sured by the ratio W (x)/W (x = 0), for different heights hα
of the absorbing part of the vertical walls.

Consider first the case of perfectly reflecting walls
(hα = 0). As expected, the radiation in the free space

above the canyon result in a monotonous decrease of the
energy flux as the wave propagates. The apparent dou-
ble decay of the curve can be explained by the decrease
and vanishing of most of the leaky modes in the “near”
field (x < 3) and the slower decrease of the few remain-
ing modes, as was described in a previous study by the
authors.15

As seen before, an absorbing material at the top of the
walls may induce an effect of enhanced confinement of
the modes, and then contribute to reduce the radiative
losses. On the other hand, the absorbing material also
induces a dissipation of the wavefield, in addition to the
radiative losses. The results in Fig. 12 shows that varying
hα changes the relative importance of these two compet-
itive effects. When hα is small compared with d, the
effect of confinement is strong enough (see discussion of
Fig. 11) to prevail over the effect of absorption by the ma-
terial. Thus, the energy decay along the street is slower
(curve corresponding to hα = 0.2d in Fig. 12). When
hα increases, the effect of absorption becomes more and
more prominant. Notably, for hα = 0.8d, at x = 10,
a gap of about 20% with the initial case hα = 0 is ob-
served. The limit case hα = d corresponds to a new spec-
trum of modes compared with the initial case, and the
decrease of the energy flux no longer follows the trend
described above. In this limit case, the interpretation
is less straightforward, since the effects of localization
by the geometry itself and the attenuation by absorbing
walls interact in a complex way.

VI. CONCLUSION

A coupled modal-FE method has been proposed in this
paper to solve the three-dimensional Helmholtz equation
in an open waveguide with a discontinuously varying
cross-section, chosen as an idealized model for a street
canyon. It was shown that, using perfectly matched lay-
ers to turn the originally open configuration to a closed
waveguiding structure, a multimodal formulation, similar
to that extensively used in “classical” waveguides, can be
developed, that allows a computation of the acoustic field
in complex geometries of street canyons. As FEM com-
putations are only used in the 2D cross-section, while the
solution in the axial direction involves only simple matrix
operations, the proposed approach is not computation-
ally expensive. Moreover, to treat realistic urban cases,
both geometrical irregularities and non uniform bound-
ary conditions at the walls of each local cross-section can
be straightforwardly taken into account in FEM compu-
tations. Besides, it was shown in a previous study that,
far enough from any source or scatterer, a small number
of the leaky modes propagating in the open waveguide
may be sufficient to accurately model the wave field; the
numerical efficiency of the present method could then be
improved by an appropriate reduction of the modal basis.
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Appendix A: ON PERFECTLY MATCHED LAYERS (PML)

Consider the propagation of acoustic waves, solutions
of the Helmholtz equation(

∆ + k2
)
p = f(x, y) (A1)

in the infinite plane (x, y) ∈ R2, where all sources or
scatterers, described by f(x, y), are assumed to be lo-
cated in the lower halfspace y < 0. To solve numerically
Eq. (A1), a restricted computational domain has to be
defined by truncating the initial infinite domain with
artificial non-reflecting boundary above the region of
interest.

A solution consists of introducing a layer with thick-
ness h (for example, in region y ∈ [0, h]), in which the
wave equation is modified so that outgoing waves are
damped while propagating in the layer, and are of negli-
gible amplitude at the outer boundary of the layer. More-
over, the layer must be perfectly matched with the phys-
ical domain of interest, that is, no reflection of waves
should be generated at the interface (y = 0). This is
done by applying a complex coordinate streching on the
space variable y:

y → ỹ =

y∫
−1

τ(y′) dy′, (A2)

with τ a complex scalar function fulfilling

• <{τ}={τ} > 0, in the PML domain

• τ(y ≤ 0) = 1, in the physical domain.

In practice, τ can be chosen as a constant function in the
PML. In this paper, it is chosen τ = τ0 = constant =
A exp(jβ), with A > 0 and β ∈]0, π/2[. Then, the wave
equation to be solved is(

∂2

∂x2
+

∂2

∂ỹ2
+ k2

)
p = f(x, ỹ). (A3)

Applying the complex coordinate streching (A2) is
equivalent to the substitution

∂

∂ỹ
→ 1

τ

∂

∂y
(A4)

on the derivative with respect to y, so that the wave
equation is written(

∂2

∂x2
+

1

τ

∂

∂y

(
1

τ

∂

∂y

)
+ k2

)
p = 0. (A5)
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