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Abstract

This work aims to provide better physical understanding of Bragg band gap
effects in continuously periodic corrugated beams for flexural waves. The main
outcome is the establishement of original algebraic formulas for the band gap
width and central frequency. It is shown that the band gap width and cen-
tral frequency only depend on a thickness contrast parameter. To do so, a so
called two-skins geometry is proposed to approximate the usual solid beam cross
section, in order to greatly simplify analytical derivations following the Plane
Wave Expansion (PWE) method applied to Euler-Bernoulli theory. Theoreti-
cal predictions in the two-skins geometry successfully match the results in the
practical case of a solid geometry obtained from both experiments on a beam
demonstrator and numerical simulations done by classical PWE (1D Euler and
Timoshenko theories) or finite element (3D elasticity theory) methods. The
complete set of results is benchmarked in details so that the geometrical ap-
proximation is validated and the algebraic formulas are usable as design tools of
such notch filters. Moreover, flexural and longitudinal motion coupling due to
the non-symetrical thickness profile of the demonstrators leads to an additional
band gap that is experimentally identified. A numerical study illustrates the re-
sulting double filtering effect. Potential applications of the background provided
by this work can concern Noise,Vibration and Harshness (NVH) engineering, for
which meta-materials can be very relevant especially when structure lightening
is required.
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1. Introduction

Meta-materials are extensively studied for the last decades in many fields
of wave physics for their attractive ability to control unusual wave propagation
properties [1, 2, 3]. In most cases they are designed as periodic and/or locally
resonant propagation media from which typical applications concern wave fil-
tering, guiding, lensing and cloaking.

In the context of mechanical engineering, the use of meta-materials for mit-
igating noise and vibration appears as a promising technique particularly when
lightweigthing of industrial structures is a central issue [4]. In that purpose, a
main challenge is to reach attractive mitigation performances even in the low
frequency range for which the wavelength and the finite size of the structure of
interest are in the same range. Another challenge is to achieve to tune band
gaps location and bandwidth to match an expected mitigation template corre-
sponding to a given application. In most cases, a particular attention is paid to
flexural waves because of their major contribution to the structure born sound.

The design of such structures then require to well understand how the wave
propagation properties can be tailored from the local geometrical and material
settings of the unit cell. This leads to many open questions for which the liter-
ature is very extensive. Among many others, some of the recent works typically
focus on the optimization of periodic Euler-Bernoulli beams from Transfer Ma-
trix Method [5], Plane Wave Expansion Method [6], Waveguide Finite Element
method [7] or varying amplitudes method [8].

The insertion of local resonances also leads to many architected layouts lead-
ing to structures that efficiently open band gaps [9, 10, 11, 12, 13, 14, 15, 16].

In the case of thick beams compared with the wavelength, the effects of the
rotational inertia and shear deformation must be described using Timoshenko
theory [17, 18, 19, 20, 21, 22, 23, 24].

Periodic pipes and cylindrical shells are also of great interest in some in-
dustrial applications, they are the subject of shape optimization from Flo-
quet theory [25] and imply to take into account the fluid/structure interaction
[26, 27, 28].

In the case of sophisticated designs of periodic and locally resonant struc-
tural waveguides, 1D beam theories become unadapted and can be replaced by
3D elasticity numerical models solved by using finite element based methods
[29, 30, 31, 32]. For more details, the reader can refer to the above cited articles
and related references.

Most of the time, the involved geometrical and material designs of these
taylored system are quite complex and make uneasy to establish some general
links between the band gap features and the unit cell design parameters. By the
way, some numerical parametric variations as in [5] illustrate possible tendencies.
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The main goal of this work is to provide better physical understanding of
vibration filtering properties of continuously periodic beams by deriving an an-
alytical model of the Bragg band gap of flexural vibrations. The structure of
interest whose unit cell is represented in Fig.1(a), is a corrugated beam with a
geometrical layout close to the one studied in [33]. Following the same thickness
profile, a so-called two-skins geometry that approximates the solid geometry is
also proposed. The interest of this theoretical geometry is to enable to achieve
complete analytical derivations following the PWE method applied to the Euler-
Bernoulli framework. From this, simple and cost free design tools able to predict
the Bragg band gap features are proposed.

The article is structured as follows. PWE method is recalled in section
2.1. The corrugated thickness profile of the studied beams is defined in section
2.2. Analytical derivations based on the PWE method applied to the case of
an approximated two-skins geometry are presented in section 2.3. In section
3 an experimental study that also involves comparisons with other PWE and
FE numerical simulations : the demonstrators, the experimental setup and the
results analysis are presented in section 3.1, 3.2 and 3.3, respectively.

2. Model of the central frequency and width of the first band gap

2.1. Plane wave expansion for an Euler-Bernoulli periodically corrugated beam
Under Euler-Bernoulli assumptions and considering harmonic motion pro-

portional to the implicit time factor ejωt, the free flexural displacement w(x) in
a beam of variable thickness h(x) and uniform width b obeys the equation of
motion

−ρL(x)ω2w(x) +
∂2

∂x2
D(x)

∂2w(x)

∂x2
= 0, (1)

where ρL(x) is the linear density and D(x) is the beam flexural stiffness, both
depending on the section geometry.

The beam is supposed to be an infinite periodic distribution of a unit cell
of size L. As a consequence, the mechanical properties are periodic functions of
space and can be expanded as the following Fourier series :

ρL(x) =
∑
g2

αg2(k)ejg2x and D(x) =
∑
g2

δg2(k)ejg2x (2)

where g2 =
n22π

L
, n2 being an integer and where the Fourier coefficients αg2

and δg2 are defined by αg2 =
1

L

∫ L
0
ρL(x)e−jg2xdx, δg2 =

1

L

∫ L
0
D(x)e−jg2xdx.

According to the Bloch theorem [4], the solution of Eq.(1) is sought as the
following series

w(x) =
∑
g1

wg1(k)ejg1xejkx, (3)
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Figure 1: Views and detailed sketches of a unit cell of the studied periodic corrugated beams.
The profile geometry is described in Eq.(6) : (a) case of a solid cross section (b) case of a
two-skins geometry

where k is the flexural wavenumber and g1 =
n12π

L
, n1 being an integer.

Truncating the Fourier series (2) (by considering n2 ∈ [−N2;N2]) and the
plane wave expansion (3) (by considering n1 ∈ [−N1;N1]), the equation of
motion (1) turns to an eigenproblem

(P(k)− ω2Q)W = 0, (4)

where W is the (2N1 + 1, 1) column vector composed of the coefficients wg1(k).
The size of matrices Q = (Qn3n1

) and P = (Pn3n1
) is (2N3 + 1, 2N1 + 1), with

N3 = N1 +N2. The generic terms Qn3n1
and Pn3n1

are given by Qn3n1
= αg3−g1

and Pn3n1
(k) = δg3−g1(k+g1)2(k+g3)2. Solving the generalized eigenvalue prob-

lem (4) provides the circular frequency ω numerically for any given wavenumber
k. For this reason, the method is called a ω(k) method.

Considering the first term in the Fourier series corresponding only to n1 = 0,
and n3 = 0, Eq.(4) yields interestingly to the well known dispersion curve
: ω2 = k4D̄0 with the specific flexural stiffness D̄0 = δ0

α0
. In this case, the

homogeneous-equivalent behavior is captured by the specific flexural stiffness
at the first order of the Fourier series. Note that for a prismatic beam with a
rectangular solid cross section, this specific flexural stiffness is given by

D̄(x) =
D(x)

ρL
=
Eh2(x)

12ρ
, (5)

with h the beam thickness, E the material Young’s modulus, ρ is the material
density related to the linear density by ρL = ρhb.

4



2.2. Thickness profile of the beam
The studied system is an infinite periodic beam whose thickness is defined

by

h(x) = ho

√
1 + C.cos

(
2πx

L

)
, (6)

where the mean thickness h0 and the contrast parameter C can be related to the
maximum and minimum thicknesses, respectively hmax and hmin (see Fig.1(b)):

h2
0 =

h2
max + h2

min

2
, (7a)

C =
h2
max − h2

min

h2
max + h2

min

. (7b)

The contrast parameter is in the range C ∈ [0; 1[, C = 0 corresponding to a
beam of uniform thickness. Since the thickness cannot be zero, the maximum
contrast C = 1 cannot be reached but remains C < 1.

Based on this profile, two different beam cross sections can be defined, as
depicted in Fig.1. The first one is the usual solid cross section (Fig.1(a)) from
which the experimental demonstrators defined in section 3.1 are based. The
second one (Fig.1(b)) is called two-skins approximated geometry. It corresponds
to the cross section of a sandwich material made with two stiff skins of thin
thickness t spread by a lightweight core of thickness h(x) whose stiffness and
mass are ignored. These assumptions could be reached with a honeycomb core
typically. This two-skins approximation of the solid case leads to greatly simplify
mathematical derivations in order to solve Eq.(4). Indeed, the linear mass of
the two-skins cross-section is constant ρL(x) = ρ2tb and does not depend on the
profile h(x) . Hence, the spatial spectrum of specific flexural stiffness contains
only 3 components (N2 = 1).. Considering that t is small compared to h0, D̄(x)
is given by

D̄(x) =
Eh2

o

4ρ

[
1 + C.cos

(
2πx

L

)]
. (8)

This property will be exploited in section 2.3 to get an analytical model of the
dispersion curves.

PWE numerical computations show that a Bragg band gap opens with the
thickness profile of Eq.(6) for both solid and two-skins cases. A convergence
study on the truncation level N1 has been carefully led and shows that the
band gap features are well predicted with N1 ≥ 2 in both two geometrical cases
: with N1 = 2, the error is 1.1% for C = 0.9 and 0.008% for C = 0.6 in the
two-skins case, for example. The convergence rate for solid geometry is roughly
the same. Consequently, the following analytical derivations based on the two-
skins geometry are done with N1 = 2. N1 = 10 is chosen for all other numerical
PWE simulations, which leads to calculation times of a few seconds using a
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laptop computer. Note that for all numerical PWE simulations in the case of
solid geometry, the truncation N2 = 10 is used and causes a negligible error.

2.3. Dispersion curves and analytical derivation of the first band gap properties
In this section we derive an approximated analytical model of the Bragg

band gap to study two features of the resulting filter : the frequency width and
the center frequency. Using the PWE formalism presented section 2.1, these
band gap features are obtained from the difference and average of the first two
eigen frequencies calculated with k = π/L. These quantities can be computed
numerically for any geometry but there is no analytical expression of the eigen
frequencies for an arbitrary geometry. However, an approximated analytical
solution is established below for the two-skins geometry.

For the two-skins geometry, the linear mass being constant, the mass matrix
Q of Eq.(4) is simply Q = α0I, with α0 = 2ρtb and I the identity matrix. Hence,
considering k = π/L, Eq.(4) becomes

∑
n1

[
δn3−n1

(
π

L
+

2n1π

L

)2(
π

L
+

2n3π

L

)2
]
wn1

(k)− α0ω
2wn3

(k) = 0, ∀n3.

(9)
Defining the dimensionless frequency parameter X = ω2

ω2
0
with ω2

0 = D̄0
π4

L4 the
Bragg frequency of the equivalent beam of uniform thickness h0, it can be rewrit-
ten as∑
n1

[
δ̄n3−n1

(2n1 + 1)
2

(2n3 + 1)
2
]
wn1

(k)−Xwn3
(k) = 0, ∀n3 = n1+n2, (10)

where δ̄n = δn
α0δ0

. The specific flexural stiffness of Eq. (8) for the two-skins
geometry (Fig.1(b)) is described by only three nonzero Fourier coefficients :
δ̄0 = 1, δ̄1 = δ̄−1 = C

2 . Consequently, in the matricial form of Eq. (10), the
(2N1 + 3) × (2N1 + 1) matrix M = (P(k) − ω2Q) is tridiagonal but the gen-
eralized eigenvalue problem is overconditionned with 2 equations more than
unknowns. For the sake of the forthcoming analytical derivations, the first and
last equations corresponding to high Fourier components n3 = ±(N1 + 1) are
removed, introducing no error for lower component of W . Modified Eq.(10)
becomes a classical eigenvalue problem where the square matrix M reads:

M =



a−N1 b−N1

b−N1
a−N1+1

. . .
. . . . . . b0

b0 a0
. . .

. . . . . . bN1−1

bN1−1 aN1


, (11)
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with an = (2n+ 1)
4 − X and bn = (2n+ 1)

2
(2n+ 3)

2 C
2 . Apart from the di-

mensionless frequency parameter X, the matrixM only depends on the contrast
parameter C, which already indicates its major influence in the control of the
band gap features.

The PWE problem consists then in solving det(M) = 0. The determinant
of a tridiagonal matrix can be given by a recurrence relation [34] defined by

θn = anθn−1 − b2n−1θn−2 , ∀n ∈ [−N1 + 1;N1] , (12)

and initialized by θ−N1−1 = 1 and θ−N1 = a−N1 . As a result, det(M) = θN1 is
a polynomial of order 2N1 + 1 of variable X, written as

det(M) =

1+2N1∑
n=0

PnX
n , (13)

where each Pn is a polynomial of variable C. The first band gap is reached in
the vicinity of X = 1. Around this value and considering N1 = 2 as suggested
by the convergence study, the variations of det(M) are plotted in black in Fig.2
and exhibit local roots. Analytical solutions of det(M) = 0 are derived from
the 5th degree polynomial det(M) approximated by a 2nd degree polynomial
A(X) (see Appendix A for details):

A(X) = P2X
2 + P1X + Pm, with Pm =

(
1+2N1∑
n=3

Pn + P0

)
. (14)

The validity of the second order approximation det(M) ≈ A(X) in the vicinity
of X = 1 is verified in Fig.2 where the variations of det(M) and A(X) according
to X are very close each other for three typical values of the contrast parameter
C. Fig.2 also verifies that in the case of a beam of uniform thickness (C = 0),
the two degenerated roots equal to X = 1, no band gap is open on the Bragg
frequency ω0. When the contrast parameter increase ( C > 0), the parabola
exhibits two single roots around X = 1. In the following, the relative spread and
mean value of the two roots are derived analytically to study the links between
contrast C and the band gap features.

The average X̄ and difference dX between the two roots of A(x) are given
by:

X̄ = − P1

2P2
, (15a)

dX =

√
P 2

1 − 4PmP2

P2
. (15b)

Substituting Eqs.(15) into the differential df
f0

= dX
2
√
X̄

obtained from the defini-
tion X = ω2/ω2

0 easily leads to

df
f0

=

√
4PmP2 − P 2

1

2P1P2
. (16)
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Figure 2: Variations at the vicinity of the normalized frequency X = 1 of the fifth order poly-
nomial det(M) (gray, corresponds to Eq.(13) with N1 = 2) and second order approximation
A(X) (black, corresponds to Eq.(14). The roots provides the eigen frequencies and so the
band gap limits for C = 0 (full line), C = 0.6 (dashed line), C = 0.9 (dotted line).

Substituting Eq.(14) in Eq.(16) with N1 = 2 provides after a few algebra the
following formula for the relative band gap width (See ?? for details):

df
f0
≈ C

2

(
1− 1

2C
2

1− 3
4C

2

)1/2

. (17)

Similarly, substituting Eq.(14) in Eq.(15a) gives an algebraic formula for the
band gap central frequency:

fc
f0
≈
(

1− γC2

1− βC2

)1/2

, (18)

with γ = 1
2 and β = 1

4 .
Fig.3(a) plots the relative band gap width df/f0 as a function of the contrast C.
A very good agreement is found between numerical PWE for the two-skins geom-
etry (green circles), analytical expression for the two-skins geometry (Eq. (17))
(full line), and numerical PWE for the solid geometry (green dots). Three main
interpretations results from this agreement. First, two-skins geometry is a very
good approximation of the solid geometry to estimate the band gap width. Only
a slight drift occurs for very large contrast values : the error becomes greater
than 1% for C > 0.82 (see green dots and circles). Second, the band gap width
is essentially driven by the flexural stiffness contrast and does not depend on
the linear mass contrast. Indeed, whether the linear mass is considered constant
(in the two-skin case) or not (in the solid case), results are the same. Third, the
second order approximation of det(M) = 0 that leads to formula (17) provides
a very accurate model of the band gap width : the induced error is particularly
small compared to the numerical result (see full line and green circles).
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Figure 3: Variations versus contrast parameter C of (a) the relative width df/f0 and (b) the
relative central frequency fc/f0 of the Bragg band gap obtained from formulas (17-18) (full
line) and numerical PWE simulations for the solid (green dots) and two-skins (green circles)
geometries. The plot fc/f0 also displays the formula (18) fitted to either the two-skins (dashed
line, γ = 0.73;β = 0.44) or solid (dotted line, γ = 0.8;β = 0.40) geometries.

However, concerning the central frequency, Fig.3(b) shows that the two-skins
geometry is only valid for low contrast values : the error becomes > 2% from
C ≥ 0.5 (see drift between green points and circles). This significant difference
indicates that the band gap central frequency is sensitive to contrasts in flexural
stiffness on the one hand, but also in linear mass that is not taken into account
in the two-skins geometry. In addition, the parabolic approximation introduces
an additional error (see difference between full line and green circles), which
restricts the use of the formula (18) : the estimation error of fc is more than
1% from C > 0.3 (see drift between full line and green dots). Hence, to more
accurately estimate fc, the coefficients β and γ are recomputed by minimizing

a cost function: ε (β, γ) =
(

1−γC2

1−βC2

)1/2

− fN1=20. These fits of the analytical
expression Eq. (18) to the PWE simulations of either the two-skins (dashed
line, β = 0.44 and γ = 0.73) or solid (dotted line, β = 0.4 and γ = 0.8)
are shown in Fig.3(b). In some way, this correction partly corresponds to an
artificial consideration of the linear mass effects that are not described by the
two-skins geometry. The good agreement after correction indicates that the
model captures qualitatively well the phenomena of interest. Note that in the
benchmark of Tab.1 and Fig.7, the results labeled "two-skins analytical model"
refer to Eq.(17) and Eq.(18) fitted to the solid geometry, that is with β = 0.4
and γ = 0.8.

3. Experimental study of practical demonstrators

3.1. Demonstrators design and manufacturing
Two experimental beam demonstrators are manufactured from homogeneous

aluminum bars of width b = 80mm. Both demonstrators have 8 cells with the
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thickness profile defined in Eq.(8). The unit cell length is L = 180mm such that
the total length is Ltot = 1440mm. The most contrasted beam, called "Beam
A", has a contrast C = 0.88 with hmax = 20mm and hmin = 5mm while the
"Beam B" has a contrast C = 0.6 with hmax = 18.44mm and hmin = 9.22mm.
The material parameters are E = 70GPa and ρ = 2700kg/m2. An aluminum
beam of uniform thickness h = 20mm with same total length and width is also
studied as a reference.

All beams are manufactured by conventional machining using a Computer
Numerical Control (CNC) milling machine. For manufacturing convenience,
only the top surface of the beams is machined as seen on the Computer assisted
Design (CAD) view in Fig.4(a). The values of the thicknesses and contrast
defined above are respected, but the thickness profile as shown in the Fig.1(a)
is no longer symmetrical. The effect of such a non-symmetrical manufacturing
is discussed based on the results of Fig.6.

3.2. Experimental setup and data processing
The experimental setup view shown in Fig.4 is a classical scanning laser

vibrometer setup. The demonstrator is vertically hung from a rigid frame to
approximate the free boundary conditions. A shaker placed at the the demon-
strator lower end excites flexural motion. The propagation of torsional waves
is limited by applying the excitation on the center of the beam width. The
driving signal is a periodic chirp in the [0-6.15]kHz frequency range with a 976
mHz frequency step. A force sensor measures the driving force at the excitation
point. A scanning laser vibrometer (Polytech PSV 500) measures the out-of-
plane motion of the demonstrator over a N = 4215 points Cartesian mesh with
a 5 mm space step (281 lines and 15 columns). An average over 3 signal samples
is set for all acquisitions to increase signal to noise ratio.

PSV 500 
scanning head

workstation

shaker

Amps rack

(a) (b)

Figure 4: A picture of the experimental set up shows a suspended 8-cell corrugated beam
driven by a shaker at the bottom end. A laser vibrometer measures the out of plane component
of the particle velocity on 4215 points distributed over the whole vibrating structure.

For every mesh point of coordinate (x, y), with x the axial coordinate, y the
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transverse coordinate, f the frequency, the mobility transfer function

Y (x, y, f) =
V (x, y, f)

F (f)
(19)

is measured. V (x, y, f) the local out-of-plane velocity and F (f) the driving force
at the excitation point. Therefore, the flexural field Y (x, y, f) along the whole
beam is represented for selected frequencies in Fig.5(a) and (d). To minimize
the amplitude of torsional movement, Ȳ (x, f) is calculated as the average of
Y (x, y, f) over the beam width. The whole experimental data set corresponding
to a beam demonstrator can then be represented as a map as in Fig.5(b) and (e).
Each line of such a map corresponds to a transfer function at a selected point
while each column is an operational shape at a selected frequency. In order to
provide a frequency response independent from a given observation point, the
space averaged square mobility < Y > is calculated as

< Y (f) >=

√√√√ 1

S

N∑
i

Y 2
i , (20)

and is shown in Fig.5(c) and (f).

The wavenumber maps Y (k, f) represented in Fig.6(a), (b) and (c) are ob-
tained from a one dimensional x-coordinate space Fourier transform of Ȳ (x, f).
Signals are Hamming windowed and zero padded to 211 = 65536 FFT lines
in total, resulting in a dk = 0.02m−1 wavenumber step. For each frequency,
the maximal value of |Y (k, f)| is extracted (black dots) to identify the exper-
imental dispersion curve folded in the range kL = [0−1] in Fig.6(d), (e) and (f).

3.3. Results analysis
The reference beam exhibits an expected classical modal behavior in Fig.5(f).

In addition to the series of free-free beam flexural peaks, spurious modes appear
at 1666Hz, 3444Hz and 5138Hz (see Fig.5(d) at 1666Hz, for example). These
modes are not due to torsional motion because of their non harmonic modal fre-
quencies but may correspond to uncontrolled defaults of the overall mechanical
installation.

More remarkably, the beam A with a C = 0.88 (high contrast beam) exhibits
two frequency ranges with a strongly attenuated field (Fig.5(b), green and red
patches). In these ranges that correspond to a band gap (as discussed below),
the beam is non resonant and displays only evanescent waves from the excita-
tion point (Fig.5(a) at 700Hz, for example).

The analysis of the experimental dispersion relations in Fig.6 is led from
comparisons with the results from three numerical models of infinite periodic
solid beams:
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250Hz700Hz 2600Hz 3272Hz

Beam A
(corrugated, C=0.88)

(a)

(b)

(c)

257 Hz 700 Hz 3272 Hz

Ref. Beam
(uniform, C=0)

x
y

(d)

(e)

(f)

1666 Hz

Figure 5: Experimental transfer functions measured on beam A (left column) and reference
beam (right column). Data are represented as operational shapes Y (x, y) at selected frequen-
cies in (a) and (d); maps of mobility Ȳ (x, f) in (b) and (e); space averaged square mobility
< Y (f) > in (c) and (f).

• 1D Euler-Bernoulli beam model solved with the classical PWE method
(green line) as described in section 2.1, applied to the symmetric solid
unit cell in Fig.1;

• same as previous but in the framework of 1D Timoshenko beam as de-
scribed in Appendix B ;

• 3D elasticity model solved with the Finite Element Method (COMSOL
package) with periodic Floquet conditions defined at the in/out faces of
the unit cell (brown circles), applied to the practical case of the beam
demonstrators with non symmetric solid unit cell, as discussed in section
3.1 .

While the 1D models only describe the flexural motion in the z polarization,
the 3D model gives all the four different types of motion. The eigen shapes then
identify the dispersion branches corresponding to the flexural (z and z polar-
izations), torsional and longitudinal waves (see Fig.6(f) for the reference beam,
for example).

For the reference beam (Fig.6 (c) and (f)), the natural dispersion relation
for flexural waves (k ∝

√
ω expected by the Euler theory is well experimentally

12



longitudinal wave

torsional wave

z-flexural wave

y-flexural wave

(d)   Beam A (C=0.88)

longitudinal wave

torsional wave

z-flexural wave

y-flexural wave

FE
M 3D

 el
as

tic
ity

Experiments

PWE Euler

PWE Timoshenko

(e)   Beam B (C=0.6)

(f)   Ref. Beam (C=0)

(a)   Beam A (C=0.88)

(b)   Beam B (C=0.6)

(c)   Ref. Beam (C=0)

Figure 6: (a-b-c) Experimental wavenumber maps Y (k, f) (modulus in dB scale); (d-e-f)
Folded representation of the dispersion relations obtained from experiments (black dots),
Euler (green full line) and Timoshenko (blue dashed line) PWE simulations, 3D elasticity
FEM simulations (brown circles). Snapshots of the unit cell eigen shapes (FEM) identify the
different types of waves. Green patches represent the Bragg band gap obtained from PWE
Euler simulations and brown patches represent the flexural/longitudinal coupling band gap
obtained from FEM simulations.

recovered. At low frequency (f < 2kHz approximately), all the 3 numerical
models are in very good agreement with experiments. Beyond, the Euler model
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deviates as frequency increases, as expected given the limits of this theoreti-
cal low frequency framework. This deviation is significantly smaller with the
less restrictive Timoshenko model. 3D elasticity FEM simulations confirm these
agreements for flexural waves and also predicts the possible propagation of other
wave types that are not involved in the experiments.

The contrasted beams A and B clearly display a band gap for k =
π

L
(6

(d) and (e)). The Bragg band gap as found by the 1D Euler PWE numerical
model is represented by the green patch. The agreement is rather better for the
beam A of high contrast than for for the less contrasted beam B because of an
unexpected resonance within the gap. The destructive interferences occurring
within the gap explain the difficulty to well measure the dispersion curves that
consequently not perfectly touch the axis k =

π

L
(Fig.6(d) and (e)). However,

the dispersion curve is almost vertical in this frequency range, which reflects a
quasi-zero group speed that is typical of a band gap. The non perfect vertical
layout is attributed to the loss effects, that are not studied here. Outside the
gap the agreement between experiment and models is very good.

A detailed quantitative benchmark is proposed in Fig.7 and table 1 to gather
all the results obtained for the Bragg band gap with all the four used approaches
: two-skins analytical model (after fit on the solid geometry, with β = 0.4 and
γ = 0.8.), numerical simulations (Euler and Timoshenko numerical PWE mod-
els and 3D elasticity FEM with periodic Floquet conditions models for solid
geometry) and experimental data.

Fig.7 is a zoom view of the dispersion relations around the Bragg frequency
for the beam A (red), beam B (orange) and reference beam (black). For con-
venient comparison with the two-skins analytical model (color patches with
min/max cursors) the frequencies are normalized as in Eq.(17) and (18). In
this normalized representation, the agreement between experiments (dots) and
models (solid Euler PWE simulations in full lines) results in an alignment of
the curves around f/f0 = 1. In particular, analytical and numerical PWE band
gaps are almost perfectly superposed. The slight general overestimation of the
frequencies observed in the models can be attributed to the poor knowledge on
the Young modulus of the demonstrators and manufacturing uncertainties.

In Tab.1 ∆f and fc are defined as ∆f = fmax − fmin and fc = (fmax +
fmin)/2 with fmin and fmax the frequency limits of the band gap corresponding
to the two first eigenvalues associated to k =

π

L
. The extraction of the exper-

imental gap features is less straightforward since the dispersion curves do not
exactly touch the axis k =

π

L
( Fig.6(d) and (e)). In this case the frequency

peaks surrounding the gap in the wavenumber maps (Fig.6(a) and (b)) are cho-
sen to evaluate fmin and fmax. The agreement between all results exhibits a
maximal error limited to 7.6% (the FEM 3D model as the reference), excepted
for experiments of beam B for which a non expected resonance in the gap dis-
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Figure 7: Around the first Bragg frequency f0, the dispersion curves of the studied beam A
(red), beam B (orange) and reference beam (black) obtained from experimental results (dots)
are in agreement with the solid beam Euler PWE simulations (full lines) and the two-skins
analytical model (color patches with cursors).

Features Beam A Beam B Ref. beam
contrast C 0.88 0.6 0

[hmin;hmax] (mm) [5;20] [9.22;18.44] [20;20]

∆f (Hz)

two-skins 555 (+7.3%) 330 (+4.1%) 0
PWE Euler 553 (+7.0%) 333 (+5.0%) 0
PWE Timo. 533 (+3.1%) 322 (+1.6%) 0
FEM 3D 517 ( ref. ) 317 ( ref. ) 0
experiments 564 (+3.3%) 365 (+15.1%) 0

fc (Hz)

two-skins 736 (-2.0%) 938 (+0.3%) 1425 (+1.4%)
PWE Euler 743 (-1.1%) 938 (+0.3%) 1425 (+1.4%)
PWE Timo. 736 (-2.0%) 926 (-1.0%) 1396 (-0.7%)
FEM 3D 751 ( ref. ) 935 ( ref. ) 1406 ( ref. )
experiments 808 (+7.6%) 1106 (+18.3%) 1348 (-4.1%)

Table 1: Benchmark table gathering the Bragg band gap features obtained from the two-skins
analytical model, solid beam Euler and Timoshenko numerical PWE models, 3D elasticity
FEM model with periodic Floquet conditions.

turbs the extracted values. The agreement remains acceptable with a maximal
error of about 15%.

Measurements on contrasted beams also show another band gap at the higher
frequencies ranges [2300−3027]Hz for beam A and [2700−3300]Hz for beam B.
This gap is not predicted by 1D beam theories PWE simulations but is found in
good agreement with a 3D elasticity FEM simulations (brown patch) in Fig.6(d)
and (e) for both beams A and B, respectively. A more detailed FEM numerical
analysis is provided in Fig.8.

Fig.8(a) shows that this band gap is due to wave coupling between longi-
tudinal and flexural motions, similarly as in [33]. This coupling is identified in
Fig.8(a) that compares the dispersion relation obtained in the case of the sym-
metrical geometry of Fig.1(a) (blue triangles) and the non-symmetrical case
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Figure 8: FEM numerical study of the wave coupling band gap and resulting double filtering
effect. (a) Comparison of the dispersion relations of a periodic symmetric (blue triangles)
and non-symmetric (brown circles) beam ; (b) Flexural and longitudinal components of the
forced displacement of a 8-cell beam, symmetrical (top line) or non-symmetrical (bottom line),
excited by a flexural (left column) or longitudinal (right column) unit point force (pink arrow)
at the coupling frequency f = 2780Hz

(brown circles) corresponding to the experimental demonstrator. Both geomet-
rical layouts follow the corrugated profile of Eq.(6) with hmax = 20mm and
hmin = 5mm. In the symmetrical case at f = 2768Hz, the longitudinal and
flexural dispersion branches cross each other without inducing any coupling be-
tween the two motions, due to the neutral straight line of the symmetric beam.
On the contrary, the non-symmetry of the cell leads to a curvature of the neutral
line of the beam and induces such a coupling as it is well known in shells. Under
1500Hz below the the coupling band gap, the effects of non-symmetry on the
dispersion branches remain very small and therefore the first Bragg band gap,
are not modified at all.

Fig.8(b) illustrates the motion coupling and the resulting double filtering
effect. The z-flexural and longitudinal components of the displacement field are
simulated by classical FEM for free-free beams of 8 symmetric (top line) or non-
symmetric (bottom line) cells, excited by a flexural (left column) or longitudinal
(right column) unit force, at the coupling frequency f = 2780Hz. In the sym-
metrical case, the component of the displacement in the same orientation as the
excitation force exhibits a propagative behaviour while the other component,
not excited and not coupled, shows a very low residual amplitude. On the con-
trary, in the non-symmetrical case, the two components of the displacement are,
by coupling, in the same range near the point of force application. Associated
with periodicity, the coupling leads to a non propagative wave field for both the
two wave types and results in the band gap of significant width in which the
beam is non resonant observed in the experiments (left column of Fig.5).
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4. Conclusions

This article reports a detailed analysis of the Bragg band gap exhibited in a
continuously periodic corrugated beam in order to provide better physical un-
derstanding of such vibration filters.The analysis consists firstly in establishing
an analytical model of the band gap, secondly in studying beam demonstrators
using 3 complementary numerical approaches and an experimental characteri-
zation.

The main outcome is the establishment of analytical formulas of the band
gap width and central frequency obtained for a so-called two-skins geometry
chosen in order to simplify PWE derivations. Such cross section corresponds
to the one of a sandwich material made with two thin but stiff skins spread by
a lightweight but thick core whose stiffness and mass are ignored. Theoretical
results shows that the band gap remarkably only depends on a thickness contrast
parameter : bandwidth is increasing while central frequency is decreasing with
increasing contrast. Moreover, the bandwidth is found to be essentially driven
by the stiffness contrast while the central frequency is also sensitive to the linear
mass contrast.

A complete benchmark validates the two-skins geometry as a good approx-
imation of the solid geometry as to predict the band gap features. Hence,
algebraic formulas provide a simple design tool for flexural waves filters based
on such elementary geometry described by a Fourier series of very few terms.
The general nature of these formulas is not discussed here. For more complex
geometries, very interesting prospects would be to generalize the definition of
the property contrast and study its link with band gap features.

Flexural and longitudinal motion coupling due to the non-symmetric thick-
ness profile of the demonstrators opens another band gap at higher frequencies,
without modifying the Bragg band gap. The result is a double filter able to mit-
igate simultaneously the two types of waves, over a significant frequency range.
Further works would concern the optimization of such "multi-wave" filters of
great potential for application.

Other prospects would take into account structural damping both for mod-
eling by means of the Extended Plane Wave Expansion (EPWE) method [35],
and for experimental post-porcessing by means of the SlatCow method [36] able
to identify both the real and imaginary parts of the wave number, for exemple.
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Appendix A. Detailed polynomial expressions of df and fc

This appendix details the expressions of the size and position of the band
gap deduced from the analytical expression of the determinant (Eq.(12)) that
solves the PWE equations (Eq.(4)). The exact determinant is a polynomial of
order 2N1 + 1. A(X) approximates the determinant with a parabola around
X = 1. For N1 = 2 the complete expression of the coefficients of A(X) defined
in Eq.(14) are given by:

Pm = 3992027− 4087928C2 + 12301875C4

P1 = −8309061 + 4168827C2 − 4157811/16C4

P2 = 4317034− 1079299C2.

Substituting these expressions in Eq.(15a) gives:

fc
f0

=

(
− P1

2P2

)1/2

(A.1a)

=

(
1− 4168827

8309061C
2 + 4157811

16∗8309061C
4

1− 2158598
8634068C

2

8309061

8634068

)1/2

(A.1b)

≈
(

1− 0.501C2 + 0.031C4

1− 0.250C2
0.962

)1/2

(A.1c)

≈
(

1− C2/2

1− C4/4

)1/2

. (A.1d)

As shown in Figure 2, the main error introduced by the approximation of the
determinant by a parabola is its central position: this is clear from Eq. (A.1c)
that fc

f0

∣∣∣
C=0

= 0.962, instead of 1. This error does not vanish increasing the

Fourier truncation number, for instance we have fc
f0

∣∣∣
C=0

= 0.986 for N1 = 5.

The approximated version of fc
f0

(Eq. (A.1d)) fix this error and produces less
than 0.8% of error compared to (Eq. (A.1b)), interestingly this error does not
increase significantly with N1: for N1 = 5, the error is 1.3%.

For the gap size given by Eq. (17), we limit the size of the expression
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discarding insignificant terms in C6 and C8:

df
f0

=

(
4PmP2 − P 2

1

2P1P2

)1/2

(A.2a)

=

( 27041164812544
4748079097755136 + C2 − 2362299612278432

4748079097755136C
4 +O(C4)

1− 5326405753552
7085530636064C

2 + 1110370178382
7085530636064C

4 +O(C4)

4748079097755136

2592 ∗ 7085530636064

)1/2

(A.2b)

≈
(

0.005 + C2 − 0.497C4)

1− 0.751C2 + 0.156C4)
0.258

)1/2

(A.2c)

≈ C

2

(
1− C2

2

1− 3C2

4

)1/2

. (A.2d)

(A.2e)

The approximated version of fc
f0

(Eq. (A.2d)) produces less than 6% of error
compared to (Eq. (A.2b)), corresponding to extreme an contrast C. Interest-
ingly this error decrease with the Fourier truncation number, for N1 = 5, the
error is 4%.

Appendix B. Timoshenko beam PWE model

Figure B.9: transversal section deformation of a Timoshenko beam
(blue) and an Euler-Bernoulli beam (red). Adapted from https :
//en.wikipedia.org/wiki/T imoshenkobeamtheory

Both Euler Bernouilly and Timoshenko beam vibration theories assume no
axial effects (in-plane motion) and an undeformable transversal section In order
to take into account shear deformation, Timoshenko model allows a rotation of
an angle θ(x) of this section (see Fig.B.9. The equation of motion 1 is replaced
by


∂

∂x
(E(x)I(x)

∂θ(x, t)

∂x
) + κ(x)A(x)G(x)(

∂w(x, t)

∂x
− θ(x, t))− ρ(x)I(x)

∂2θ(x, t)

∂t2
= 0,

κ(x)A(x)G(x)(
∂2w(x, t)

∂x2
− ∂θ(x, t)

∂x
)− ρ(x)A(x)

∂2w(x, t)

∂t2
= 0.

(B.1)
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with A the cross-section area, κ the shear coefficient, I the moment of inertia
and G(x) the shear modulus. Since the beam is periodic, properties mi(x) can
be written as Fourrier series:

mi(x) =
∑
g2

Mi(g2)ejg2x (B.2)

withm1(x) = ρ(x)A(x),m2(x) = κ(x)g(x)A(x),m3(x) = ρ(x)I(x) andm4(x) =
E(x)I(x). Furthermore, the beam periodicity imposes a periodicity of both dis-
placement and angle:

w(x) =
∑
g1

Wk(g1)ejg1x,

θ(x) =
∑
g1

Θ(g1)ejg1x,
(B.3)

As for the Euler-Bernoulli case (see section 2.1), Eq.(B.1) become:

∀g3 = g1+g2,∀k



ω2
∑
g1

Wk(g1) =
∑
g1

(k + g1)(k + g3)M2(g3 − g1)Wk(g1)

− j(k + g3)M2(g3 − g1)Θk(g1),

ω2
∑
g1

M3(g3 − g1)Θk(g1) =
∑
g1

[(k + g1)(k + g3)M4(g3 − g1)

+M2(g3 − g1)]Θk(g1) + j(k + g1)M2(g3 − g1)Wk(g1),
(B.4)

The problem can be written in a matrix form by defining a state vector X as:

X =

{
Wk(g1)

Θk(g1)

}
.

Then (B.4) becomes an Eigenvalues problem:

ω2PX = QX (B.5)

where P and Q are [2N3 + 1× 2N1 + 1] matrices:

P =

[
P11 0
0 P22

]
, Q =

[
Q11 Q12

Q21 Q22

]
with

P11 = {P11,ij} , P11,ij = M1(g3i − g1j),

P22 = {P11,ij} , P22,ij = M3(g3i − g1j),

Q11 = {Q11,ij} , Q11,ij = (k + g1j)(k + g3i)M2(g3i − g1j),

Q12 = {Q12,ij} , Q12,ij = −j(k + g3i)M2(g3i − g1j),

Q21 = {Q21,ij} , Q21,ij = j(k + g1j)M2(g3i − g1j),

Q22 = {Q22,ij} , Q22,ij = (k + g1j)(k + g3i)M4(g3i − g1j) +M2(g3i − g1j).
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