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This article presents a numerical optimization procedure of continuous gradient porous

layer properties to achieve perfect absorption under normal incidence. This design tool

is applied on a graded porous medium composed of a periodic arrangement of ordered

unit cells allowing to link the effective acoustic properties to its geometry. The best micro-

geometry continuous gradient providing the optimal acoustic reflection and/or transmission

is designed via a nonlinear conjugate gradient algorithm. The acoustic performances of

the so-designed continuous graded material are discussed with respect to the optimized

homogeneous, i.e. non-graded, and monotonically graded material. The numerical results

show a shifting of the perfect absorption peak to lower frequencies or a widening of the

perfect absorption frequency range for graded materials when compared to uniform ones.

The results are validated experimentally on 3D-printed samples therefore confirming the

relevance of such gradient along with the efficiency of the control of the entire design

process.

a)jean.boulvert@univ-lemans.fr;
b)annie.ross@polymtl.ca
c)jacky.mardjono@safrangroup.com
d)jean-philippe.groby@univ-lemans.fr

1

mailto:jean.boulvert@univ-lemans.fr
mailto:annie.ross@polymtl.ca
mailto:jacky.mardjono@safrangroup.com
mailto:jean-philippe.groby@univ-lemans.fr


I. INTRODUCTION

Homogeneous open-cell porous materials are widely used as acoustic treatments. Their behav-

ior is well described by propagation models and their efficiency to operate as broadband acoustic

absorbers has been theoretically, numerically and experimentally shown for a long time. Never-

theless, they suffer from a lack of efficiency in the low frequency regime, because of their intrinsic

loss mechanisms. Moreover, perfect absorption is usually achieved at a single frequency and

the absorption curve presents ripples in frequency. Increasing homogeneous layer thickness is

a common way to overcome this issue in order to absorb lower frequency noise. However, per-

fect absorption depends on the visco/inertial transition frequency1, therefore limiting the lowest

possible perfect absorption frequency and the thickness of efficient treatments. In addition, thick

and thus heavy treatments are unrealistic for many practical applications. Double-porosity media2,

metasurfaces3,4 and acoustic metamaterials5 are nowadays considered as efficient ways to increase

the low frequency attenuation/absorption. Another way consists in introducing a gradient of prop-

erties through the thickness. A correct design of such a gradient can enhance the layer absorption

over a given frequency range6–8. The optimal gradient is commonly described as a monotonic in-

crease of the air flow resistivity or decrease of the porosity of the structure through the thickness,

leading to an expected continuous in frequency impedance matching at the air-porous interface.

Actually, such gradient improves absorption in the mid and high-frequency ranges but not in the

low frequency one. Moreover, non-monotonic gradient can lead to better performances9 but are

still misunderstood.

Functionally graded materials are used in many other engineering fields, mainly in mechanics,

and can be precisely manufactured with various techniques10. For instance Han et al. manufac-

tured a continuously graded bone implant by selective laser melting11. Yet, conventional porous

manufacturing processes allow to produce graded materials, e.g. graded foams7 or felts8, but

the control of the gradient is relatively low and therefore inaccurate for precise design. Moreover,

large samples are often macroscopically inhomogeneous. No continuously graded porous acoustic

treatments have yet been optimized and precisely manufactured to the author’s knowledge. For-

tunately, recent improvements in additive manufacturing have allowed the production of efficient

acoustic treatments such as helical metametarials12,13, slow-sound based metamaterials6,14 and

porous open-cells materials15. This technology enables an efficient control of the micro-structure
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design, because the pore shapes and dimensions can be simply adjusted for the target macroscopic

properties. Acoustic multilayer treatments have been manufactured by means of 3D printing such

as an assembly of four layers composed of 1 mm thick micro-lattices16, a superposition of micro-

perforated panels17 or a micro-perforated panel backed by a conventional felt and plenum18 as

well as a superposition of two micro-lattices layers and a flexible membrane19. However, these

acoustic treatments consist of a small fixed number of discrete layers and were not optimized.

The aim of this article is to propose a numerical optimization procedure to design continuously

graded porous acoustic materials achieving broadband perfect absorption at normal incidence.

The graded properties can be directly linked to the micro-geometry or the manufacturing process

of the treatment. As an example, the procedure is applied to a periodic 3D printable micro-lattice

porous material, which micro-structure is easily tuned allowing a physical understanding of the

gradient shape as well as to experimentally validate the whole process. The optimized gradients

are compared to optimized homogeneous and optimized monotonic gradient layers in order to

highlight the importance of such unconstrained gradient. This optimization procedure can also be

applied to any stochastic treatments manufactured by conventional process.

The gradient optimization method is widely inspired from Ref. [20], where the characterization

problem of graded porous parameter profiles was tackled by means of a conjugate gradient algo-

rithm and the prior knowledge of the sample reflection and transmission coefficients. The present

work adapts the proposed methodology to reflection and/or transmission optimization. This work

distinguishes from previous one by the optimization objective, the focus on tangible variables and

the additive manufacturing proof of concept. It also differs from multilayer optimizations6,8,21

where a finite number of layers is fixed before the optimization. The article is organized as fol-

lows: first the optimization procedure is introduced in Section II. The acoustic behavior of graded

porous material is recalled and gradient optimization methods are detailed. Then, the optimized

graded profiles and resulting absorption coefficients are presented and discussed in Section III.

After a discussion of the optimizations, an experimental validation is carried out in Section IV.
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II. OPTIMIZATION PROCEDURE

A. Description of the problem

The problem is depicted on Fig. 1. The porous layer is assumed of infinite lateral extent along

the Cartesian y and z directions and is L-thick in the x direction. The normal incident plane wave

is invariant in the (O,y,z) plane and propagates trough the positive x direction. The inhomogeneity

of the layer occurs in the x direction. Thus, as the acoustic excitation is a normal plane wave,

the problem only depends on the x coordinate and so becomes unidimensional. The surrounding

and saturating fluid is air and the porous layer can possibly be rigidly backed. The interfaces

of the porous layer are flat and parallel and are designated respectively by Γ0 and ΓL at x = 0

and x = L. The air medium is denoted by the superscript a. The two semi-infinite air domains

are subsequently denoted by ai and at to differentiate the upstream and downstream sides in the

transmission case.

The analysis is performed in the linear harmonic regime at the circular frequency ω with the

implicit time dependence eiωt . The normal incident plane wave is expressed as pi = e−ikax, such

that the pressure field in ai reads as pai
= e−ikax +Reikax, wherein ka is the incident wavenumber

and R is the reflection coefficient. If the layer is not rigidly backed, the transmitted wave takes

the form pat
= pt = T e−ikax, where T is the transmission coefficient.

FIG. 1. x-graded porous slab. pi is the incident wave, pr is the reflected wave, and pt is the transmitted

wave. The incident wave is aligned with x.
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B. Geometry driven equivalent fluid model

The porous medium is modeled as an equivalent fluid medium1. Its acoustic properties are

governed by its micro-structure conditioned by the manufacturing possibilities.

1. Rigid frame and equivalent fluid approximations

The acoustic energy penetrating the porous medium is mainly dissipated through the interac-

tion between the frame and the air saturating the pores, resulting in viscous and thermal losses. If

the skeleton is sufficiently rigid, it can be assumed motionless. The porous medium can thus be

considered as an equivalent fluid1. The considered equivalent fluid is isotropic but the theory can

simply be extended to anisotropic ones. The viscous and thermal losses in the pores are respec-

tively accounted for in the equivalent density ρ(x,ω) and in the equivalent bulk modulus K(x,ω).

These quantities are complex, frequency and x dependent in this study. They can be approximated

by analytic, empirical or semi-phenomenological models1. The semi-phenomenological Johnson-

Champoux-Allard-Lafarge (JCAL) model22–24 is considered here and accounts for complicated

pore morphologies by means of six parameters. According to this model, the equivalent density

can be written as

ρ(x,ω) =
ρa

φ(x)
α(x,ω), (1)

where ρa is the density of the saturating fluid, i.e. the air medium in the present case, φ(x) the

open porosity profile, and α(x,ω) the dynamic tortuosity profile. The equivalent bulk modulus

can be written as

K(x,ω) =
γP0

φ(x)

(
γ− γ−1

α ′(x,ω)

)−1

, (2)

where P0 is the static pressure, γ the specific heat ratio and α ′(x,ω) the thermal tortuosity profile.

The Johnson et al. model defines the dynamic tortuosity as22

α(x,ω) = α∞(x)−
iν
ω

φ(x)
q0(x)

√
1+

iω
ν

(
2α∞(x)q0(x)

φ(x)Λ(x)

)2

, (3)

where ν = η/ρa is the kinematic viscosity of the saturating fluid, η is the dynamic viscosity, and

α∞(x), Λ(x) and q0(x) are the high frequency limit of the tortuosity, the viscous characteristic

length and the viscous static permeability profiles of the porous medium, respectively.
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The Champoux-Allard-Lafarge model further defines the thermal tortuosity as23,24

α
′(x,ω) = 1− iν ′

ω

φ(x)
q′0(x)

√
1+

iω
ν ′

(
2q′0(x)

φ(x)Λ′(x)

)2

, (4)

where ν ′ = ν/Pr, Pr is the Prandtl number, and Λ′(x) and q′0(x) are the thermal characteristic

length and the static thermal permeability profiles respectively. Therefore, a graded porous ma-

terial along the thickness is that of thickness dependent porosity φ(x), high frequency limit of

the tortuosity α∞(x), viscous characteristic length Λ(x) viscous static permeability q0(x), thermal

characteristic length Λ′(x) and static thermal permeability q′0(x).

2. Equivalent fluid description: two-scale asymptotic method

When the micro-structure of the considered rigid frame material is known, the six JCAL pa-

rameters can be directly derived25 and computed by means of Finite Element Method (FEM)26.

The two-scale asymptotic method can be applied to periodic or stochastic media, providing a

representative elementary volume (REV) which dimensions are largely smaller than the acoustic

wavelength. The REV of heterogeneous media must contain a large number of heterogenities to

be representative of the heterogeneity. If the medium is periodic, the REV reduces to the unit cell

corresponding to the periodic unitary pattern. In case of graded media, it also requires that the

characteristic size of the REV is much smaller than the geometric variation, so that the assumption

of local periodicity of both material and fields still holds25 . The method consists in the application

of a two-scale asymptotic homogenization to governing fundamental equations. The JCAL param-

eters are then calculated by integrating the computed fields. This method is detailed in Appendix

A for anisotropic media. Such numerical description of the optimized porous medium suits well

to the understanding of the graded profiles because it focuses on the micro-geometry. Therefore,

a graded porous material through the thickness is that of thickness dependent micro-geometry.

3. Geometry driven parameters and data-basis generation

The six JCAL parameters are computed for a discrete set of variables defining the porous

medium architecture.
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When the medium can be numerically described, the variables defining the porous medium

architecture are purely geometric (pore size, pore shape...) and the material can be digitally

manufactured. In other words, the JCAL parameters dependence is numerically obtained from a

parametric representative elementary volume.

In contrast, when the porous material is manufactured by a technique that does not give access to

a precise micro-structure description, the variables defining the porous medium architecture are

those of the manufacturing process (compaction rate for felts, filling factor for additive manufac-

turing...). Then, the JCAL data basis can be generated from experimental direct1,27 or inverse28

characterization of several homogeneous samples.

To sum up, the acoustic behavior of a porous medium is driven by its micro-structure. If a pre-

cise description of the latter is within easy reach, the JCAL dependence on the micro-structure

is digitally computed by means of two-scale asymptotic method and FEM. On the contrary, if a

precise description is out of reach, the JCAL dependence is computed by experimental inverse

characterization.

In any case, the JCAL parameters are computed for a discrete set of micro-structural or manu-

facturing variables defining the porous medium architecture. Each JCAL parameter dependence is

then obtained by interpolating a continuous and smooth function from the discrete set of computed

values, thus forming a data-basis for the optimization procedure.

The variables defining the microstructure of the porous medium will be the subject of the gradient

optimization.

C. Acoustic waves propagation in graded porous material

Once the JCAL parameters are linked to the architecture variables, the acoustic behavior of the

graded material can be evaluated. For clarity of the presentation, the (x,ω) dependence of ρ and

K are dropped in the following.

7



1. Equations of macroscopically inhomogeneous porous material under the rigid frame

approximation

Using the alternative Biot’s formulation29, De Ryck et al. derived the equations of motion in

a macroscopically inhomogeneous porous material under the rigid frame approximation30. Under

normal incidence they take the usual form in the frequency domain:

iωρV =−∂ p
∂x

, (5)

−iω
K

p =
∂V
∂x

, (6)

where p is the fluid pressure in the material pores and V the normal equivalent velocity component

for the oscillatory fluid flow in the interconnected pores. In the general case, the medium is

considered anisotropic, as shown in Appendix A, with ρ being a tensor and K a scalar. Here, the

focus is put on the properties of the system along the normal incidence direction.

2. State vector formalism

The problem being unidimensional, Eqs. (5, 6) can be directly cast in a first order differential

matrix system from:
∂

∂x
W−BBB(x)W = 0, (7)

wherein W is the column state vector (p,V )ᵀ and

BBB(x) =

∣∣∣∣∣∣∣
0 −iωρ(x)
−iω
K(x)

0

∣∣∣∣∣∣∣ . (8)

Eq. (7) can be directly solved via Peano Baker series31. Nevertheless, the Transfer Green Functions

formalism is preferred because it directly provides the analytical gradient of the cost function that

will be used in the optimization procedure.

3. Wave Splitting and Transfer Green Functions formalism

The pressure and velocity fields can be decomposed in a forward, p+, and a backward propagat-

ing waves, p−. By analogy with electromagnetism, where the medium is surrounded by vacuum,
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a "vacuum wave splitting" formulation is employed30. The pressure field is expressed in the sur-

rounding fluid, i.e. in the air, and reads

p± =
1
2
(p±ZaV ) , (9)

wherein Za is the impedance of the air. This transformation is used to solve the problem, because

(p,V )ᵀ = (p[a],V [a])ᵀ at the interface Γ0 (see Fig. 1). Eq. (7) becomes:

∂

∂x

p+

p−

−
∣∣∣∣∣∣ A+ A−

−A− −A+

∣∣∣∣∣∣
p+

p−

= 0, (10)

where A± =
iω
2

(
Za

K
± ρ

Za

)
.

The two transfer Green’s Functions, G+ and G−, are now defined as follows:

p±(x) = G±(x)p+(L). (11)

By introducing Eq. (11) in Eq. (10), the first order differential system to solve now reads as:

∂

∂x

G+(x)

G−(x)

=

∣∣∣∣∣∣ A+ A−

−A− −A+

∣∣∣∣∣∣
G+(x)

G−(x)

 . (12)

These two transmission Green’s functions are related to the space dependent reflection R(x) =

p−(x)/p+(x) and transmission T (x) = p+(L+)/p+(x) coefficients along the layer thickness via

R(x) =
G−(x)
G+(x)

, (13)

T (x) =
T (L)

G+(x)
. (14)

The reflection and transmission coefficients of the whole porous layer are thus R = R(0) and the

transmission coefficient is T = T (0). The solution of Eq. (12) is found by integrating from x = L

where the boundary conditions are known, to x = 0 using an iterative method such as the fourth

order Runge-Kutta scheme.

When the porous layer is surrounded by air, the boundary conditions at x = L are R(L) = 0 and

T (L) = 1, which translates in the form:  G+(L) = 1,

G−(L) = 0.
(15)
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In the opposite, when the porous layer is rigidly backed at x = L, the only boundary condition is

R(L) = 1, which translates in the form:

G+(L)
G−(L)

= 1. (16)

D. Unconstrained gradient optimization: Nonlinear conjugate gradient algorithm

The objective of the gradient optimization is to bring the reflection and/or transmission coef-

ficients of the porous layer as close as possible to objective values by tuning a micro-structure or

manufacturing parameters. The cost function J to be minimized reads as:

J (q(x)) = ∑
ω

W (ω)(|R(q(x),ω)−Rob j(ω)|2

+|T (q(x),ω)−Tob j(ω)|2), (17)

where Rob j(ω) and Tob j(ω) are the objective reflection and transmission coefficients, W (ω) is

a frequency weighting function used to favor targeted frequency ranges, and vector q(x) is the

micro-structure or manufacturing parameters profiles varying along the layer thickness x = [0;L]

and being the subject of the optimization. The goal can be to mimic the reference behavior, e.g.

inverse characterization, or to optimize the absorption of the graded porous layer, e.g. when

Rob j(ω) and Tob j(ω) are set to zero.

In this study, the absorption coefficient A = 1− |R|2 of rigidly backed layer is maximized.

The maximum absorption coefficient is 1 which means that perfect absorption is achieved. The

objective reflection coefficient is thus zero, while no transmission is present. The optimization

algorithm is detailed for the generic case.

The nonlinear conjugate gradient method32 is a generalization of the conjugate gradient

method33, that can minimize any continuous function as long as the gradient of which can be

computed. The convergence to the global minimum is not ensured if the minimized function

possesses local minima. This iterative algorithm steps are reminded in Appendix B. It consists

in computing a search direction that will be added multiple times to minimized function. If there

is an analytic expression of the JCAL parameters variation with respect to the graded optimized

parameter, then the search direction also has an analytic form.

10



E. Constraint to be monotonic gradient optimization

As detailed in the Introduction, it is of interest to compare the absorption of an optimally graded

porous layer to the one of an optimally graded layer which porosity or permeability is decreasing

through the material thickness. Thus, a constraint gradient optimization algorithm is proposed.

Its aim is to minimize the cost function defined by Eq. (17) by tuning a monotonically varying

manufacturing or micro-geometric gradient. For more clarity, only one parameter q is optimized

by this algorithm. The profile of q(x) is obtained by interpolating a continuous function from a

discrete set of N equally spaced points qn = q(xn) where x0 = 0 and xN = L. A Shape-Preserving

Piecewise Cubic Interpolation (Matlab, pchip) is used. The interpolated function is C1 (its first

derivative exists and is continuous), and respects the shape of the data. In this way, if qn+1 < qn

∀n ∈ [0,N], then q(x) is monotonically decreasing. The values of qn are optimized by means of

a Nelder-Mead algorithm minimizing the cost function J and satisfying the condition qn+1 < qn

∀n ∈ [0,N].

III. NUMERCIAL RESULTS

The reflection coefficient possesses pairs of poles/zeros, the location of the which in the com-

plex frequency plane f̃ = Re( f̃ )+ i Im( f̃ )14,34 represents the system modes and their associated

leakages. In the absence of losses, the zeros and poles are perfectly symmetric with respect to

the real frequency axis. Both are shifted towards the negative imaginary frequency half-space

when losses are added according to the chosen time Fourier convention. Perfect absorption, i.e.

A = 1− |R|2 = 1, is achieved when the added losses perfectly compensates the leakage of

the structure, leading to the critical coupling condition. In this respect, 20 log(|R( f̃ )|) is also

plotted in the complex frequency plane to complement the analysis of the absorption coefficient.

In the following, the nth zero of the reflection coefficient corresponding to the nth maximum of the

absorption coefficient is noted fn−1. The so-called fundamental quarter-wavelength resonance is

thus f0.
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A. Considered periodic porous medium: micro-lattice porous medium

As an example, the optimization procedure is applied to the idealized micro-lattice graded

porous layer depicted in Fig. 2. The micro-lattice is composed of a superposition of perfectly

cylindrical parallel rods orthogonally alternating in the plane (O,y1,z1). Thus, the medium is

structured and periodic. Then, the REV reduces to the unit-cell consisting of the junction of

two orthogonal rods as highlighted in Fig. 2. The unit cell is described by two micro-structural

parameters: the rod diameter D, that also fixes the unit-cell thickness, and the spacing between

two adjacent rods. Other equivalent parameters are the rod diameter D and the dimensionless rod

step S. The latter is the spacing between two adjacent rods normalized by the rod diameter, e.g. a

step S = 1 implies the rods are in contact and a step S = 2 implies the two rods centers are distant

from 2D. The pore size H is defined here as the minimum distance between two adjacent rods. It

is a function of S and D and is expressed as

H = D(S−1). (18)

All the JCAL parameters of the unit cell depend on S while the characteristic lengths and per-

meabilities also depend on D. For a given S, the characteristic lengths are proportional to D and

the permeabilities are proportional to D2 (see Appendix A). The porosity has a remarkably simple

expression which is

φ = 1−π/(4S). (19)

The minimum porosity is equal to ≈ 0.21 when the rods are touching each other.

This material would be described as "quasi-isotropic" in composite science, because its in-

plane properties are identical but different from the out-of-plane ones. Therefore, the micro-lattice

material is anisotropic and its properties in the principal directions can be evaluated following the

method described in Ref. [35]. Nevertheless, the material principal directions fit the layer axes

and rods are aligned in the plane of the layer. Only the out-of-plane properties are then considered

in the present article, because of the normal incidence excitation. The analysis of the anisotropic

features of the present micro-lattice graded layer is out of the scope of the present article. The

layer is thus considered isotropic in the following.

The micro-structure gradients are derived from a through-the-thickness variation of S, D or
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FIG. 2. Diagram of the porous material micro-structure. The box delimits a unit cell. The main axis of

the porous material (O,x1) is aligned with the axis of the slab (O,x). The acoustic wave propagates along

x = x1.

both. The rod diameter D is bounded between Dmin = 100 µm and Dmax = 1000 µm. The dimen-

sionless rod step S is bounded between Smin = 1.2 and Smax = 25. The porosity is then bounded

between φmin = 0.35 and φmax = 0.97 while the pore size is bounded between 20 µm and 24 mm.

B. Numerical settings

Both unconstrained and constraint to be monotonic gradient optimizations are numerically im-

plemented. Continuous functions must be discretized. The micro-geometric profiles are defined

by 100 points. The considered graded layers are 30 mm thick leading to a discretization step of

300 µm. Concerning the conjugate gradient, the number of iterations is set to 20 and the number

of iterations of the line search is set to 15. These settings are found to be a good balance between

computation time and convergence. The frequencies of interest are linearly spaced. The frequency

weighting function W is a pass-band function, its lower boundary Wlb and higher boundary Whb

depend on the optimization case. W is equal to 1 in the interval 2π × [Wlb,Whb] and 0 elsewhere

while 0 <Wlb <Whb.

C. Homogeneous material acoustic behavior

Before investigating the optimal graded micro-lattice acoustic behavior, the one of an homo-

geneous micro-lattice is first analyzed. Rod diameter D and rod step S are constant along the
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FIG. 3. (color online) (a) Hard-backed absorption coefficients of a 30 mm thick homogeneous porous

layers: 100 µm rod diameter (solid line) and 400 µm rod diameter (dashed line), both structures critically

coupled at f0. (b) Representation of 20log(|R|) in the complex frequency plane of 30 mm thick porous

slab, 100 µm rod diameter.

thickness of homogeneous material. Fig. 3(a) shows the absorption coefficient of two optimized

30 mm-thick homogeneous micro-lattice porous layers with the rod diameter of D = 100 µm

and D = 400 µm, respectively. Both layers are critically coupled at their respective fundamental

quarter-wavelength frequencies. Absorption peaks are wider in the case of 100 µm than in the

case of 400 µm rod diameter, while f0 is slightly higher.

Cai et al.36 suggested that, for an open porosity material having circular pores, the perfect

absorption is obtained when the pore radius equals the viscous boundary layer thickness. The

latter is linked to the visco/interial transition frequency, for highly porous materials, as also noted

by Jimenez et al.6. In our case, the porosity is usually low (φ < 0.9) and the perfect absorption is

achieved for a pore size H for any rod diameter, see Fig. 3(a).

Moreover, the viscous permeability decreases with the pore step S (governing φ and H, see

Eqs. (18, 19)) and increases with the rod diameter D (governing H, see Eq. (18)). The lower the

pore step S is and the lower the rod diameter D is, the lower the viscous permeability is. In other

words, both decreasing the pore step and the rod diameter increases the resistivity (∝ 1/q0). When

perfect absorption must be attained at f0, an higher rod diameter is compensated by a lower rod
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step keeping the pore size constant but strongly lowering the porosity and slightly increasing the

viscous permeability. The visco/inertial transition frequency of the material is decreased. Simi-

larly, decreasing the rod diameter while keeping perfect absorption at f0 shifts up the position of

the poles in the absence of loss, thus decreasing the associated quality factor. Thus, the perfect

absorption peaks are wider, but higher in frequency when the rod diameter is small and the rod

step is optimized, as shown in Fig. 3(a). The reflection coefficient in case of 100 µm rod diameter

is plotted in the complex frequency plane Fig. 3(b). At f0, the zero of the reflection coefficient

is exactly located on the real frequency axis, confirming the perfect absorption. For this sample,

only one zero can be located on the real frequency axis at a time, i.e. perfect absorption can only

be achieved at a single frequency. The losses of the following zeros are too large.

The 30 mm thick homogeneous layer, with a rod diameter of 100 µm (Fig. 3), is taken as a

reference. The perfect absorption peak frequency appears at f re f
0 = 2400 Hz. Three designs are

described in the following sections corresponding to three different goals: lowering f0, enhance-

ment in the mid-frequency range of the absorption, and the broadband absorption for the same

layer thickness.

D. First perfect absorption frequency lowering

The goal of this optimization is to lower the frequency of perfect absorption f0 without chang-

ing the layer thickness, i.e. L = 30 mm by introducing a gradient of D(x) and S(x). Achieving

perfect absorption at lower frequency for the same dimension is of particular interest because this

is impossible with an homogeneous porous material and because of increasing space constraints

in practical applications. Subsequently, a set of Wlb and Whb is chosen in such way that f0 is as

small as possible and A ( f0)> 0.995.

On the one hand, the monotonically decreasing gradient of S (and thus of φ and H) or of D

(and thus of H) do not allow to reduce f0 with respect to f re f
0 . On the other hand, the lowest f0

presenting perfect absorption that we could obtain by means of W (ω) = 2π[1300,1700] Hz with

an unconstrained graded layer is 1630 Hz. Figure 4(a) depicts the absorption coefficient of the

reference 30 mm-thick homogeneous micro-lattice porous layer, of the optimized unconstrained

graded porous layer of the identical thickness and of an optimized 43.5 mm-thick homogeneous
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reducing f0. W (ω) = 2π[1300;1700] Hz.

layer possessing perfect absorption at f0 =1630 Hz. The unconstrained optimized profiles of D(x)

and S(x) are provided Fig. 4(c). The thickness of the graded layer equals λ/7.1 at f0, where λ is

the corresponding wavelength in air. Other frequency weighting functions can lead to very similar

results. The absorption peak appears at a much lower frequency, but the peak is thinner and the

average absorption at high frequency is degraded. Nevertheless, this result should be mitigated at

first glance by the fact that the optimization algorithm has no control outside [Wlb,Whb]. This is

testified by the complex frequency analysis of the corresponding reflection coefficient plotted in

Fig. 4(b).
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The optimized profiles depicted in Fig. 4(c) present a very low rod step zone manifested at the

air-layer interface and a high rod step close to the rigid backing. The high rod diameter at the

air-layer interface tempers the effect of very low rod step on the pore size, see Eqs. (18, 19), and

thus allows a low porosity while preventing the viscous permeability from falling. A continuous

transition between both profiles is noticed. In other words, the optimal profile consists in a very low

porosity and medium pore size layer with a plenum, enabling to control the resonance frequency

of the layer. Inside the low porosity zone, S(x) = Smin = 1.2, i.e. φ(x) = φmin = 0.34 and H(x)≈

180 µm while inside the permeable zone, D(x) = Dmin =100 µm, φ(x) ∈ [0.72; 0.82] and H(x) ∈

[180;350] µm. The optimization bounds are thus reached and it would be expected to reach lower

f0 by enlarging the variation ranges, therefore increasing the porosity drop between the two zones.

E. Medium frequencies optimization

This optimization aims at increasing the absorption coefficient between the first ( f0) and sec-

ond ( f1) absorption maxima while keeping f0 as low as possible. These two objectives being

contradictory, W (ω) = 2π[2000,3200] Hz leads to good balance.

The monotonically decreasing gradient of S, with rod diameter set to 100 µm, improves the

absorption over the frequency range of interest by shifting f0 up to 2600 Hz and downshifting f1,

while widening the absorption peaks, as shown in Fig. 5(a). Perfect absorption is achieved at f0.

The optimized rod step profile is presented in Fig. 5(c). The rod step decreases monotonically, but

with small variation. For an easier comparison, only the rod step profile is optimized in case of

the unconstrained gradient, the rod diameter being set to 100 µm. The effect of the free gradient

is more pronounced than that of constraint gradient: f0 is still equal to 2600 Hz while f1 is shifted

down, as depicted in Fig. 5(a). The absorption peak widths are fairly similar to the monotonic

gradient optimized ones, see Fig. 5(a). As a result, absorption between f0 and f1 is higher than

the absorption with monotonic gradient optimization. The corresponding optimized profile is a

succession of relatively closely grouped and distant rods. The variation of rod step is greatly

inferior than the one presented in Fig. 4(c). Still, it enables the control of the frequency of the first

two quarter-wavelength resonances. A combined variation of the rod diameter and rod step further

increases the absorption. The rod step profile is very similar to one presented in Fig. 5(c). The
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FIG. 5. (color online) (a) Hard-backed absorption coefficients of optimized 30 mm thick slabs, 100 µm rod

diameter with homogeneous rod step (solid line), monotonically graded rod step (doted line) and free graded

rod step (dash-doted line). (b) Representation of 20log(|R|) in the complex frequency plane of 30 mm

thick, 100 µm rod diameter, free graded rod step, porous slab. (c) Optimized graded profiles of rod step:

monotonic (dash-doted line) and free gradient (dashed line), D = 100 µm. W (ω) = 2π[2000;3200] Hz.

diameter profile follows an inverse trend than the rod step: rod diameter is high when rod step is

low and vice versa. This two-parameter gradient shifts f1 to a lower frequency.

F. High frequencies optimization

Now the maximization of the absorption coefficient over the [3000;20000] Hz frequency range

is analyzed. The choice of W (ω) = 2π[3000;20000] Hz allows to keep a perfect absorption at f0.

The absorption coefficient of the monotonic rod step gradient layer is higher than 0.99 between

3600 Hz and 30000 Hz and also almost higher than 0.997 over the whole optimized frequency
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range as shown in Fig. 6(a). The four absorption peaks appearing at fn, n = 0, ...,3, are shifted up

in comparison to f re f
n and gathered between 3000 and 20000 Hz. Moreover, an absorption drop to

0.993 is observed between f0 and f1. The rod step bell-mouth shape profile, see Fig. 6(c), begins by

the maximum authorized value Smax. The resulting porosity profile is almost linearly decreasing.

In other words, the profile presents an impedance matching. Similarly to the previous section, only

the rod step profile is optimized in case of the unconstrained gradient and the rod diameter is again

fixed at 100 µm. The absorption coefficient is depicted Fig. 6(a). It is higher than 0.99 between

3600 and 20000 Hz and higher than 0.997 between 3900 and 19500 Hz. This improvement is

possible by gathering five absorption maxima between Wlb and Whb, as can be seen from the

complex frequency analysis of the reflection coefficient depicted in Fig. 6(b). Homogeneous and

graded materials with monotonically decreasing rod step only gather four absorption maxima.

Furthermore, the absorption drops after Whb is explained by the downwards shifting of f5. The rod

step profile, Fig. 6(c), consists of 5 alternating relatively closely grouped and distant rods, enabling

to gather 5 modes and therefore 5 zeros of the reflection coefficient in the optimization frequency

range. The ripples are almost removed and the absorption coefficient is almost flat over the whole

frequency range of optimization.

IV. INTERPRETATION

Regardless of the optimization frequency range, an optimized unconstrained through the thick-

ness gradient enhances the absorption properties of the material in comparison to the optimized

homogeneous layer or optimized monotonic graded layer with identical thickness. Nevertheless,

the previous results require comments. First, the downshifting of the first perfect absorption peak

with identical thickness is necessarily accompanied by a decrease of the absorption efficiency at

higher frequencies. Second, the enhancement of the absorption coefficient over a specific fre-

quency range is always achieved at the expenses of the absorption properties outside this range.

Third, broadband perfect absorption is possible if the first perfect absorption peak frequency is

higher than that of the homogeneous layer. Fourth, the optimal profile is an alternating distribu-

tion of relatively closely grouped and distant rods rather than a monotonic gradient. It leads to an

alternating distribution of contrasted porosity layers. This counterintuitive result is explained by

the fact that the alternation enables the creation and a better control of resonances. At lower fre-

quencies, a resonance possesses a large quality factor, thus providing thin absorption peak. A low
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FIG. 6. (color online) (a)Hard-backed absorption coefficients of optimized 30 mm thick slabs, 100 µm
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thick, 100 µm rod diameter, free graded rod step, porous slab. (c) Optimized graded profiles of rod step:

monotonic (dash-doted line) and free gradient (dashed line), D = 100 µm. W (ω) = 2π[3000;20000] Hz.

porosity - medium pore size layer placed in front of a plenum only possesses a single resonance

at low frequency. For broadband absorption, the alternation leads to an increase of the density

of states over the optimization frequency range, creating a larger number of reflection coefficient

zeros located in the targeted frequency range. The absorption coefficient can therefore be almost

flat over a wide frequency range. Nevertheless, this result might be tempered by the fact that the

tuning of these modes are constrained by the thickness of the layer thus preventing a full control

of their frequency position.

V. EXPERIMENTAL VALIDATION

The optimization process is experimentally validated on samples fabricated by Fused Deposi-

tion Modeling (FDM) Pro2 printer supplied by RAISE3D. The slicer software is Simplify3D. The
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cylindrical samples have a diameter and a thickness of 30 mm as depicted in Fig. 7. The extruded

material is polylactic acid (PLA). The printer’s nozzle is 400 µm in diameter. The targeted geom-

etry is similar to the one described in Fig. 7. However, the orthogonal rods layers are interlocked:

the distance separating two layers oriented in the same direction is 1.5D instead of 2D. Moreover

the rods are not perfectly cylindrical and their surface is scarred. Their diameter is close to the

nozzle diameter. FDM and Simplify3D do not allow a direct control of the micro-lattice rods spac-

ing. The manufacturing variable is the "infill factor" percentage which is inversely proportional

to the spacing between two adjacent rods and can only take integer values. In this way, a graded

manufacturing variable is optimized. The gradient is obtained by tuning the infill factor varying

between 10 and 70 % which corresponds to a porosity of 0.90 and 0.33 respectively. A combined

variation of the rod diameter and spacing would require a multi-nozzles printer or using another

manufacturing process. Finally, a 800 µm thick solid layer surrounds the porous micro-lattice.

Its effect is accounted for by multiplying the density and bulk modulus of the equivalent fluid by

the surface of the sample divided by the surface of its porous portion1. The acoustic parameters

are measured using a 30 mm diameter impedance tube, with a cut-off frequency of 6750 Hz. The

absorption coefficient is measured using the two microphones with hard backing configuration.

The measurements are preformed between 500 Hz and 6000 Hz. Because of the printing inherent

defects, the JCAL parameters dependence on the infill factor were obtained by inverse character-

ization of a set of eight homogeneous samples followed by an interpolation over the infill factor

scope37. The JCAL parameters of the characterized samples along with their interpolation (infill

factor ∈ [10;70]%), are presented in Appendix C.

A continuous gradient, where each layer would have a different infill factor cannot be man-

ufactured straightforwardly. Instead, a 10-layer material was printed. This number of layers is

more than sufficient to accurately discretize the continuous profile. The optimized continuous

profile was thus discretized in 10 layers of identical thickness. First, the infill factor of each layer

equaled the mean infill factor of the continuous profile within the layer width. Then, a Nelder-

Mead algorithm adjusted the infill factor of each layer. To do so, the algorithm minimized the cost

function given by Eq. (17) where R(ω) is the multilayer reflection coefficient and Rob j(ω) is the

continuous profile reflection coefficient, both of them numerically computed.

Two optimizations are carried out by the unconstrained gradient algorithm. The first one con-
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FIG. 8. (color online) (a) Rigid-backing absorption coefficients of optimized manufactured 30 mm thick

slabs, numerically computed from the continuous profile (green lines), from the multilayered profile (blue

lines), and measured (red lines), in direct (solid lines) and reverse (dashed lines) orientations. (b) Porosity

profiles resulting from the infill factor profiles optimized by unconstrained gradient, continuous (green line)

and discretized in ten layers (blue line). W = [1600;1700] Hz.
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FIG. 9. (color online) (a) Rigid-backing absorption coefficients of optimized manufactured 30 mm thick

slabs, numerically computed from the continuous profile (green lines), from the multilayered profile (blue

lines), and measured (red lines), in direct (solid lines) and reverse (dashed lines) orientations. (b) Porosity

profiles resulting from the infill factor profiles optimized by unconstrained gradient, continuous (green line)

and discretized in ten layers (blue line). W = [2500;5500] Hz.

siders W (ω) = 2π[1600;1700] Hz in order to reduce f0 with respect to f re f
0 . The second one

considers W (ω) = 2π[2500;5500] Hz so that the absorption is higher between f re f
0 and f re f

1 .

Figures 8(a) and 9(a) depict the absorption coefficient of the homogeneous materials, critically

coupled at f re f
0 (TR = 55%, i.e. φ = 0.47) along with the simulated and measured absorption

coefficient, in both orientations, of the optimized graded materials. Figures 8(b) and 9(b) provide

the corresponding continuous porosity profiles resulting from the continuously optimized infill

factor profiles and their discretizations. The absorption coefficients are optimized considering the

"front" orientation which corresponds to an incident wave propagating through the porosity profile

from left (Thickness = 0 mm) to right (Thickness = 30 mm). The absorption coefficients are also

presented considering the "back" orientation. In this configuration, the incident wave propagates

from Thickness = 30 mm to Thickness = 0 mm.

For both optimizations, the continuous and multilayerd profiles lead to numerically very close

23



absorption coefficients, in both orientations, meaning that the discretization procedure is efficient.

The W (ω) = 2π[1600;1700] Hz optimization resulting profile is consistent with the purely nu-

merical one of Fig. 4(c). In both cases, the targeted frequency range is lower than f re f
0 and the

spacing between adjacent rods (∝ S and ∝ φ ) increases along the material thickness. The measured

and simulated absorption coefficients are almost superimposed in the "front" orientation, with a

measured perfect absorption (A = 0.997) at f0 = 1650 Hz (λ/7.1). The correlation in the reverse

("back") orientation is lower. The first micro-lattice layer of the 3D printed samples is always more

resistive than expected, resulting in a difficult control of the gradient in the "back" orientation.

The medium frequencies optimization, defined by W (ω) = 2π[2500;5500] Hz creates a profile

characterized by four zones alternating relatively closely grouped and distant rods, leading to low

and high porosity. This profile is also consistent with the one depicted in Fig. 5(c). Moreover,

there is a very good correlation between the simulated and the measured absorption coefficients,

in both orientations, resulting in an absorption higher than 0.960 between 2630 and 5390 Hz, in

the "front" orientation. The absorption reaches 0.994 and 0.979 at f0 and f1 respectively.

VI. CONCLUSION

This work reports theoretical and experimental results for the continuous manufacturing gra-

dient optimization of a porous layer at normal incidence. The detailed gradient optimization

algorithm, adapted from an inverse characterization method, can be applied to multiple manufac-

turing parameters of structured periodic or stochastic media, as long as the variation of the JCAL

parameters with respect to the optimized graded parameters is known.

As an example, it has been applied to rigid backing absorption optimization. The optimizations

showed significant improvement of the absorption coefficient in comparison with optimized ho-

mogeneous and monotonically graded materials. On the one hand, lowering the first perfect

absorption frequency requires low porosity of the material at the air-porous interface followed

by an increase. This leads to an important reduction of the absorption in the medium and high

frequencies. On the other hand, increasing the absorption in the medium and high frequencies

requires a porosity decrease through the thickness. It results in a shift towards high frequencies of

the first maximum of absorption. The monotonic gradient widens the maxima of absorption and

increases it closer to unity. The free gradient follows the same trend but adds a sequence of lower

and higher porosity to the profile. The number of sequences is equal to the number of absorption
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maxima tuned to increase the absorption in the frequency range of interest. This results in an even

higher absorption than monotonic gradient.

Finally, experimental testing demonstrated the relevance of such gradient.
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Appendix A: Two-scale asymptotic homogenization procedure25

Homogenizability conditions

A representative elementary volume (REV) is defined. It is the unit cell for periodic media (Fig. 2).

Then, a characteristic dimension of the REV is selected: lc = D while the characteristic macro-

scopic dimension is set as Lc = 1m. Separation of scale requires that:

lc
Lc

= ε � 1. (A1)

For this reason, the considered micro rods cannot be higher than some millimeters.

Double spatial variable

Two dimensionless variables are introduced. The macroscopic space variable x∗ = X/Lc and the

microscopic variable y∗ = X/lc , where X is the actual space variable.

The derivation operation is now written as

d
dX
→ d

dx∗
+ ε
−1 d

dy∗
(A2)

Asymptotic expansion

In order to separate the phenomena happening at the microscopic scale from the ones happening at

the macroscopic scale, physical variables are substituted by their asymptotic expansions at multiple

scales in powers of ε . A given field ψ is expressed as

ψ(x∗,y∗) =
∞

∑
n=0

ε
n
ψ

(n)(x∗,y∗). (A3)
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Governing equations and JCAL parameters

The governing equations two-scale asymptotic formulations and the retrieved JCAL parameters

are given in Appendix.

REV characteristic dimension

Applying an homothetic transformation to the medium micro-structure, and thus to the REV, has

an analytic simple effect on the medium JCAL parameters. Turning l(1)c into l(2)c multiplies the

viscous and thermal lengths by l(2)c /l(1)c and the viscous and thermal permeabilities by
(

l(2)c /l(1)c

)2
.

JCAL parameters

The homogenization procedure is applied to three fundamental equations: the mass conservation,

the heat diffusion and the momentum conservation of the saturating fluid of the REV. Ideal gas

assumption, Fourier’s law, definition of the stress tensor and Navier’s equation support the equa-

tions solving. An identification in terms of power of ε and taking the limit in ω → ∞ or ω → 0

lead to the equations of interest.

The equations are given in the generic case of anisotropic porous material for which the tortuosity,

viscous characteristic length and viscous permeability are diagonal tensors.

The thermal problem equation, taking the limit in ω → 0, reads


div(grad(θ)) =−1,

θ = 0 on Γ f s,

θ Ω-periodic,

(A4)

where Γ f s is the fluid solid interface, Ω the REV and ej the unitary vector in the REV main direc-

tion j.

In the following equations, k and ξ play the role of the velocity field and its associated pressure
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field, respectively. The visco-inertial problem, taking the limit in ω → 0, becomes

div(grad(k0
j )) = grad(ξ 0

j )− ej,

div(k0
j ) = 0,

k0
j = 0 on Γ f s,

〈k0
j 〉Ω = 0,

k0
j and ξ 0 Ω-periodic,

(A5)

where 〈·〉Ω is the REV averaging.

The visco-inertial problem, taking the limit in ω → ∞, becomes

iωρ0
η

k∞
j = grad(ξ ∞

j )− ej,

div(k∞
j ) = 0,

k∞
j ·n = 0 on Γ f s,

〈ξ ∞
j 〉Ω = 0,

k∞
j and ξ ∞ Ω-periodic,

(A6)

The JCAL parameters are obtained by integrating, over the fluid domain Ω f or fluid-solid

interface Γ f s , the solution fields of these equations.

They are expressed as

φ =

∫
Ω f

dΩ f∫
Ω

dΩ
, (A7)

ααα∞∞∞ · ej = φ〈III−grad(ξ ∞)〉−1 · ej, (A8)

ΛΛΛ · ej = 2

∫
Ω f

k∞
j · k∞

j dΩ f∫
Γ f s

k∞
j · k∞

j dΓ f s
, (A9)

Λ
′ = 2

∫
Ω f

dΩ f∫
Γ f s

dΓ f s
, (A10)

qqq000 · ej = 〈k0
j〉Ω, (A11)

q′0 =

∫
Ω f

θdΩ f∫
Ω f

dΩ f
. (A12)

In case of isotropic media, the JCAL parameters are not direction dependent: their projection over

each space direction is identical. In normal incidence along x, only the ex projection matters and

appears in the propagation equations.
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Appendix B: Conjugate Gradient method

1. Conjugate gradient algorithm

Step 0: Initial guess

q(0)(x) = cte ∀x ∈ [0;L].

Step 1: First search direction

Set i = 0. Then, compute R(x) and T (x) ∀ x ∈ [0;L] by means of Eqs. (13, 14) and considering

the ΓL BC(s). Compute the gradient of the cost function:

G(q(0)) =

[
∂J

∂q(0)1

,
∂J

∂q(0)2

, ...
∂J

∂q(0)n

]
. (B1)

Set D(0) = G(q(0)) wherein D(i) is the search direction of iteration i.

Step 2: Line search

Compute the positive and real valued λi the size of which equals the one of q, such that:

J
(

q(i)−λiD(i)
)
= min

λ∈ Rn+
J
(

q(i)−λD(i)
)
. (B2)

The step size is obtained by an iterative method. If p depends on a one parameter vector, the

Golden-section search technique (Jack Kiefer, 1953) is used to find the optimal step size. Oth-

erwise, the Nelder-Mead method is applied. This last method is an heuristic one but is fast and

reliable when only a few parameters are optimized.

Step 3: Update q

q(i+1)(x) = q(i)(x)−λiD(i)(x). (B3)

Step 4: New search direction

G(i+1) = G(q(i+1)), (B4)

D(i+1) = G(i+1)+βiD(i). (B5)

βi can be computed by the Polak-Ribiere formula with an automatic reset:

βi = max

(
G(i+1)T

G(i+1)−G(i+1)T
G(i)

G(i)T
G(i)

,0

)
. (B6)
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If i is higher than the maximum number of iterations then the algorithm stops. Otherwise i = i+1

and loops to Step 2.

2. Gradient of the cost function

This section shows the details of the computation of the gradient of the cost function leading to

the search direction (Eq. B1).

The infinitesimal variation of R(x,ω,q) and T (x,ω,q) are δR(x,ω,q) = R(x,ω,q + δq)−

R(x,ω,q) and δT (x,ω,q) = T (x,ω,q+δq)−T (x,ω,q) respectively, resulting of a small pertur-

bation δq of the micro-geometry parameters:

δR(x = L,ω,q) = 0, (B7)

δT (x = L,ω,q) = 0, (B8)

either if the sample is rigidly backed or not because the boundary condition (surface impedance)

does not depend on the material properties. From Eqs. (11, 13 and 14), the following equations

are derived:

∂

∂x
R = 2A+R+A−(1+R2), (B9)

∂

∂x
T = (A++A−R)T. (B10)

Perturbing Eqs. (B9, B10) by δq leads to

∂

∂x
δR−2(A++A−R)δR = 2RδA++(1+R2)δA−, (B11)

∂

∂x
δT − (A+A−R)δT = T (δA++δA−R+A−δR), (B12)

wherein

δA± =
iω
2
(Z0δK−1

eq ±Z−1
0 δρeq). (B13)

The total derivative of the equivalent fluid density and bulk modulus are expressed by the addition
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of their partial derivatives

δρeq =
n

∑
m=1

∂ρeq

∂qm
δqm, (B14)

δK−1
eq =

n

∑
m=1

∂K−1
eq

∂qm
δqm. (B15)

If there is no explicit formulation of the partial derivatives, they are then computed by the derivative

definition
∂ f
∂x

= lim
δx→0

f (x+δx)− f (x)
δx

. (B16)

This is the case of the partial derivative with respect to φ . Although it appears in the expression

of ρeq and Keq, the other JCAL parameters also depend in a non-analytically way on φ . On the

contrary, the JCAL dependence on D is fully analytic.

The variation of the cost function perturbated by δq takes the form38

δJ(q) = 2Re∑
ω

uR(0,ω)δR(0,ω)+uT (0,ω)δT (0,ω), (B17)

wherein, setting ∗ as the complex conjugate notation,

uR(0,ω) =W (ω)(R(ω)−Rob j(ω))∗, (B18)

uT (0,ω) =W (ω)(T (ω)−Tob j(ω))∗. (B19)

The following integration is obtained considering the boundary condition Eq. (B7):∫ L

0

∂

dx
(uR(x,ω)δR(x,ω)+uT (x,ω)δT (x,ω))

=−uR(0,ω)δR(0,ω)−uT (0,ω)δT (0,ω). (B20)

The right term of this equation is included in Eq. (B17). The left term’s integrand can be written

from Eqs. (B9, B10):
∂

dx
uRδR =δR

(
∂uR

∂x
+2uR(A++A−R)

)
+uR

(
2RδA++(1+R2)δA−

)
, (B21)

∂

dx
uT δT =δT

(
∂uT

∂x
+uT (A+A−R)

)
+uT T (δA++δA−R)+δR(uT TA−). (B22)

uR(x,ω) and uT (x,ω) are arbitrary function chosen such that the δR and δT dependencies are

eliminated. In order to do this, they must satisfy

∂

∂x

uR

uT

=−

∣∣∣∣∣∣2(A
++A−R) A−T

0 A++A−R

∣∣∣∣∣∣
uR

uT

 . (B23)
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Equations (B21, B22) reduce to

∂

∂x
uRδR = uR

(
2RδA++(1+R2)δA−

)
, (B24)

∂

∂x
uT δT = uT T (δA++δA−R). (B25)

A new expression of the variation of the cost function is then obtained by combining Eqs.

(B17,B20,B24,B25):

δJ(q) =−2Re∑
ω

∫ L

0
uR(2RδA++(1+R2)δA−)

+uT T (δA++δA−R). (B26)

This variation can also be simply expressed as

δJ(q) =
∫ L

0

n

∑
m=1

∂J
∂qm

δqm. (B27)

The identification of Eq. (B26) with Eq. (B27) and replacing the derivatives by their expression,

leads to

∂J
∂qi

=−Re∑
ω

iωuR

(
Z0(1+R)2 ∂K−1

eq

∂qi
− (1−R)2

Z0

∂ρeq

∂qi

)
+ iωTuT

(
Z0(1+R)

∂K−1
eq

∂qi
− (1−R)

Z0

∂ρeq

∂qi

)
.(B28)

Appendix C: JCAL experimental parametric model

The "infill factor" is the manufacturing variable controlling the spacing between two adjacent

rods. The JCAL parameters of eight homogeneous samples, which infill factor is comprised be-

tween 10 and 70 %, are retrieved by means of inverse characterization28. The manufacturing

repeatability is very high which allows to consider a single sample per tested infill factor. Fi-

nally, a numerical parametric JCAL model is obtained by interpolating over the values. It is worth

noticing that the interpolation functions must be continuous and monotonic. Figure 10 presents

the JCAL parameters of the homogeneous samples obtained by inverse characterization and the

considered interpolated parametric functions.
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