α-Halogenoacetamides: versatile and efficient tools for the synthesis of complex aza-heterocycles
Abderrahman El Bouakher, Arnaud Martel, Sébastien Comesse

To cite this version:

HAL Id: hal-02313870
https://univ-lemans.hal.science/hal-02313870
Submitted on 11 Oct 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Abderrahman El Bouakher, Arnaud Martel and Sébastien Comesse

This review provides an overview on the applications of α-halogenoacetamides in domino and cycloaddition reactions. α-Halogenoacetamides are versatile building blocks that can lead to a wide variety of complex aza-heterocycles of biological interest when engaged in domino and/or cycloaddition reactions. The reactivity and the reaction conditions involved for these species (solvent, base, ...) are closely related to the substituent onto the nitrogen atom of the amide: N-alkyl α-halogenoacetamides usually act as formal 1,3-dipoles in domino processes whereas N-alkoxy derivatives often react as real 1,3-dipoles via the formation of aza-oxallyl cation species. This important modulation of the reactivity of these compounds open the way to a large panel of reactions and therefore to a large diversity of aza-heterocycles.

1. Introduction:

α-Halogenoacetamides are classical substrates that have long been employed by organic chemists. Even if, at first glance, they seem to be simple, they have proved over the years to be powerful intermediates for the synthesis of molecules of interest. The presence of the halogen atom in α-position compared to the amide function allows a wide range of potential functionalizations at this position and thus prompted their use as versatile building blocks. Furthermore, the use of α-halogenoacetamides as formal or real 1,3-dipole precursors led to the development of efficient domino or concerted strategies for the synthesis of various polysubstituted N-heterocyclic molecules. Such approaches have recently attracted increasing interest since the development of aza-oxallyl cation chemistry. The variety of structures reachable from these simple and tunable building blocks makes them good substrates for Diversity-Oriented Synthesis (DOS).

The amide function is probably the main group in biologically relevant compounds, and therefore, many efforts have been devoted to their formation. α-Halogenoacetamides A (X = Cl, Br, I) play an important role due to their ability to behave both as a nucleophile (at the nitrogen atom) and as an electrophile (at the carbon bearing the halogen) (Figure 1). One of the most interesting features of α-halogenoacetamides is related to the high electrophilicity of the carbon bearing the halogen. Comparably to α-halogenoketones or α-halogenoesters, but to a slightly lower extent, α-halogenoacetamides are among the most reactive halogenated electrophiles. This enhanced reactivity of a carbon atom bearing a halogen in alpha position of a carbonyl (higher than for benzyl or allyl groups) has been investigated in several studies and various explanations have been proposed. One of the most commonly admitted involves the contribution of the π* orbital of the carbonyl during the approach of the nucleophile. As the LUMO orbital is a combination of the α* C-X with the π* orbital of the carbonyl, during the approach the nucleophile is also stabilized by overlap with the π* (Figure 2). The nucleophilic substitution is also considered to be stabilized by the pseudo-enoate transition state that divides the negative charge of the nucleophile between the carbon and the oxygen.

![Figure 1](image1.png)

Figure 1.

In addition, contrary to the widely studied α-haloesters and α-haloketones, α-haloamides offer the opportunity to behave as a nucleophile in basic media by deprotonation of the amide NH to give amidate B and in some favorable conditions lead to the spontaneous formation of a dipole C (Figure 1).

This ability of α-haloamides to behave as an electrophile, a nucleophile or both makes this type of compound particularly...
interesting in view of the variety of reactions that can be involved. In this non-exhaustive review, only domino and cycloaddition reactions creating at least 2 bonds with the nitrogen atom and the carbon bearing the halogen resulting in a ring closure will be presented. Some applications of these strategies to the synthesis of backbones or molecules of biological interest will also be discussed (Figure 3).

The review will present the reactivity of α-halogenoacetamides 1 in various types of reactions in the following order (in this paper all α-halogenoacetamides will be numbered 1):

- Dimerization reactions
- Reaction with nucleophiles (Malonate derivatives, ...) by addition to the α-halooamide
- Reaction with electrophiles by first addition of the amidate
 - Addition to C=O
 - Addition to C=N
 - Addition to C=S
 - Addition to C=C and domino reactions and related reactions.
- Coupling-Cyclization Sequence

The case of azaoxallyl cations generated from an α-halogenated Weinreb amide type was the object of a recent review but will be considered in the present paper. Indeed, it is interesting to have an overview of the dramatic change in the behavior of N-alkyl vs N-alkoxy α-halogenoacetamides in order to better understand the particular reactivity of the latter such as the lower pKa of the Weinreb amide function compared to alkylamides. More precisely, these species can generate, in specific conditions, azaoxallyl cations allowing the use of [3+2] cycloaddition reactions for the synthesis of a wide variety of aza-heterocycles (Scheme 1).

Scheme 1. Formation of the azaoxallyl cation

N-alkyl 1 and N-alkoxy α-halogenoacetamides 1’ are easily accessible from commercially available 2-halogenoacetyl bromide or 2-halogenoacetic acid derivatives in reaction with a primary amine. Alternatively, they can also be obtained in a few steps starting from substituted acetic acid derivatives (Scheme 2).

2. Dimerization of α-halogenoacetamides 1 and their reaction with α-aminoesters

2.1. Synthesis of Piperazine-2,5-diones through a domino dimerization/cyclization reaction:

Piperazine-2,5-dione scaffolds have been prevalent in the scientific literature due to their significant interest in biology and drug discovery. In recent years, the interest of these skeletons was highlighted in transition metal free reactions, used to promote carbon-carbon coupling between aryl and aryl halides by electron transfer processes.

Dimerization reactions, if not desired, are the main side reaction of α-halogenoacetamides. To limit these reactions, the reaction conditions have to be adjusted or highly reactive partners need to be involved. However, dimerization reactions were initially used successfully for the synthesis of piperazine-2,5-diones. The dimerization was first applied on simple α-chloroacetamides 1 in the early 1980s by Okawara et al. using phase transfer catalysis Duolite A-109 as catalyst in 50% of NaOH/CHCl₃ (Scheme 1). The synthesis of 1,4-disubstituted piperazine-2,5-diones 2 in a two-phase medium (CH₂Cl₂/alkaline solution) in the presence of triethylbenzylammonium chloride (TEBA) as the phase transfer catalyst was reported by O’Reilly and co-workers (Scheme 3).

Compounds 2 were also obtained in good yields by Cho and co-workers starting from α-chloroaacetamides 1 in acetonitrile in presence of NaOH as the base this time. It should also be mentioned that Hazra and co-workers reported piperazine-2,5-dione derivatives 2 as antileishmanial agents and developed another alternative synthesis employing NaH in dry DMSO leading to the desired aza-heterocyclic systems in yields up to 95%.

Scheme 1. Formation of Piperazine-2,5-diones 2 using phase transfer catalysis

The dimerization promoted by NaH in toluene was extended to 2-bromopropanilides 1 on enantiopure and racemic mixtures leading to cis/trans ratios ranging from 8.5/1 to 1/2 due to partial racemization (Scheme 4). However, in a more polar solvent such as THF, the racemization is enhanced leading to cis/trans ratios ranging from 2/1 to 4/1.
2.2. Synthesis of piperazine-2,6-diones via a domino S$_2$2/Cyclization reaction with α-aminoesters

Interestingly, it was also demonstrated that α-bromoacetamides 1 were efficient precursors of piperazine-2,6-diones. In this particular case, they were reacted with α-aminoesters 5 in basic conditions leading to piperazine-2,6-diones 6 in good yields (Scheme 5).[13,34] The first step of the mechanism is the nucleophilic addition of the amino group of 5 onto the carbon bearing the bromine atom of 1 followed by the formation of the imide by addition of the amide function onto the methyl ester.

![Scheme 5. Formation of piperazine-2,6-diones 6 by reaction with α-aminoesters 5](image)

3. Reaction of α-halogenoacetamide with nucleophiles

3.1. Synthesis of β-, γ-lactams and bis-γ-lactams by reaction with malonate derivatives

The synthesis of lactams starting from α-halogenoacetamides employing a domino process has been mostly described with α- or β-dicarbonyl compounds (such as malonate derivatives) as reaction partners. Among these strategies, the electrochemical reaction of diethyl bromomalonate 7 with α-bromoacetamides 1 allowed the formation of various skeletons depending on the reaction conditions as demonstrated by the work of Moracci and co-workers (Scheme 6).[35] The electrogenerated diethyl malonate anion derivatives A and B were used to gain access to β-lactams 8 or spirobis-γ-lactam 9 depending on the substrates 1 employed. In the case of N-aryl α-bromoacetamides 1, the β-lactams 8 were obtained in yields ranging from 29 to 69% via the formation of carbanion A. When the reaction was run starting from N-benzyl α-bromoacetamide 1, the spirobis-γ-lactam 9 was isolated with 70% yield. In the same paper, the authors demonstrated that the products 11 ($R^1 = \text{Bn}$) and 9 could be obtained in 40% and 10% yield, respectively, by reaction between N-benzyl α-bromoacetamide 1 and diethyl malonate 10 in the presence of NaH in DMF.

![Scheme 6. Access to β-lactams 8, γ-lactam 11 and spiro bis-γ-lactam 9](image)

In order to explain both the formation of β-lactams 8 and spirobis-γ-lactam 9, two mechanisms were proposed (Scheme 7). Electrochemical reduction of diethyl bromomalonate 7 led to the formation of carbanion B which can further react with another equivalent of diethyl bromomalonate 7 to furnish the corresponding anion A. Addition onto N-aryl α-bromoacetamides 1 was followed by the nitrogen deprotonation and its addition onto the carbon bearing the bromine atom to furnish the β-lactams 8. As for the spirobis-γ-lactam 9, the authors stipulated the addition of anion B followed by the nitrogen addition onto one of the ester functions leading to the intermediate 11. Deprotonation of 11, followed by the addition of the corresponding anion onto another equivalent of N-benzyl α-bromoacetamide 1 and a second nitrogen cyclization led to 9. An independent synthesis of this spiroproduct 9, albeit in lower 10% yield, was performed with diethyl malonate 10 in the presence of NaH in DMF to validate the passage via the anion B.

![Scheme 7. Electrochemical mechanisms for the synthesis of β-lactams 8 and spiro bis-γ-lactam 9](image)
and co-workers for the formation of such spiro-junctions. In fact, the spirooxindole derivatives 15 were obtained from N-alkyl α-bromoacetamides 1 following two pathways, one in two steps by reaction with dimethyl 2-(2-nitrophenyl)malonate 13 followed by a nitro-reduction/amine-ester cyclization and the second in one step by reaction with ethyl oxindole-carboxylate. Using a similar intermediate, Rammah et al. described the access to spirosuccinimide-γ-butyrolactone 12 via a sequence involving the saponification of the ester and the formation of the γ-butyrolactone by treatment with NBS or NIS to form the halogenated lactone displaying, in the case of the alkyne, an exocyclic double bond.

More recently, gram scale access to succinimide derivative 11 (40 g batches) from α-chloroacetamide 1 was performed by Bhogle and co-workers as a key step for the preparation of an aldose reductase inhibitor, namely AS-3201 (16).

3.3. Synthesis of erythrinan and homoerythrinan from α-iodoacetamides

A beautiful use of α-halogenoacetamides for the synthesis of erythrinan and homoerythrinan alkaloid cores was achieved by Tu and co-workers in 2006 (Scheme 11). One of the key steps in this strategy was the formation of theaza-heterocyclic 5-membered ring system with the wisely selected N-substituted α-iodoacetamides 1. Refluxing ketone 27 in the presence of dimethyl carbonate and an excess of NaH led to the corresponding sodium enolate 28. Addition of N-substituted α-iodoacetamides 1 led to the formation of the bicyclic system 29 in a two-step domino sequence with yields ranging from 84 to 87% depending on the aromatic ring on acetamides 1. It is important to note that the same strategy for the synthesis of 31 (R = Me) was developed at the same time by Padwa and co-workers.

3.4. Synthesis of (-)-minovincine by addition of a silylated enol ether in the presence of fluoride salts

More recently, an attractive modified version of this transformation was reported by Nishida and co-workers for the enantioselective total synthesis of (-)-minovincine 34 (Scheme 12). In their case, the enol ether 32 resulting from a highly enantio- and totally diastereoselective Diels-Alder reaction was used instead of an enolate as described above. In the presence of TBAF, the desired γ-lactam 33 was obtained in 90% yield as a single diastereomer. The latter was converted in several steps into the desired indole.

Scheme 8. Access to spiro-imides by reaction with malonate derivatives

It should be mentioned that other active methylene compounds can be used instead of dialkyl malonates in order to reach other N-heterocyclic systems following the same domino pathway.

When nitro functions are present in the active methylenes, the formation of enamino γ-lactams 19, from the imine intermediate 18, can be observed. An interesting domino reaction on these lines was published by Tverdokhlebov and co-workers with the construction of 2 cycles during the process leading to 22 (Scheme 9).

Scheme 9. Use of various active methylene compounds

3.2. Synthesis of spiro-imides derived from oxindole and isoindoline derivatives

Alous et al. also demonstrated the efficiency of such strategies for access to spiroxindoles employing ethyl N-methylxindole-carboxylate 23 instead of malonate derivatives. In refluxing acetonitrile in the presence of K$_2$CO$_3$, the tricyclic products 24 were isolated in yields ranging from 58 to 84%. Pesquet and Othman later employed the same strategy for the formation of spiroisoindoliones 26 engaging phthalimides 25 (Scheme 10) as domino partner.

Scheme 10. Access to spirooxindole derivatives

3.3. Synthesis of erythrinan and homoerythrinan from α-iodoacetamides

A beautiful use of α-halogenoacetamides for the synthesis of erythrinan and homoerythrinan alkaloid cores was achieved by Tu and co-workers in 2006 (Scheme 11). One of the key steps in this strategy was the formation of the aza-heterocyclic 5-membered ring system with the wisely selected N-substituted α-iodoacetamides 1. Refluxing ketone 27 in the presence of dimethyl carbonate and an excess of NaH led to the corresponding sodium enolate 28. Addition of N-substituted α-iodoacetamides 1 led to the formation of the bicyclic system 29 in a two-step domino sequence with yields ranging from 84 to 87% depending on the aromatic ring on acetamides 1. It is important to note that the same strategy for the synthesis of 31 (R = Me) was developed at the same time by Padwa and co-workers.

Scheme 11. Synthesis of the erythrinan and homoerythrinan cores

3.4. Synthesis of (-)-minovincine by addition of a silylated enol ether in the presence of fluoride salts

More recently, an attractive modified version of this transformation was reported by Nishida and co-workers for the enantioselective total synthesis of (-)-minovincine 34 (Scheme 12). In their case, the enol ether 32 resulting from a highly enantio- and totally diastereoselective Diels-Alder reaction was used instead of an enolate as described above. In the presence of TBAF, the desired γ-lactam 33 was obtained in 90% yield as a single diastereomer. The latter was converted in several steps into the desired indole.
alkaloid, a backbone well-known for its therapeutic properties, (−)-minovincine 34.

3.5. Synthesis of 2-imino-4-thiazolidin-4-ones by reaction with potassium isothiocyanate

Interestingly, potassium thiocyanate (KSCN) reacts readily in the absence of any added base in acetonitrile and at room temperature with chloroacetamides 1 to furnish the corresponding 2-imino-4-thiazolidin-4-ones 35 (Scheme 13).48-61 The good nucleophilicity of the sulfur atom and the high reactivity of the chloroacetamides 1 promote the initial nucleophilic substitution, followed by the addition of the amide function onto the C=S bond generating only KCl as side product.

3.6. Synthesis of oxazolidin-4-ones via a domino O-alkylation/aza-Michael cyclization

An access to oxazolidin-4-ones 37 was reported by Marchetti when employing ambident potassium enolates 36 (Scheme 14).62 In the presence of a promoter, i.e. Ag+ or Ag2O, a domino O-alkylation/aza-Michael cyclization took place (see the proposed mechanism) and oxazolidin-4-ones 37 were isolated in yields ranging from 80 to 89%.

3.7. Synthesis of oxazolidin-4-ones by addition to the C=O bond of an amide, a ketone or an aldehyde

Interestingly, oxazolidin-4-ones can also be obtained by reaction with carbonyls. The first example of the addition of bromoacetamide 1 to a C=O bond was described at the beginning of the 80s by D’Angeli and coll. onto DMF by treatment with sodium hydride or silver (I) oxide to form oxazolidinones 38 (Scheme 15).63,65 The reaction is expected to proceed via the zwitterionic intermediate A. The reaction was later extended by Maran et al. to dimethylacetamide and N-methylpyrrolidinone by electrochemical activation, but gave modest yields.65

Scheme 13. Access to 2-imino-4-thiazolidin-4-ones from potassium isothiocyanate

Scheme 14. Access to oxazolidin-4-ones via a domino O-alkylation/aza-Michael cyclization

Scheme 15. Addition to DMF

Shortly afterwards, the team of D’Angeli described the addition onto DMF. The addition of α-bromoamides to the carbonyl of β-enaminones 39 or 42 was promoted by NaH to form, after hydrolysis of the resulting enamines 40 and 43, ketonyloxazolidin-4-ones 41 and 44, respectively (Scheme 16).67

Scheme 16. Addition to enamines

Oxazolidin-4-ones related to 46 were also obtained via a domino process involving a rearrangement and the subsequent migration of the carbonyl group as published by Martel, Comesse and co-workers. In the presence of water and using the uncommon KNaCO3 as base, the Michael acceptors 45 underwent hydrolysis. Then, the hydrolyzed Michael acceptors A reacted with α-bromoacetamides 1 to give enol ethers B followed by an aza-Michael cyclization leading to the intermediates C. The latter were converted into 46 via an intramolecular retro-Claissen fragmentation. The domino process led exclusively and stereoselectively to the formation of oxazolidin-4-ones 46 (Scheme 17).68

Please do not adjust margins
4. Reaction of α-halogenoacetamide with electrophiles

4.1. Synthesis of oxazolidin-2,4-diones by addition to carbon dioxide or ammonium carbonate

Oxazolidin-2,4-diones \(\text{47} \) can be obtained from α-chloroacetamides or α-bromacetamides \(\text{1} \) via the activation of carbon dioxide by an electrogeneinated superoxide ion. The superoxide ion plays a key role in the deprotonation of the amide (Scheme 18). The amidate \(\text{A} \) formed then adds to \(\text{CO}_2 \), then the carboxylate cyclizes to form the oxazolidin-2,4-diones \(\text{47, 70–73} \).

An alternative access to oxazolidin-2,4-diones \(\text{47} \) was published by Rossi and co-workers by treatment of α-halacetamides \(\text{1} \) with tetraethylammonium hydrogen (TEAHC) in acetonitrile (Scheme 18). The cyclic product \(\text{47} \) was obtained in average to good yields via the postulated intermediate \(\text{B} \). The authors proposed that the first step of the domino process was a condensation reaction followed by an intramolecular \(\text{S}_\text{N}_2 \) reaction with the formation of water and an ammonium salt as side products.

More recently, Saliu and co-workers (Scheme 18) \(^{72} \) described the synthesis of oxazolidin-2,4-diones \(\text{47} \) employing \(\text{CO}_2 \) in an autoclave. The carboxylation of the amides \(\text{1} \) was promoted by DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) via the carbamate salt \(\text{4} \) which undergoes an intramolecular \(\text{S}_\text{N}_2 \) cyclization leading to the desired oxazolidin-2,4-diones \(\text{47} \) in low to high yields.

Rmedi et al. described the addition α-bromoacetamides \(\text{1} \) to isocyanates \(\text{48} \) to form hydrantoins \(\text{49} \) (Scheme 19). \(^{73} \) The high reactivity of isocyanates strongly favors the reaction with α-bromoacetamides \(\text{1} \), leading to the formation of intermediate \(\text{A} \) which at 60 °C evolved spontaneously to form the products \(\text{49} \) in very good yields.

Interestingly, a dramatic change in the regioselectivity of the process was observed when replacing sulfonylisocyanates by arylisocyanates as presented in Scheme 19. \(^{74, 75} \) In fact the latter afforded access to 2-imino-oxazolidin-4-diones \(\text{50} \), instead of hydrantoins \(\text{49} \), in good yields and mild conditions from α-chloroacetamides \(\text{1} \). These reactions were performed in \(\text{CH}_3\text{CN} \) in the presence of \(\text{K}_2\text{CO}_3 \) as base.

4.2. Synthesis of imidazolidin-2,4-diones by addition to isocyanates

An intramolecular addition of compound \(\text{55} \) onto an imine was published by Pearson and coll. (Scheme 21). \(^{76, 77} \) In their paper, they described an elegant synthesis of the imidazolidin-4-one \(\text{56} \) via the imine \(\text{B} \) formed \textit{in situ} from the aldehyde \(\text{A} \). The iminium ion \(\text{C} \), resulting from the quanternization of the imine, was trapped by the nitrogen atom of the amide function allowing the formation of the tetracyclic molecule \(\text{56} \) in a limited number of steps.
4.4. Synthesis of 2-imino-thiazolidin-4-ones by addition onto isothiocyanates

Similarly to potassium thiocyanate (Scheme 13), α-haloacetamides 1 can react efficiently with isothiocyanates to form 2-imino-thiazolidinones 53 but the sequence of the process is different.80–87 Contrary to potassium thiocyanate, in this case the reaction will first involve the addition of the amide onto the isothiocyanate, and then, the sulfur atom substitutes the halogen to form the thiazolidine-4-one 53. It should be noted that a soft base such as a carbonate is mandatory to promote this reaction with good yields (Scheme 22).

4.5. Synthesis of spirothiazolidinones by addition onto thioamides

More surprisingly, α-bromoacetamides 1 can also formally perform addition onto the C=S bond of a thioamide as demonstrated with compound 57 (Scheme 23).88, 89 This particular reactivity is related to the nucleophilicity of the sulfur atom of the thioamide A formed in the presence of the base (NaH) and the lower pKa associated to the thioamide. Indeed, the sulfur of the thioamide can add to the α-bromoamide 1 to form the intermediate B that cyclizes to form the spirothiazolidinone 58.

4.6. Addition to a C=C bond

4.6.1. Formation of pyrrolidinones by a domino aza-Michael/nucleophilic substitution reaction

Comesse and co-workers developed a new domino sequence involving the α-bromoacetamides 1 by reaction with various Michael acceptors 45 (Scheme 24).90 After the deprotonation of the nitrogen atom with NaH, the domino sequence starts with an aza-Michael addition leading to the anionic intermediate A. This step is followed by a carbocyclization furnishing the desired γ-lactam 59 in yields ranging from 49 to 69% and excellent diastereoselectivity when E ≠ E’. This domino aza-Michael/nucleophilic substitution reaction was applied to the concise synthesis of the tricyclic core of (+)-martinelline 61 and was afterward successfully applied to the synthesis of the attractive tricyclic spirooxindole skeletons.91 When Michael acceptors 63 bearing an ethoxy group were engaged in the domino process, N-acyliminium ion precursors C were isolated in high yields (Scheme 24, R4 = OEt).92 In order to prove the interest of such precursors, efficient inter- and intramolecular α-amidoalkylation reactions were performed in the presence of a catalytic amount of Tf2NH (5 mol%).93

4.6.2. Formation of polycyclic lactams

The strategy was then extended to the synthesis of polysubstituted oxazolo-pyrrolidinones 66 (Scheme 25).94–96 For that purpose,
hydroxyl α-halogenoamides 1 and Michael acceptors 45 bearing a leaving group led efficiently, in the presence of NaH or K₂CO₃ as the base, to bicyclic lactams 66. In this domino oxa-Michael/aza-Michael/intramolecular nucleophilic substitution sequence assessed by DFT, three bonds were created and the main difference with the previous work was the formation of the intermediate enol ether A prior to the aza-Michael addition. It is worth noting that in most of the cases when two different electron-withdrawing groups were tested, only one diastereomer was detected by ¹H NMR on the crude mixture.

More recently, Martel, Comesse and co-workers 97 were able to synthesize 1,4-oxazepines 69 starting from the same substrates as above by shifting from a C-C to a C-O bond formation in the last step of the domino process (Schemes 25 and 26, compare the formation of bond number 3). This shift proved to be mostly directed by steric effects together with the use of Cs₂CO₃ as the base. As for the stereoselectivity, only one diastereomer was observed on the crude mixture (Scheme 26).

One of the specific features of these α-bromoamides is, as for α-bromoesters or α-bromoketones, related to their ability to transform the electrophilic center into a nucleophilic center by deprotonation of the carbon bearing the halogen in basic media. This reaction is further favored by the presence of a ketone in β-position as in the beautiful domino Darzens reaction/hemiaminal formation described by Kuramochi and co-workers in their development of the synthesis of natural products (Scheme 27). 96-100 For that purpose, the authors engaged ketoaldehydes 71 with α-bromo-β-ketoacetamides 1 in the presence of Et₃N and were rewarded with the creation of 3 bonds during the domino sequence. Indeed, the Darzens reaction was followed by an intramolecular addition of the nitrogen atom to lead directly to the desired bicyclic product 72. For some substrates they were unable to isolate the too unstable hemiaminal A or the Darzens reaction was not followed by the nitrogen cyclization. Finally, the domino Darzens reaction/hemiaminal formation led to the total synthesis of berkeleyamide D (73) and rubrobramide (74).

Another example of a domino reaction including a Darzens reaction was proposed by Yu and co-workers for the diastereoselective synthesis of epoxide-fused benzoquinolizidine derivatives 76 (Scheme 28). 101 In fact, when α-chloro-β-ketoacetamides 75 possessing an internal Michael acceptor were treated with a base, i.e. CsOH.H₂O, a domino aza-Michael addition/Darzens reaction took place leading to the formation of three bonds, three rings and three fully controlled stereogenic centers. It is important to point out that, in this case, the order in which the bonds are formed is reversed compared to the examples above, i.e. the N-C bond was created prior to the C-C bond since an intramolecular aza-Michael addition, assisted by the base, took place prior to the Darzens reaction leading to the tetracyclic system 76.
5.1. Metal-catalyzed reactions

The versatility of α-haloamides as reagent presenting two different reactive sites is not limited to simple basic media, but can also be extended thanks to a coupling of the amide with an aromatic species, or a coupling involving the carbon bearing the halogen. The first example was reported by Bao and co-workers with the copper catalyzed coupling of an α-iodophenol 77 and various chloro or bromo amides 1. The nucleophilic substitution of the halogen by the phenate is described to occur first and to be followed by the intramolecular Cu(I)-catalyzed coupling with the iodoaryl to give benzoxazin-3-ones 78 (Scheme 29). The second example was reported by Yin and co-workers using palladium catalyzed intramolecular cyclization. The benzoxazin-3-ones 78 were also synthetized by Diz et al. using an efficient heterogeneous nanocatalyst Si-Cu for Ullmann intramolecular coupling reactions (Scheme 29).

Interestingly, another Cu(I)-catalyzed reaction from α-haloacetamides 1 mostly with acrylamides (EWG = amide function) or acrylic esters (EWG = ester function) 79 was developed by Nishikata and co-workers (Scheme 30). The authors managed to fully control the N- vs O-cyclization of the amide function of α-haloacetamides 1 depending on the base, the source of copper (CuBr, Me2S vs CuI), the ligand used and the presence of an ammonium salt, leading selectively to γ-lactams 80 or the corresponding iminolactones 81. Remarkably, it proved possible to totally control the course of the domino process by tuning the reaction conditions and the desired heterocyclic systems 80 or 81 were isolated in good to high yields.

Among the α-haloacetamides presented, the α,α-difluoro α-haloacetamides display a very specific reactivity related to their ability to stabilize the radical formed by homolytic cleavage of the C-X bond. Chen et al. published the synthesis of α,α-difluoroγ-lactam derivatives 84 using a copper/amine catalyst via a tandem radical cyclization pathway from easily available alkynes 82 and N-aryl bromodifluoroacetamide 1 as starting materials. The reaction was initiated by a single electron transfer (SET) from the Cu(I) catalyst to compound 1 to produce radical A. Then the addition reaction of A to alkene 82 gave an alkyl radical intermediate B (Scheme 31).

A similar reaction to prepare difluoroγ-lactams 84 or 85 was described by Lv et al. starting from monosubstituted alkynes 82 or mono or disubstituted alkynes 83, respectively (Scheme 31). The formation of the radical species A from α,α-difluoro α-bromoacetamides 1 was promoted by Cu(I).

Scheme 29. Formation of benzoxazin-3-ones

Scheme 30. Copper-catalyzed intermolecular aminolactonization

Scheme 31. Copper-catalyzed aminodifluoroalkylation of alkynes and alkynes: access to difluoroγ-lactams

Scheme 32. Formation of γ-lactams from α-bromoacryl Pd-catalyzed amides

A straightforward access to optically active γ-lactams 91 bearing up to three fully controlled contiguous stereogenic centers, constructed from α-halogenoamides 1 and chloroalkenes 89, was
The synthesis of difluoro-γ-lactams 84 from α,α-difluoro α-bromoacetamides 1 was reported by Chen and co-workers in 2012 via a radical addition onto alkenes 82 (Scheme 34). In the presence of sodium hydrosulfite, radical species A were generated. Regioselective addition onto alkenes 82 and subsequent trapping of the resulting radical with iodine led to γ-iodo amide C. S2N2 cyclization of the nitrogen atom and deprotonation of the intermediate ammonium salt formed led to the desired γ-lactam 84.

5.4. Metal-catalyzed intramolecular cyclization: access to polycyclic γ-lactams

A Pd-catalyzed intramolecular aminoaalkylation starting from α-haloacetamides 94 bearing an alkene moiety was published recently by Yang and co-workers (Scheme 36). This intramolecular Pd-catalyzed coupling is highly complementary to the previously presented Cu(I)-catalyzed aminoaalkylations (see Schemes 30 and 31) and opens the access to a large variety of polycyclic lactams 95 in a limited number of steps. The two bonds were created by an aminopalladation followed by a reductive elimination regenerating the catalyst. Note that this palladium catalysis did not require the use of an expensive and/or sensitive ligand or external oxidant.
As stipulated in the introduction section of this review, there is a dramatic change in the reactivity of α-halogenoacetamides when shifting from N-alkyl to N-alkoxy derivatives. While the former can be powerful domino partners as highlighted in the previous section, the latter have mainly been used as aza-oxallyl cation precursors. These cations were first reported by Kikugawa and co-workers in the presence of a base in mild conditions thanks to the lower pKa of N-alkoxy compared to N-alkyl amides. The chemistry of aza-oxallyls has been lately a topic of growing interest due to their high ability to promote [3+3] cycloaddition reactions with various types of partners (dipole, C=C, C=O, diene, ...) and is the subject of a recent review. The present review will summarize the main results and discuss the most recent ones published since, and will focus on the differences in reactivity between N-alkyl and N-alkoxy α-halogenoacetamides.

6.1. First, aza-oxallyl cations in [3+4]-cycloadditions

Based on the previously reported generation of aza-oxallyl cations by Kikugawa, Jeffrey’s group was able in 2011 to develop the first aza-[3+4] cycloaddition with cyclic dienes. After screening various solvents, bases and Lewis acid additives, the best reaction conditions were found to be, depending on the N-alkoxy α-halogenoacetamides employed, either trifluoroethanol (TFE) or hexafluoropropanol (HFIP) with triethylamine as a base. Then, various alkoxyamides were reacted with furan (96, Y = O) or cyclopentadiene (97, Y = CH2) via the aza-oxallyl cations A, and cycloadducts 98 were isolated in yields ranging from 52 to 86%. This result involving furan as cycl reactant is remarkable considering the poor reactivity of furans in cycloaddition reactions. It should be mentioned that no reaction occurred when N-benzyl α-halogenoacetamide 1 was employed and this result was assessed by computational studies comparing the influence of the substituent onto the nitrogen atom. No evidence of the formation of an aza-oxallyl cation could be found when the OBn was replaced by a simple Bn on the amide. Finally, it was also shown that, as expected for the formation of cationic species, no reaction occurred when starting from primary N-alkoxy bromoamide 1’ (R2 = R3 = H, Scheme 37).

![Scheme 37. First example of the generation together with some reactivity of aza-oxallyl cationic intermediates A](image)

Shortly afterwards, Jeffrey et al. described an intramolecular version of this cycloaddition reaction. Since these first papers demonstrating the high potential of N-alkoxy bromoamides as aza-oxallyl cation precursors, many applications involving them have been reported. Recently, Zhao et al. have revisited this chemistry for the development of a rapid access to multisubstituted benzodiazepine derivatives using a formal [3+4] cycloaddition reaction between aza-oxallyl cations and anthranil 99 (Scheme 38). These attractive polycyclic systems were obtained under mild conditions usually in high yields via the proposed formation of the zwitterionic intermediate A.

![Scheme 38. [3+4]-cycloadducts from anthranil derivatives](image)

6.2. Aza-oxallyl cations in [3+3]-cycloadditions and recent developments

These aza-oxallyl cations also proved to be good partners in [3+3]-cycloadditions, either concerted or not. Several examples involving aryl or alkyl nitrones were described leading to 103, 105-107 or 104. Interestingly, these formal dipoles are also effective with less reactive nitrones such as isoquinoline N-oxides leading to 102. This reaction with isoquinoline N-oxides proved to be compatible with N-alkyl α-bromoamides. Depending on the substrate, these reactions are either conducted in fluorinated solvents or in acetonitrile, with probably a direct relationship between the solvent used and the mechanism involved. In some cases, the dipole involved in the cycloaddition reaction with the aza-oxallyl cations is formed in situ like the nitrile imine formed from the hydrazonoyl chloride 108 (Scheme 39). Alkenylindoles bearing an electron-withdrawing group can also behave as a formal dipole in these basic conditions with N-alkoxy α-bromoamides to form indole alkaloids with potential antitumor activity.
Since the publication of the review by Xuan and co-workers on aza-oxallyl cations, some new examples have been developed and are listed below.

Recently, Xuan and co-workers reported a [3+3]-cycloaddition reaction with azomethine imines A generated in situ (Scheme 40). Under Ag(I) catalysis, the hydrazide 254 undergoes in acetonitrile a cyclization to form the intermediate azomethine imines. This one-pot process afforded a series of biologically important isoquinoline azomethine imines. One of these examples is listed below.

Scheme 39. Examples of [3+3]-cycloadducts obtained from aza-oxallyl cations

Cy cloaddition with nitrones 117 was recently considered as a formal [3+3] annulation reaction (Scheme 43). The best reactions were conducted in CH₂CN in the presence of Na₂CO₃ and the targeted 1,2,4-oxadiazinan-5-ones 118 were obtained with yields up to 99%. The authors proposed the formation of the zwitterion intermediate A resulting from the nucleophilic attack of the oxygen of the nitrones onto an aza-oxallyl cation generated in situ from N-benzylxoy α-bromoamides 1'. The second step of the domino process was the intramolecular nucleophilic attack of the nitrogen atom of the amide function leading to the final products 118.

Scheme 42. [3+3] formal cycloaddition of aza-oxallyl cations with azides

The fully diastereoselective synthesis of cyclopenta[b]piperazinones 121 was reported by Gandon, Leboeuf and co-workers by a reaction sequence between 2-furylcarbinols, anilines and N-alkoxy α-haloacetamides (Scheme 44). The scope of the process is wide and allows access to polysubstituted cyclopenta[b]piperazinones 121 in good yields. The proposed mechanism, assessed by DFT computations, does not proceed via an aza-oxallyl cation. Indeed, the authors were unable to compute the aza-oxalyll cation previously envisioned. The formation of such zwitterionic species was considered unlikely compared to the corresponding α-lactam A. The reaction was proposed to proceed by reaction between the deprotonated form of the aza-Piancatelli product C and the oxirane-2-imine B resulting from A.

Scheme 43. [3+3] annulation of aza-oxallyl cations with nitrones

A [3+3]-cycloaddition reaction between azides 115 and once again in situ formed aza-oxallyl cations in HFIP was performed by Xu et al. (Scheme 42). In this study, the authors obtained 1,2,3,4-tetrazines 116 in good yields under mild conditions.

Scheme 41. [3+3] annulation of aza-oxallyl cations with nitrides

Scheme 40. Base-mediated [3 + 3] cycloaddition of C,N-cyclic azomethine imines

1,2,4-Oxadiazinan-5-ones 114 were obtained by Xing, Sun and coll. via a [3+3]-cycloaddition of in situ generated nitrile oxides formed in the basic conditions required for the formation of aza-oxallyl cations and their reaction with hydroximoyl chlorides 113. This reaction promoted by Cs₂CO₃ as the base in HFIP at room temperature proceeded in good 65-89 % yields (Scheme 21).

Scheme 21. [3+3] annulation of aza-oxallyl cations with nitrile oxides

6.3. Aza-oxallyl cations in [3+2]-cycloadditions and recent developments

The first examples of [3+2] cycloadditions were given by the teams of Jeffery, \cite{117, 133} Wu \cite{134} and later Liao \cite{135} on indole derivatives close to 123. Recently, Zhang et al. \cite{136} published the total synthesis of (+/-)-minfiensine 126 from the N-protected indole 125 via an efficient [3+2]-cycloaddition between the trichloro acetamide -N=C=O and the indole derivative 124 (Scheme 45). In their paper the authors demonstrated that the protection of indole was crucial to obtain (+/-)-minfiensine 126. While this type of cycloaddition has been extended to alkynes, \cite{137} most of the efforts mainly focused on the cycloaddition with dipolarophiles bearing a heteroatom in the double (C=O, C=N, C=S) or the triple (C≡N) bond, to form 132 \cite{138-142} by reaction with an aldehyde or a ketone, \cite{131} \cite{134-144} by reaction with an isothiocyanate or 129 and 130 \cite{145} by reaction with a nitrile. These reactions are mainly performed in fluorinated solvents such as HFIP.

![Scheme 45. [3+2] formal cycloaddition of aza-oxallyl cations](image)

Scheme 45. [3+2] formal cycloaddition of aza-oxallyl cations

Erden and coworkers \cite{146} also contributed to this field by developing a [3+2]-cycloaddition from N-benzyloxy-2-chloroamides 1’ in the presence of NEt$_3$ or Na$_2$CO$_3$ onto N-arylimines 133 (Scheme 46). The desired imidazolidin-4-ones 135 were isolated in moderate to good yields. The same year, Ji and Sun reported an analog [3+2]-cycloaddition reaction of arylimines generated in situ from hexahydro-1,3,5-triazines. \cite{147}

![Scheme 46. [3+2]-Cycloadditions with imines](image)

Scheme 46. [3+2]-Cycloadditions with imines

As previously mentioned, alkenes and alkynes were used as cycloaddition partners by several authors. Recently, a [3+2]-cycloaddition reaction implicating styrene derivatives 137 was developed by Huang and coworkers. \cite{148} The multi-substituted pyrrolidinones 138 were consequently obtained in moderate to good yields (Scheme 47). Xu and coworkers also demonstrated the high efficiency of such a process when starting from substituted chalcones 139 and the α-bromo N-alkoxyamid 1’ in the presence of Na$_2$CO$_3$ in HFIP at room temperature (Scheme 47). Employing this strategy, polysubstituted γ-lactams 140 were obtained in good yields.

![Scheme 47. [3+2]-Cycloaddition with alkenes and alkynes](image)

Scheme 47. [3+2]-Cycloaddition with alkenes and alkynes

In complement to the previously described reaction with isothiocyanates, \cite{143, 150, 151} a reaction between N-benzyloxy α-bromoamides 1’ and isocyanates 141 has been reported by Wang and coworkers (Scheme 48). \cite{152} This procedure allows the rapid assembly of hydantoins 142 in good to excellent yields from simple and readily available starting materials. The solvent screening led to the use of CH$_3$CN instead of HFIP in which no reaction occurred and to performing the reaction in the presence of Na$_2$CO$_3$ as a base. In these conditions, the hydantoins 142 were isolated in good to excellent yields. The proposed mechanism involved a domino process via the intermediate A resulting from the nucleophilic addition of the nitrogen atom of isocyanates 141 in α compared to the amide.

![Scheme 48. Domino reaction with isocyanates](image)

Scheme 48. Domino reaction with isocyanates

These annulation reactions were extended beyond isothiocyanates by Saha, Das and co-workers to thioketones and thioamides with a large diversity of substituents on the thioketones or the thioamides with good to excellent yields. \cite{153} However, the cycloaddition proved to be poorly diastereoselective (Scheme 49).

This journal is © The Royal Society of Chemistry 20xx

\textit{J. Name.}, \textit{2013}, \textit{00}, 1-3 | \textit{13}
A beautiful formal [3+2]-cy cloaddition reaction was published by Xuan et al.154 The starting materials engaged in the process were cyclopropenones (Y = O) or cyclopropenethiones (Y = S)145 together with in-situ-formed azaoxyallyl cations (Scheme 50). Under mild conditions the spirocyclic oxazole (Y = O) or thia zole (Y = S)146 derivatives were isolated in good yields. The authors proposed the formation of the zwitterionic intermediate A followed by an intramolecular nucleophilic addition of the nitrogen atom.

\[\text{Scheme 50. [3+2] Cycloaddition with cyclopropenones and cyclopropenethiones} \]

An elegant and novel intermolecular approach to access both C3-unsubstituted and C3-substituted oxindoles149 employing an arylene annulation was developed by Prasanthi and co-workers (Scheme 51).155 For that purpose, the arylene derivatives were generated in situ from substituted 2-(trimethylsilyl) aryl triflates 147 and were reacted with α haloamides 1. It is important to note that the reaction conditions were different from the one classically employed in this chemistry, i.e. the use of THF instead of a fluorinated solvent without a base. Moreover, contrary to the other strategies involving azaoxyallyl cations, primary N-alkoxy α-bromoamides 1' (R = R' = H) were efficient substrates but not disubstituted N-alkoxy bromoamides 1' (R' = R ≠ H). Thus, the authors considered that the mechanism probably involved a concerted cycloaddition of arylene 148 with transient α-lactam B instead of the formation of an azaoxyallyl cation. They also proved that no reaction occurred when a N-benzyl amide was engaged, once again demonstrating the dramatic role of the N-alkoxy substituent.

\[\text{Scheme 51. Arylene annulation via the formation of α-lactams B} \]

Recently, another [3+2] cycloaddition reaction between azaoxyallyl cations and 1,2-benzoisoxazoles150 or 3-methyl-1,2-benzoisoxazoles152 has been apprehended (Scheme 52).156, 157 This reaction provides a rapid access to functionalized oxazolone151 in good yields. It was found that the reaction was sensitive to the substituent onto 1,2-benzoisoxazoles. When 3-methyl-1,2- benzoisoxazoles 152 were used, unstable tricyclic imidazolones 153 were obtained only in 13–16% yields.

\[\text{Scheme 52. [3+2] Cycloaddition with 1,2-benzoisoxazoles} \]

A beautiful use of N-alkoxy α-bromoamides 1' in a domino reaction was recently published by Chen and co-workers for the regio- and diastereoselective access to 4-imidazolidinolones 155 (Scheme 53).158 In their paper, the authors clearly demonstrated that N-alkoxy α-bromoamides 1' reacted with sulfamate-derived cyclic imines 154 via a domino Aza-Mannich/S\textsubscript{3}+2 cyclization, since no reaction occurred in HFIP or when a disubstituted N-alkoxy bromoamide (R' = R ≠ H) was used. Moreover, the reaction proceeded smoothly when primary N-alkoxy α-bromoamides (R' = R = H) were engaged and N-benzyl amide 1 led to the desired product albeit in a lower yield. But more importantly, the reaction between the enantioenriched (R)-1' and unsubstituted sulfamate-derived cyclic imine 154 led to product 155 in 95% yield with only a minor loss in ee. All these experiments unambiguously prove that the reaction pathway is not via the formation of an azaoxyallyl cation but via a domino aza-Mannich/S\textsubscript{3}+2 cyclization as depicted in the proposed mechanism (Scheme 53).

\[\text{Scheme 53. N-alkoxy α-bromoamides XX in a domino Aza-Mannich/S\textsubscript{3}+2 cyclization} \]

The cycloadditions with sulfur ylides proved to be very particular, allowing the authors to control the course of the reaction either toward the formation of a 5-membered ring or a 4-membered ring depending on the substituents and the base used (Scheme 54. [3+2]- and [3+1]-cycloadditions with sulfur ylides).159 In fact, the amide formed intermediately can either substitute the sulfonium to form the 4-membered ring 159 or add to the carbonyl and eliminate Me\textsubscript{2}S to form 157. This versatility of the sulfur ylide leads
to the formation of two original cycles with modest to high yields selectively.

A very surprising reactivity of these \(N \)-alkoxy \(\alpha \)-bromoacetamides was reported by Zhang and co-workers.160 They observed a base-mediated \([2+4]\) annulation with \textit{in situ} generated aza-o-quinone methides (aza-oQMs) \textbf{161} from \textbf{160} leading to the formal cycloaddition of the C=O bond of the amide. This one-pot \([2+4]\)-cycloaddition process led to the 1,4-dihydro-2H-benzo[d][1,3]oxazines \textbf{161} in moderate to good yields (Scheme 55).

7. Conclusion

Despite the wide scope of reactions involving \(\alpha \)-halogenoacetamides in domino and/or cycloaddition reactions, the recent developments proceeding by photoredox activation112 or involving a Cu promoted coupling step107-108 open to several new applications. Anyway, these reactions remain at this time limited to \(\alpha \)-difluoroacetamides and the extension to other \(\alpha \)-halogenoacetamides will be one of the challenges to overcome. In addition, the use of \(\alpha \)-bromoacetamides displaying a chiral center at the carbon atom bearing the bromine in their enantiopure form remain underexploited in these reactions. The reactivity of the species generated in basic conditions is closely related to the substituent onto the nitrogen atom. Hence, aza-oxayllyl cations can be generated in soft conditions from \(N \)-alkoxy \(\alpha \)-halogenoacetamides and benefit from the low basicity of the amide and the high nucleophilicity of the nitrogen from the \(\alpha \) effect, allowing several types of cycloadditions. On the contrary, \(N \)-alkyl \(\alpha \)-halogenoacetamides are mostly involved in domino processes usually in the presence of stronger bases. Undoubtedly, there is still an underexploited chemical territory where \(N \)-alkoxy \(\alpha \)-halogenoacetamides can be used as powerful domino partners and \(N \)-alkyl \(\alpha \)-halogenoacetamides in cycloaddition reactions. The opportunity to further modulate the reactivity of the nitrogen of the amidate by the presence of electron withdrawing groups lead to several possible new developments starting from \(\alpha \)-halogenoacetamides.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We thank the “Fédération de Chimie”: FR CNRS 3038 (INC3M), the Région Normandie, the URCOM and IMMM laboratories for their financial support.

Notes and references

Around 1000 articles disclosing the synthesis and/or use of \(\alpha \)-halogenoacetamides are published each year since 2005.

A. Andreani, S. Burnelli, M. Granaiola, A. Leoni, A. Locatelli, R. Morigi, M. Rambaldi, L. Varoli, L. Landi, C. Prata, M. V. Berridge, C.
This journal is © The Royal Society of Chemistry 20xx

J. Name., 2013, 00, 1-3 | 17

Please do not adjust margins

ARTICLE

Please do not adjust margins

Journal Name

147 D. Ji and J. Sun, Organic letters, 2018, 20, 2745.