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We investigate via a combination of experiments and numerical analyses the collision of elastic vector
solitons in a chain of rigid units connected by flexible hinges. Because of the vectorial nature of these
solitons, very unusual behaviors are observed: while, as expected, the solitons emerge unaltered from the
collision if they excite rotations of the same direction, they do not penetrate each other and instead repel
one another if they induce rotations of the opposite direction. Our analysis reveals that such anomalous
collisions are a consequence of the large-amplitude characteristics of the solitons, which locally modify
the properties of the underlying media. Specifically, their large rotations create a significant barrier for
pulses that excite rotations of the opposite direction and this may block their propagation. Our findings
provide new insights into the collision dynamics of elastic solitary waves. Furthermore, the observed
anomalous collisions pave new ways towards the advanced control of large amplitude mechanical
pulses, as they provide opportunities to remotely detect, change, or destruct high-amplitude signals and

impacts.
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Collisions are one of the most fascinating features of
solitary waves and have been investigated in many areas of
science, including optics [1,2], electronics [3], plasmonics
[4], quantum mechanics [5], general relativity [6], and
mechanics [7-11]. Typically, the solitons are found to
emerge from the collision unchanged (except for a phase
shift [3-5] or the formation of small secondary waves

[7,9,10]), as if there had been no interaction at all. This
remarkable behavior led Zabusky and Kruskal [12] to coin
the name “soliton” (after photon, proton, etc.), to empha-
size the particlelike character of these wave pulses [13—15].
While passing through one another without change of
shape, amplitude, or speed is one of the defining properties
of solitons [5], few exceptions have been found for solitary
waves that propagate in systems that are either damped or
not fully integrable. Specifically, the collision between a
kink and its antikink pair has been shown to lead to a
trapped breather in the integrable sine-Gordon system with
damping [16], to a localized bound pair in the nonintegr-
able ¢* model [17] and to different types of kinks in the
nonintegrable double sine-Gordon model [16].

In this study, we focus on a mechanical metamaterial
based on rotating rigid units [18—21] and use a combination
of experiments and numerical analyses to study the
collisions between two supported elastic vector solitons.
Surprisingly, despite the fact that the propagation of a
single soliton is accurately captured by the completely
integrable modified Korteweg—de Vries equation, not all
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solitary waves emerge unaltered from the collisions. If the
propagating solitons induce rotations of an opposite direc-
tion at a given unit in the system, they repel each other
upon collision. We show that this highly unusual behavior
is closely related to the vectorial nature of the supported
solitons, which in turn leads to the formation of amplitude
gaps—ranges in amplitude where elastic soliton propaga-
tion is forbidden. The large rotations induced by a soliton
create a barrier for pulses with a rotational component of
the opposite sign that blocks their propagation. Our study
provides new insights into the collision dynamics of
elastic solitary waves and reveals that in vector solitons
the coupling between the different components can lead to
completely unexplored and new phenomena.

Our mechanical metamaterial consists of a chain of N
pairs of rigid crosses connected by thin and flexible
hinges [see Fig. 1(a)]. It has been recently shown that
the propagation of a single soliton in such a system is
accurately described by a nonlinear Klein-Gordon equation
[19], which can be rewritten in the form of the completely
integrable Korteweg—de Vries equation [22]. The solution
of such an equation indicates that the considered
metamaterial supports the propagation of elastic vector
solitons that induce simultaneous longitudinal displacement
u; and rotation @; at the ith pair of crosses, with all
neighboring units rotating in opposite directions [see
Fig. 1(a)]. Specifically, u; and 6; are defined by [19] (see
Supplemental Material [23])

© 2019 American Physical Society
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FIG. 1. (a) Schematic of the system. (b),(c) Schematics of the
impactors used to excite (b) positive and (c) negative rotations.
(d) Schematic of our first experiment. (e),(f) Rotation of the pairs
of crosses during the propagation of the pulses, as recorded
during our first test in (e) experiments and (f) numerical
simulations. (g) Schematic of our second experiment. (h),(i) Ro-
tation of the pairs of crosses during the propagation of the pulses,
as recorded during our second test in (h) experiments and
(i) numerical simulations.

u; (1) :2(1#% [1 —tanh<mv_va>], (1)

and

0,(1) = Asech(iav;w) 2)

where a denotes the center-to-center distance between
neighboring units and ¢, is the velocity of the supported
linear longitudinal waves in the long wavelength limit.
Moreover, A, ¢, and W denote the amplitude, speed, and
width of the pulses, with speed and width that can be
expressed in terms of amplitude as

6K,

—— v 3
A% + 6Ky 3)

c==cg

and

a \/az(Ks — Ky) = 6Ky/ (4 + 6Ky) @

W= a 6K 0
where « represents the normalized mass, and K and K, are
the normalized shear and bending stiffnesses of the hinges.
At this point it is important to note that the propagation of the
vector solitons defined by Egs. (1) and (2) requires a strong
coupling among their two components u; and 6; [24]. Since
in our system such a strong coupling is activated only for
large enough rotations, vector solitons with

6K,
Al < \/m—ﬂfa (5)

cannot propagate, resulting in the emergence of amplitude
gaps [19]. While Eq. (5) fully defines the amplitude gap for a
chain in which all hinges are aligned, prerotations of the
crosses significantly increase the magnitude of the lower
threshold, as they make the propagation of solitons that
induce energetically unfavorable rotation more difficult [19].
Notably, our analysis will reveal that such a prerotation effect
on the amplitude gap plays a central role in defining the
collision dynamics.

To investigate the collision of solitons in our system, we
test a structure comprising N = 50 pairs of crosses made
with LEGO bricks and connected via polyester plastic
sheets. To initiate elastic vector solitons, we use two
impactors that induce simultaneous rotation and displace-
ment of the crosses at both ends of the sample [see
Figs. 1(b) and 1(c), and the Supplemental Material [23] ].
We control the amplitude of the pulses by varying the
maximum distance traveled by the impactors. As for the
direction of rotation imposed to the first and last pairs of
crosses, we select it by using two different types of
impactors. Specifically, since we define as positive a clock-
wise (counterclockwise) rotation of the top unit in the even
(odd) pairs, we use an impactor that hits the midpoint of the
end pairs to excite positive 6; [see Fig. 1(b)] and one that hits
their external arms to excite negative ; [see Fig. 1(c)—note
that the direction of rotations imposed by the impactors
changes if the chain comprises an odd number of pairs, see
Supplemental Material [23]]. In addition to the experi-
ments, we also simulate the response of a chain with
N = 500 pairs of crosses (to eliminate possible boundary
effects) by numerically integrating the 2N ordinary differ-
ential equations with parameters a = 1.8, K, = 0.02 and
Ky =15x107*[19].

In Figs. 1(e), 1(f), 1(h), and 1(i), we present exper-
imental and numerical results for two sets of input signals
applied to the left and right ends of the chain. First, the
impactors excite solitons with amplitude Ay = A9 = 0.2
and Ayop = Ay-_10 = 0.2 (A; being the amplitude of 6;
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FIG. 2. (a) Cross-correlation between 6o(t < t.) and Oy_;o(t > t.) as a function of Ay for Ayen = 0.2. Triangular markers
correspond to experimental data, while the black line is generated using numerical simulations. (b) Numerically obtained cross-
correlation between 6o (t < #.) and Oy_;o( > t.) as a function of A and Aygp,. (c) Complete picture of the collision dynamic between
the pulses supported by the system. (d),(e) Rotations of the pairs of crosses during the propagation of the pulses as found in numerical
simulations for (d) (Ajef, Asigne) = (—0.3,0.22) and (e) (0.08,0.3).

before the collision). Both our experimental and numeri-
cal results indicate that the two pulses, which induce
rotations with the same direction at any given unit in the
chain [see Fig. 1(d)], penetrate each other without change
of shape, amplitude, or speed [see Figs. 1(e) and 1(f) and
Movie 1 in the Supplemental Material [23]]. As com-
monly observed when two solitons collide [3,4,4-7,9,10],
only a slight time delay may be observed, confirming that
our metamaterial can respond similarly to a fully inte-
grable system such as a KdV system [16,25]. Second, we
apply Ay = —0.2 and Ajjgp = 0.2 to excite two pulses
that induce rotations of an opposite sign at any given unit
[see Fig. 1(g)]. Surprisingly, we find that in this case the
solitons do not penetrate each other and instead reflect
one another [see Figs. 1(h) and 1(i) and Movie 1 in the
Supplemental Material [23] ]. This phenomenon is espe-
cially visible from the absence of rotations of the units in
the center of the system. It is also important to note that,
while in the experiments there is inevitably some dis-
sipation due to both friction and viscous effects, in our
numerical simulation we do not include any damping.
As such, our results indicate that the observed anomalous
collisions are not due to the presence of damping or
boundary effects, and are rather a robust feature of the
system.

To better understand how two colliding solitons interact
in our system, we focus on the left-initiated pulse and
systematically investigate how it is affected by the collision
with the right-initiated one. To quantify such an effect, we
calculate the cross-correlation between 0,(r < t.) and
On_10(t > t.) (t. denoting the time at which the collision
occurs) as a function of Ay, while keeping Ao = 0.2. As
shown in Fig. 2(a), we find that the response of the system
is characterized by two distinct regions. For Apg <
Alft = —0.28 and A > ALt = 0.12 the left-initiated

lower upper
elastic vector solitons propagate through the entire structure

unaffected by the collision with the right-initiated pulses
and the cross-correlation approaches unity. By contrast, for
AR < Al < A, the left-initiated pulse does not
reach the other end of the chain and the cross-correlation
is < 1. Focusing on this region of low cross-correlation,
two recognizably different behaviors are observed. First,
for —0.12 < A < A}fpf{,er the cross-correlation approaches
zero, since the propagation of the left-initiated soliton is
prevented by the amplitude gap of the chain defined by
Eq. (5) (note that for this range of amplitudes no collision
occurs, since the left-initiated soliton dies before reaching
the right-initiated one). Second, for A% < A < —0.12
the cross-correlation approaches —1. For this range of
amplitudes a solitary wave that induces rotations with a
direction opposite from those excited by the left-initiated
soliton is detected at the right end after collision—a clear
signature of an anomalous collision dynamics that results in
the (partial or total) reflection of the right-initiated soliton.

Next, we consider the effect on the collision of both Aj.
and Ay, The heat map shown in Fig. 2(b) confirms that,
while typical collisions that do not alter the left-initiated
soliton (resulting in a cross-correlation that approaches 1)
occur when the two colliding solitons induce rotation of
the same direction (i.e., AjeAign > 0), anomalous colli-
sions that change the left-initiated pulse (leading to a
cross-correlation < 1) may also exist when two colliding
solitons induce rotations of the opposite direction (i.e.,
AeriAright < 0). We then construct a plot analogous to that
shown in Fig. 2(b), but focused on the right-initiated pulses
by considering the cross-correlation between 0y_;o(t < t..)
and 0,,(z > t.) (see Fig. S7). By combining Fig. 2(b) with
Fig. S7, we find that four different scenarios are possible
upon collision [see Fig. 2(c)]: (i) both solitons penetrate, as
typical for collisions between solitons [see yellow area in
Fig. 2(c) and Figs. 1(d) and 1(e)]; (ii) both solitons are
reflected—a clear signature of an anomalous collision (see
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FIG. 3. (a) A N = 500 chain with a frozen soliton placed in the
middle of it. (b),(c) Numerically obtained cross-correlation
between 6,(#) and Oy_;o(t) as a function of A and A, with

frozen solitons of width defined by (b) W, and (c) W}ff.

dark blue area in Figs. 2(c), 1(g), and 1(h); (iii) one soliton
is blocked and the other penetrates—again the signature of
an anomalous collision [see shallow blue area in Figs. 2(c)
and 2(d)]; (iv) one or no soliton travels through the system
due to the existence of the amplitude gap, so that no
collision occurs [see green area in Figs. 2(c) and 2(e)].
Therefore, our numerical investigation describes quantita-
tively all possible two-soliton heads-on collisions and
provides a complete picture of the collision dynamic
between the pulses supported by the system.

The results of Figs. 1 and 2 reveal that our system
supports anomalous collisions that alter the characteristics
of the solitons. Such a surprising phenomenon can be
fully explained via the concept of amplitude gaps. The
large rotations generated by a soliton effectively enlarge
the amplitude gap for pulses that induce rotations of the
opposite sign, stopping their propagation when they come
close enough. To demonstrate this important point, we
freeze solitons of different amplitude A, in the middle of
the chain and numerically investigate their effect on the
propagation of solitary waves initiated at the left end.
Specifically, we consider a chain in which the ith pair
of crosses is rotated according to theoretical solution of
soliton [see Fig. 3(a) and the Supplemental Material [23] ],
excite pulses of different amplitude A, at its left end, and
investigate the interaction between the left-initiated soliton
and the frozen perturbation by looking at the cross-
correlation between 6,4(¢) and Oy_1o(¢). The numerical
results reported in Fig. 3(b) clearly indicate that there is a
well-defined region in the Ao — Ay space resulting in left-
initiated solitons that do not reach the right end of the chain
(note that in this region the cross-correlation is close to zero

everywhere, as there is no propagating right-initiated pulse
that can be reflected). Notably, we also find that the lower
thresholds of the low cross-correlation region obtained
considering a frozen perturbation or a right-initiated pulse
follow similar trends [see Fig. 3(b)]. However, there is a
significant quantitative discrepancy between them that
arises because the left-initiated soliton interacts for a time
At & (Clef + Crigne) ™" with the right-initiated pulse (¢ and
Cright denoting the velocities of the left-initiated and right-
initiated solitary waves before collision, respectively) and
At o ¢y}, with the frozen perturbation. To overcome this
difference, we equate the interaction times by shrinking the
width of the frozen soliton according to

~ Cleft
Wit = —————W,, (6)
Cright + Clett

where ¢ i1, i8 given by Eq. (3) with A = A . Remarkably, by
replacing the width of the frozen solitons W with Wett we
find that the boundaries of the low cross-correlation region
match extremely well the thresholds Agh.. and Al [see
Fig. 3(c)]. As such, our analysis reveals that the anomalous
collisions observed in our system are a consequence of the
soliton large-amplitude characteristics, which modify the
properties of the underlying media. Specifically, the large
rotations induced in the chain by a pulse enlarge the
amplitude gap for solitons that excite rotations of the
opposite direction and this may block their propagation.

While in Figs. 1-3 we focus on the interaction between
pulses initiated at the two ends of the chain, anomalous
collisions can also be triggered when the solitons are
sequentially excited at the same end. To demonstrate this,
we numerically study the collision between two solitons
with amplitude Ay and Aeq, initiated at the left end at
time #; =0 and ¢, = 0.3 s, respectively. We find that if
the two solitons excite rotations of the same sign and the
second one is faster, the second pulse penetrates and
overtakes the first one, and neither of them change their
amplitude, shape, or velocity [see Fig. 4(a)]. By contrast,
if the two solitons induce rotations of the opposite sign, a
single pulse emerges from the collision with the same
direction as the first one, but with a larger amplitude and,
therefore, lower velocity [see Fig. 4(b)].

Having demonstrated that our system can support
anomalous collisions that alter the characteristics of the
interacting solitons, we now explore how these unusual
effects can be exploited to actively manipulate and control
the propagation of pulses. First, we note that anomalous
collisions provide opportunities to remotely induce changes
in the propagation velocity of a soliton, as they can either
reverse [see Figs. 1(h) and 1(i)], increase [see Fig. 2(d)] or
lower [see Fig. 4(b)] the pulses speed (see also Fig. S§A
in the Supplemental Material [23]). Second, we find that
anomalous collisions can be exploited to probe the direc-
tion of the rotations of a pulse by monitoring the “echo” of
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FIG. 4. (a),(b) Rotations of the pairs of crosses as numerically

found when considering two solitons of amplitude Ay ; and
Ajeip initiated at the left end at time #; =0 and #, = 0.3 s.
(A1 Arere2) = (0.4, 0.3) in (a) and (0.4, —0.3) in (b). (c) A
soliton with amplitude Az, = —0.18 is excited from the right
end as a probing soliton to detect the rotation direction of the
main soliton of amplitude A = 0.4. (d) An amplitude Ay =
0.4 soliton is destroyed by six small solitons of amplitude
Agighex = —0.2 (with k =1, ..., 6).

a probing soliton [see Fig. 4(c) and Supplemental Material
[23], Fig. S8]. Third, if the direction of rotations excited
by the soliton is known, we can block its propagation by
sending a sequence of relatively small pulses with an
opposite rotation direction (see Figs. 4(d) and S8).

To summarize, our experiments show that anomalous
interactions can occur for vector elastic solitons supported
by a mechanical metamaterial based on rigid rotating
units. While two solitons that induce rotations of the same
direction penetrate each other when they meet, two solitons
with an opposite rotational component may repel each
other and change both their amplitudes and velocities upon
collision. Remarkably, our numerical analyses can fully
explain the experimental findings and provide a complete
description of these exotic two-soliton interactions. The
geometric changes induced by one soliton significantly
enlarge the effective amplitude gaps for other solitons with
an opposite rotational component and may block their
propagation when they come close enough. We envision
that the reported anomalous collisions between solitons
could be used for remote control of the propagating
nonlinear pulses, as they result in changes of the pulse
velocity that can be engineered to remotely detect, change,
or destruct high-impact signals.
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