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omplex frequen
y for the des
ription ofthermoa
ousti
 engines
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tIn this paper, a formulation is proposed to des
ribe the pro
ess of thermoa
ousti
 ampli�
ation in thermoa
ousti
engines. This formulation is based on the introdu
tion of a 
omplex frequen
y whi
h is 
al
ulated from thetransfer matri
es of the thermoa
ousti
 
ore and its surrounding 
omponents. The real part of this 
omplexfrequen
y represents the frequen
y of self-sustained a
ousti
 os
illations, while its imaginary part 
hara
terizesthe ampli�
ation/attenuation of the wave due to the thermoa
ousti
 pro
ess. This formalism 
an be appliedto any type of thermoa
ousti
 engine in
luding sta
k-based or regenerator-based systems as well as straight,
losed loop or 
oaxial du
t geometries. It 
an be applied to the 
al
ulation of the threshold of thermoa
ousti
instability, but it is also well-suited for the des
ription of the transient regime of wave amplitude growth andsaturation due to non linear pro
esses. All of the above mentioned aspe
ts are des
ribed in this paper.PACS numbers: 43.35.Ud
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tionThermoa
ousti
 engines belong to a type of heat engines in whi
h a
ousti
 work is produ
ed by exploitingthe temperature gradient between a hot sour
e and a 
old sink [1, 2℄. Typi
al arrangements of thermoa
ousti
engines are shown in Fig. 1 . It 
onsists basi
ally of an a
ousti
 resonator partially �lled with a pie
e of an open-
ell porous material, often referred to as a sta
k or a regenerator. An important temperature gradient is imposedalong this sta
k/regenerator, so that above a 
riti
al temperature gradient, a
ousti
 modes of the resonator
an be
ome unstable and the thermoa
ousti
 pro
ess results in the onset of self-sustained, large amplitudea
ousti
 os
illations. Su
h kind of engines have been extensively studied in the past de
ades [3℄, leading to adeeper understanding of their operation and to the building of a few devi
es su
h as thermoa
ousti
ally driventhermoa
ousti
 refrigerators or thermoele
tri
 generators. These engines have interesting features inherent to theabsen
e of moving parts (pistons and 
rankshafts) whi
h 
an be advantageously used for industrial appli
ationsat moderate power densities (typi
ally up to a few kilowatts). It is however worth noting that the designof thermoa
ousti
 engines is a tedious task whi
h 
omprises an important part of un
ertainties, be
ause theoperation of these engines is by nature nonlinear, and be
ause the existing e�
ient prototypes in
lude variouselements like �ow straighteners, tapered tubes, membranes or jet pumps whi
h are di�
ult to model a

urately.Many resear
hers use the freely available software pa
kage 
alled DeltaEC developed at Los Alamos NationalLaboratory [4℄ for the design of thermoa
ousti
 systems. This 
omputer 
ode is a very powerful tool whi
h ismainly based on the linear (and weakly nonlinear) thermoa
ousti
 theory in the frequen
y domain. Besides thelimitations of this 
omputer 
ode for large a
ousti
 amplitudes requiring proper a

ount of nonlinear e�e
ts,another of its 
hara
teristi
s is that it is expressed in the Fourier domain, so that it des
ribes steady state
onditions : the steady-state a
ousti
 pressure amplitude is obtained from a temperature �eld whi
h itselfis 
ontrolled by the a
ousti
 �eld due to a
ousti
ally indu
ed heat transport. The multi-parameter shootingmethod whi
h is employed in this 
omputer 
ode is well suited for the predi
tion of an equilibrium state abovethe threshold of thermoa
ousti
 instability. However, it is not primarily devoted to the determination of the
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Figure 1: Simpli�ed drawings of a standing wave engine (a) and a travelling wave loop engine (b), possibly
oupled with a se
ondary a
ousti
 load.threshold 
ondition itself (i.e. the required external thermal a
tion above whi
h thermoa
ousti
 os
illations beginto grow up with time). Moreover, under some 
ir
umstan
es, the transient pro
ess leading to the steady statesound should be 
onsidered, and the approa
h used in DeltaEC then be
omes unsuitable. This is notably the
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ase when the engine is operated slightly above the threshold of thermoa
ousti
 instability, where 
ompli
atede�e
ts may be observed. For example, the existen
e of a hystereti
 loop [5, 6℄ in the onset and damping of theengine, or the periodi
 swit
h on/o� of thermoa
ousti
 instability [7, 8℄ have been reported for both standing andtravelling wave engines. In su
h situations, the �xed external thermal a
tion on the system does not 
orrespondto a unique steady state solution for the a
ousti
 pressure amplitude.Though useful design tools are nowadays available, an a

urate des
ription of thermoa
ousti
 engines is stillneeded, and an important resear
h e�ort has been devoted to the des
ription of the onset of thermoa
ousti
instability and to its saturation by nonlinear e�e
ts. Various analyti
al [9, 10, 11, 12℄ and numeri
al models[13, 14℄ have been proposed in the literature, whi
h are yet limited to the des
ription of simple thermoa
ousti
devi
es of parti
ular geometry. In this 
ontext, the aim of this paper is to propose a general modelling approa
hwhi
h is mainly based on the transfer matri
es formalism. As in previous analyti
al works [9, 12℄ the modelpresented in this paper takes advantage of the signi�
ant di�eren
e between the instability time s
ale and theperiod of a
ousti
 os
illations, whi
h is exploited here by the introdu
tion of a 
omplex frequen
y, sometimesused for the treatment of transient os
illatory motions (note that the introdu
tion of 
omplex frequen
y hasalready been proposed in a 
onferen
e by J.E. Parker et al. [15℄ to treat thermoa
ousti
 os
illations, andalso in a similar network approa
h by Q. Tu et al. [16℄). Depending on its sign, the imaginary part of this
omplex frequen
y represents an ampli�
ation or an attenuation 
oe�
ient, whi
h is 
al
ulated from the linearthermoa
ousti
 theory applied to the thermoa
ousti
 system under 
onsideration. The analyti
al treatmentpresented here is ne
essarily based on substantial approximations but, as will be dis
ussed in this paper, itis well suited to 
arry out extensive parametri
 studies of both the transient and steady states. Moreover,this model has some interesting similarities with the 
omputer 
ode DeltaEC in the sense that it 
onsists of amultiport network approa
h whi
h is well-suited for the des
ription of 
ompli
ated a
ousti
 networks in
ludingthermoa
ousti
 
ores, du
ts with 
onstant or varying 
ross-se
tions, grids, membranes, T-jun
tions et
 . . . Theworks presented in this paper basi
ally 
onsist of a generalization of previous works [10, 17℄ and its main



5 M. Guedra and G. Peneletoriginality is thus primarily to propose to the reader a rather simple modelling of any kind of thermoa
ousti
engine in order to determine its onset 
onditions or to des
ribe the transient regime leading to steady statesound in the frame of weakly nonlinear theory.In se
tion 2 the multiport network modelling of thermoa
ousti
 engines is presented, whi
h leads to theanalyti
al expression of the 
omplex frequen
y from the transfer matri
es of the thermoa
ousti
 
ore andits surrounding 
omponents. In se
tion 3, this formalism is applied to the determination of the 
onditions
orresponding to the onset of thermoa
ousti
 instability in the 
ases of a standing wave engine and of a 
losed-loop travelling wave engine. Se
tion 4 is devoted to the des
ription of basi
 
on
epts 
on
erning the use ofthis approa
h to study the transient regime leading to steady state sound (or to more 
ompli
ated dynami
behaviors of the thermoa
ousti
 os
illator) in thermoa
ousti
 systems.2 TheoryThermoa
ousti
 engines are generally made up of a du
t network inside whi
h the thermoa
ousti
 
ore isinserted. The term �thermoa
ousti
 
ore� refers here to the heterogeneously heated part of the devi
e in whi
hthe ampli�
ation of a
ousti
 waves operates: it is basi
ally 
omposed of an open 
ell porous material - referredto as the sta
k (δκ ∼ r) or the regenerator (δκ >> r) depending on the value of the average radius r of itspores relative to the thi
kness δκ of the a
ousti
 thermal boundary layer - along whi
h a temperature gradientis imposed using heat ex
hangers. As illustrated in Fig. 1, the great variety of thermoa
ousti
 engines 
anbe s
hemati
ally separated into two di�erent 
lasses. The �rst 
lass of engines (Fig. 1-(a)) refers to some
onventional waveguide arrangement ensuring the resonan
e of a gas 
olumn. Among this 
lass of engines arethe sta
k-based standing wave engines whi
h were extensively studied during the past de
ades, but also the
ryogeni
 devi
es where Ta
onis os
illations may o

ur [1℄. The se
ond 
lass of engines (Fig. 1-(b)) refers tosome waveguide arrangements where a 
losed-loop path exists, allowing the development of travelling a
ousti
waves running along the loop. Among this 
lass of engines are the sta
k-based travelling wave engine �rst studied
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ousti
-Stirling heat engine [19℄ �rst su

essfully designed by Ba
khaus et al.[20℄, the regenerator-based 
o-axial engines [21℄ where the feedba
k loop is formed by lo
ating a small diameterthermoa
ousti
 
ore into a larger diameter waveguide, and also as a matter of interest some kinds of free-pistonStirling engines.Whatever the spe
i�
 geometry of the engine under 
onsideration, all of these devi
es use the fa
t that whena strong temperature gradient is imposed along the sta
k/regenerator, part of the heat supplied is 
onvertedinto a
ousti
 work inside the sta
k/regenerator. This thermoa
ousti
 ampli�
ation pro
ess results in the onsetof self-sustained, large amplitude a
ousti
 waves os
illating at the frequen
y of the most unstable a
ousti
 modeof the 
omplete devi
e. In the following, the onset of this thermoa
ousti
 instability will be des
ribed by theintrodu
tion of a 
omplex frequen
y, the real part of whi
h des
ribes the frequen
y of a
ousti
 os
illations andthe imaginary part of whi
h des
ribes the wave amplitude growth or attenuation. The analyti
al treatmentpresented here 
an be applied to any kind of thermoa
ousti
 engine (and also to free piston Stirling engines),but it is 
onvenient here for 
larity to separate the 
ases where there exists or not a 
losed loop path forthe a
ousti
 waves. For the sake of simpli
ity, the �rst 
lass of engine will be referred to as �standing wave�engine, while the se
ond one will be referred to as �travelling wave� engine. The des
ription of the a
ousti
 �eldwill be operated in the frequen
y domain in the frame of the linear approximation. Assuming that harmoni
plane waves are propagating along the 
enterline of the du
ts, the a
ousti
 pressure p(x, t) and a
ousti
 volumevelo
ity u(x, t) are written as
ζ(x, t) = ℜ

(
ζ̃(x)e−jωt

)
, (1)where ζ may be either p or u, ζ̃ denotes the 
omplex amplitude of ζ, ℜ() denotes the real part of a 
omplexnumber, and x denotes the position along the du
t axis (see Fig 1).As shown in Fig. 1, the apparatus 
onsists of a thermoa
ousti
 
ore 
onne
ted at both sides to straight (or
urved) du
ts. The propagation of a
ousti
 waves through the thermoa
ousti
 
ore is des
ribed as an a
ousti
al



7 M. Guedra and G. Penelettwo-port relating the 
omplex amplitudes of a
ousti
 pressure and volume velo
ity at both sides:



p̃(xr)

ũ(xr)


 =




Tpp Tpu

Tup Tuu


 ×




p̃(xl)

ũ(xl)


 ,

= TTC ×




p̃(xl)

ũ(xl)


 . (2)The transfer matrix of the thermoa
ousti
 
ore, TTC, depends on the geometri
al and thermophysi
al propertiesof its 
omponents. It also depends on the temperature distribution Tm(x) along the sta
k (x ∈ [xl, xh]) and thethermal bu�er tube (x ∈ [xh, xr]), and on the angular frequen
y ω. If the imposed temperature distributionis known, the transfer matrix TTC 
an be obtained theoreti
ally [1, 2, 17℄, but it 
an also be obtained fromexperiments under various heating 
onditions [22℄.2.1 Derivation of the 
hara
teristi
 equation2.1.1 Standing wave enginesThe 
ase of a standing wave engine is �rst 
onsidered here. If the matrixTTC is known, the theoreti
al modellingof the 
omplete devi
e requires knowledge of the a
ousti
 propagation through the 
omponents surrounding thethermoa
ousti
 
ore. This 
an be realized by deriving the expressions of the re�e
ted impedan
es Zl,r =

p̃(xl,r)/ũ(xl,r) at both sides of the thermoa
ousti
 
ore. For instan
e, if a standing-wave devi
e as the onedepi
ted in Fig. 1(a) is 
onsidered, writing the lossy propagation of harmoni
 plane waves at angular frequen
y
ω in the du
ts of respe
tive lengths xl and L− xr leads to the expressions of the re�e
ted impedan
es

Zl =
p̃(xl)

ũ(xl)
=

Z0 + jZc tan(kxl)

1 + jZ0Z
−1
c tan(kxl)

, (3)
Zr =

p̃(xr)

ũ(xr)
=

ZL − jZc tan(k(L − xr))

1− jZLZ
−1
c tan(k(L− xr))

, (4)where
k =

ω

c0

√
1 + (γ − 1)fκ

1− fν
(5)
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Zc =

ρ0c0
S

1√
(1 − fν)(1 + (γ − 1)fκ)

(6)are the 
omplex wave number and the 
hara
teristi
 impedan
e of the du
t, respe
tively. In Eqs. (5) and (6),
ρ0 is the �uid density at room temperature, c0 is the adiabati
 sound speed, γ is the spe
i�
 heat ratio of the�uid, S is the du
t 
ross-se
tion, and the fun
tions fκ and fν 
hara
terize the thermal and vis
ous 
ouplingbetween the os
illating �uid and the du
t walls [2, 23℄. In Eqs. (3) and (4), Z0 and ZL stand for the a
ousti
impedan
es at positions x = 0 and x = L, respe
tively. They 
an be, for instan
e, the radiation impedan
eof an open pipe [24℄, the in�nite impedan
e of a rigid wall, or the a
ousti
 impedan
e of an ele
trodynami
alternator, depending on the 
on�guration of the standing-wave engine. Finally, 
ombining Eqs. (3) and (4)with Eq. (2) and solving the asso
iated system of two equations leads to the equation

ZlTpp +Tpu − ZlZrTup − ZrTuu = 0. (7)Eq. (7) is the 
hara
teristi
 equation whi
h a

ounts for both the pro
esses operating through the thermoa
ous-ti
 
ore and the dissipative/rea
tive pro
esses operating in its surrounding 
omponents. This equation must besatis�ed to des
ribe the 
omplete devi
e properly.2.1.2 Travelling wave enginesIf the 
ase of a travelling wave engine is now 
onsidered, and if the matrix TTC is known, it is also possibleto derive a 
hara
teristi
 equation similar to Eq. (7). This implies to des
ribe a
ousti
 propagation at bothsides of the thermoa
ousti
 
ore. The basi
 idea is to make one loop in the devi
e - ea
h of the individual
omponents being 
hara
terized by its transfer matrix - so that after one loop, the 
hara
teristi
 equationwill ensure that one arrives at the same starting point. More pre
isely, there exists on the �rst hand theequation 
hara
terizing the propagation through the thermoa
ousti
 
ore, Eq. (2), and on the other hand, itis possible to obtain an additional relation between the a
ousti
 pressure and a
ousti
 volume velo
ity at bothsides of the thermoa
ousti
 
ore by means of the total transfer matrix Tsur of the 
omponents surrounding the
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ousti
 
ore:



p̃(xl)

ũ(xl)


 = Tsur ×




p̃(xr)

ũ(xr)


 . (8)For instan
e, if the parti
ular geometry of Fig. 1-(b) is 
onsidered, and if the e�e
ts of the loop 
urvature arenegle
ted, the matrix Tsur 
an be written as

Tsur = Tl ×Tload ×Tr, (9)where the matri
es
Tl,r =




cos(kdl,r) jZc sin(kdl,r)

jZ−1
c sin(kdl,r) cos(kdl,r)


 (10)
hara
terize lossy propagation through the du
ts of respe
tive lengths dl = xl and dr = L − xr (L is theunwrapped length of the 
losed-loop), and where the matrix

Tload =




1 0

−Yload 1


 (11)a

ounts for the e�e
t of the se
ondary a
ousti
 load, by means of its re�e
ted a
ousti
 admittan
e Yload(this a
ousti
 load 
an be a se
ondary a
ousti
 resonator [20℄, an ele
trodynami
 alternator [25℄ or any other
omponent 
hara
terized by its re�e
ted admittan
e Yload).Finally, 
ombining Eq. (8) with Eq. (2) leads to the following 
hara
teristi
 equation:

det (TTC ×Tsur − I2) = 0, (12)where I2 stands for the identity matrix 2× 2, and det() denotes the determinant of a matrix.2.2 Determination of the 
omplex frequen
yThe proper des
ription of the thermoa
ousti
 devi
e requires to satisfy the 
orresponding 
hara
teristi
 equation
f (ω, Tm) = 0 (13)
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tion f 
orresponds to the left-hand-side of Eq. (7) or Eq. (12), depending on the system under
onsideration. It is important to point out that all of the above equations are derived in the frequen
y domain,and due to this, it is impli
itly assumed from Eq. (1) that the thermoa
ousti
 system operates on steadystate : this means that the angular frequen
y ω is purely real. In fa
t, the only 
ondition for whi
h Eq. (13)
an be satis�ed is that the temperature distribution Tm(x) is �xed in su
h a way that there exists a value ofthe angular frequen
y ω whi
h 
an
els the fun
tion f . Under su
h a 
ondition the a
ousti
 waves are neitherampli�ed nor attenuated, and sin
e nonlinear e�e
ts saturating the wave amplitude growth are not 
onsideredhere, the solutions ω and Tm 
orrespond to the threshold of thermoa
ousti
 instability. However, as it will beproposed in the following, one may des
ribe from Eq. (13) the wave amplitude growth o

uring after the onsetof thermoa
ousti
 instability under the quasi-steady state assumption. To do this, let the angular frequen
y beallowed to have an imaginary part ǫg:
ω = Ω + jǫg, (14)so that the a
ousti
 pressure

p(x, t) = ℜ(p̃(x)e−jωt) = eǫgtℜ(p̃(x)e−jΩt). (15)is assumed to os
illate at frequen
y Ω = ℜ (ω), while the attenuation/growth of the sound wave is 
hara
terizedby the thermoa
ousti
 ampli�
ation 
oe�
ient ǫg. However, ǫg is assumed to be small 
ompared to the realpart Ω of angular frequen
y, whi
h means that the amplitude of the wave varies slowly at the time s
ale of fewa
ousti
 periods, diminishing or growing depending on the sign of ǫg, in as mu
h as the temperature distribution
Tm(x) stays 
onstant at the s
ale of a few a
ousti
 periods.Under this quasi-steady state assumption, ǫg << Ω, and for a 
onstant temperature distribution Tm (at thetime-s
ale of a few a
ousti
 periods) it is possible to solve Eq. (13) using 
onventional numeri
al methods, andto �nd a 
ouple (Ω, ǫg) whi
h 
hara
terizes both the frequen
y of a
ousti
 os
illations and the wave amplitudegrowth/attenuation. The advantages of this formulation are that it is well-suited for the predi
tion of the onsetof thermoa
ousti
 instability (as will be shown in the next se
tion) but also more generally, as will be dis
ussed
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tion 4, for the predi
tion of the engine's e�
ien
y, provided that the nonlinear e�e
ts operating after theonset are properly des
ribed.3 Determination of the threshold of thermoa
ousti
 instabilityThe theoreti
al modelling presented in se
tion 2 
an be used at �rst to determine the marginal stability 
on-ditions of thermoa
ousti
 devi
es, i.e. to �nd the purely real angular frequen
y ω = Ω and the temperaturedistribution Tm for whi
h Eq. (13) is satis�ed. However, before illustrating this with two parti
ular examples,two remarks need to be formulated.Firstly, the model of se
tion 2 is a
tually in
omplete sin
e the heat transport within the thermoa
ousti
 
oreneeds to be des
ribed. Though it is well-established that thermoa
ousti
 ampli�
ation depends signi�
antlyon the details of the temperature distribution, we will assume here for simpli
ity that a linear temperaturedistribution is imposed along the thermoa
ousti
 
ore. In the absen
e of an appropriate des
ription of heattransfer through the thermoa
ousti
 
ore, the e�e
t of heating will thus be represented by the temperature ratio
Th/Tc, where Th refers to the hot temperature at position xh and Tc = 300K is the room temperature. In thispaper, the transfer matrix TTC (ω, Th/Tc) of the thermoa
ousti
 
ore is obtained from the transformation ofthe well-known di�erential wave equation of thermoa
ousti
s [1, 2℄ into an equivalent Volterra integral equationof the se
ond kind (see refs. [10, 17℄ for more details).Se
ondly, in most of thermoa
ousti
 devi
es the self-sustained os
illations are generated at a frequen
y whi
h
orresponds to the lower order a
ousti
 mode of the system, but sin
e some of the 
omponents of the devi
e
onsist of a du
t of �nite length, Eq. (13) has a
tually an in�nite number of solutions under the plane waveassumption (under some 
ir
umstan
es, higher order a
ousti
 modes may even be
ome more unstable than the�rst one, e.g. in refs [18, 26℄). Sin
e 
onventional numeri
al methods for the solving of Eq. (13) should 
onvergeto a single solution, it is required to de�ne an appropriate initial 
ondition in the numeri
al s
heme in orderthat the algorithm 
onverges to the desired solution.
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ti
e, the temperature ratio Th/Tc is �xed, a
ting as a parameter, and the 
hara
teristi
 equation(13) is solved using an iterative Newton-Raphson method, whi
h is suitable for �nding the roots of a 
omplexfun
tion of a 
omplex variable [27℄. The solution of (13) is found using the following re
urren
e relation :
ωk+1 = ωk −

f(ωk)

f ′(ωk)
, (16)where the �rst derivative f ′(ωk) is 
al
ulated using a simple �rst order �nite di�eren
e

f ′(ωk) =

[
df

dω

]

ω=ωk

=
f(ωk +∆ωk)− f(ωk)

∆ωk

. (17)For our 
al
ulations, the step of �nite di�eren
e is �xed to ∆ωk = 1.10−3ωk. In order to avoid the divergen
e ofthe method, the initial value ω0 is �xed to the angular frequen
y of a resonant mode of the 
omplete devi
e. Inthe 
ase of resonant modes resulting from a 
ompli
ated 
oupling between di�erent elements (see for instan
ethe loop engine presented in Se
t. 3.2), this initial angular frequen
y is determined graphi
ally by plotting themodulus |f (Ω)| and by pointing at a lo
al minimum of the fun
tion. The initial value for ǫg is �xed to ǫg = 0.The iterative 
omputation is stopped when a su�
ient a

ura
y e is obtained on the solution, i.e. when
|ωk+1 − ωk| = |

f(ωk)

f ′(ωk)
| ≤

e

10
, (18)with e = 10−8 in our 
ase. With this 
omputation pro
ess, it is then possible to 
al
ulate ω = Ω + jǫg asa fun
tion of the temperature Th. The threshold of thermoa
ousti
 instability then 
orresponds to the hottemperature Th for whi
h ǫg = 0 : it is determined by means of a zero-�nding method a
ting on the fun
tion

ǫg(Th).3.1 Standing wave engineAs a basi
 illustration of the appli
ability of the model presented in Se
t. 2, the 
ase of a standing-wave engine
losed at both ends is studied. A s
hemati
 drawing of this engine is shown in Fig. 1(a) : two straight 
ylindri
alwaveguides of respe
tive lengths dl = xl and dr = L− xr are 
onne
ted to the thermoa
ousti
 
ore. Assumingthat the thermoa
ousti
 engine is 
losed at both ends, i.e. Z0 = ZL = ∞, the expressions of the re�e
ted
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es
Zl = −jZc cot(kdl), (19)
Zr = jZc cot(kdr), (20)are introdu
ed into Eq. (7) to 
ompute the angular frequen
y of a
ousti
 os
illations Ω and the thermoa
ousti
ampli�
ation 
oe�
ient ǫg in fun
tions of the hot temperature Th. In this example, the total length of theengine is �xed to L = 1 m, while the lengths of the sta
k and the thermal bu�er tube are �xed to ls = lw = 5
m. Air at atmospheri
 pressure is used as a working �uid, and the sta
k is modelized as an assembly of 0.5mm-spa
ed parallel plates (50 µm in thi
kness).Figure 2 presents the angular frequen
y Ω and the 
orresponding ampli�
ation 
oe�
ient ǫg as fun
tions ofthe temperature ratio Tn = Th

Tc
for three di�erent lo
ations of the sta
k in the resonator : xh = L

4
(. . .), xh = L

2(−−) and xh = 3L
4
(�). In Fig. 2, we fo
us only on the �rst eigen mode of the half-wavelength resonator and Ωremains 
lose to the angular frequen
y Ωr = πc0

L
. For the two positions xh = L

4
and xh = L

2
, when Tn > 1, theampli�
ation 
oe�
ient ǫg is negative and is 
ontinuously de
reasing, meaning that the sta
k has a dampinge�e
t for these positions. By 
ontrast, for xh = 3L

4
, the onset 
ondition ǫg = 0 is found for a temperature ratio

T0 ≃ 1.5. It 
an also be noti
ed that ǫg < 0 for Tn < T0 (damping) and ǫg > 0 for Tn > T0 (ampli�
ation).These 
on
lusions are well-known for this 
on�guration of engine [2℄, in whi
h the thermoa
ousti
 ampli�
ationonly operates when the temperature gradient has the same sign as the a
ousti
 pressure gradient.It is worth noting that the angular frequen
y Ω is sear
hed 
lose to a resonant frequen
y of the devi
e. Itis thus possible to 
al
ulate Ω and ǫg for di�erent modes. Figure 3 shows the results for Ω and ǫg as fun
tionsof the position xh of the sta
k in the resonator, for the three �rst resonant modes of the half-wavelength tube.The temperature is �xed to Tn = 4, whi
h is potentially su�
ient for the onset of any of the three modes. Itappears that ǫg 
an be positive for some values of xh, depending on the mode under 
onsideration, meaning thatthere exists parti
ular positions for the sta
k, favourable to the onset of one or several modes. The 
omparisonbetween Fig. 3 and the spatial distribution of the a
ousti
 pressure �elds in a half-wavelength resonator is quite
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t and 
on�rms that these favourable positions are those for whi
h the temperature gradient has the samesign as the a
ousti
 pressure gradient.If the sta
k is near enough to the rigid wall on the right, then the three �rst modes 
an potentially be
omeunstable. Figure 4 shows the angular frequen
y Ω and the ampli�
ation 
oe�
ient ǫg as fun
tions of thetemperature ratio Tn for xh

L
= 0.9 and for the three �rst modes. The higher the mode is, the higher the onsetthreshold temperature T0 is. It is also interesting to observe that if Tn was su�
iently large and led to theonset of the three modes, the frequen
ies of the three instabilities would be in
ommensurate, whi
h 
ould leadto 
omplex quasiperiodi
 and 
haoti
 behaviours of the system [28℄.3.2 Travelling wave engineIn this se
tion, the model is applied to a travelling wave loop engine, as s
hemati
ally drawn in Fig. 1-(b).A double ele
trodynami
 alternator is a
ting as the se
ondary a
ousti
 load. Table 1 lists all the parametersintrodu
ed in the model.In the previous se
tion, it has been demonstrated that the 
hoi
e of the frequen
y in the vi
inity of whi
h theonset frequen
y is 
omputed is important. As it is illustrated in Fig. 5, when the resonant modes result froma 
ompli
ated 
oupling between di�erent elements, this parti
ular frequen
y 
an be determined graphi
ally byplotting the modulus |f (Ω)| and by pointing at a lo
al minimum of the fun
tion. It is then possible to studythe onset 
onditions of the thermoa
ousti
 instability 
lose to the �rst resonan
e of the loop, but also for a lowerfrequen
y, near the me
hani
al resonan
e of the alternator.In Fig. 6, the ampli�
ation 
oe�
ient ǫg is plotted as a fun
tion of the temperature ratio Tn for these twodi�erent modes. When the loop engine is not 
oupled with a se
ondary a
ousti
 load (see dotted lines in Fig.6), the onset of the thermoa
ousti
 instability is found for a temperature ratio T0 ≃ 2.4 and the 
orrespondinga
ousti
 wavelength is 
lose to the unwrapped length of the loop. Introdu
ing the alternator as a se
ondarya
ousti
 load does not impa
t signi�
antly the onset 
onditions (see dashed lines in Fig. 6) : a small in
rease
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LoopTotal length L 1mInner radius Rw 1cmLo
ation of the hot ex
hanger xh 0.9mLength of the regenerator ls 4cmLength of the thermal bu�er tube lw 8cmRegeneratorSemi-width Rs 40µmPorosity Φ 0.75Fluid (Helium)Room temperature Tc 300KStati
 pressure P0 3MPaEle
trodynami
 AlternatorsRadius of the piston Ralt 2cmMoving mass Mm 0.2kgMe
hani
al losses Rm 2N.s.m−1Sti�ness of the suspensions Km 5.104N.m−1Bl produ
t 20N.A−1Coil ele
tri
al resistan
e Re 6ΩCoil indu
tan
e Le 50mHBa
k Cavity (
ylinder)Inner radius Rcav 4cmLength lcav 6cmTable 1: General 
hara
teristi
s of the travelling wave engine 
omputed with the model.



16 M. Guedra and G. Peneletof the onset temperature is observed, due to additionnal losses in the alternator. However, it appears that theonset temperature for the 
oupled mode (
ontinuous lines in Fig. 6) is lower than the one 
orresponding to the�rst mode of the loop. This behaviour is usually veri�ed in pra
ti
e, as this type of engine has generally anoperating point 
lose to the resonan
e of the alternator [25℄.3.3 Comparison with experimental resultsIn 1998, Yazaki et al. studied a 
losed-loop thermoa
ousti
 devi
e and measured the stability 
urves as fun
tionsof the ratio (r/δκ)
2, together with the a
ousti
 work �ow using LDV [18℄. They notably observed that thefrequen
y of the sound wave ampli�ed by thermoa
ousti
 e�e
t was, surprisingly, 
lose to the one of the se
ondmode of the loop (λ = L/2) but not the �rst mode (λ = L). In addition, they also investigated the samethermoa
ousti
 devi
e a
ting as a �standing-wave� engine by blo
king the loop with a rigid partition : theyobserved the threshold of the fourth standing-wave mode (for whi
h λ = L/2).In order to evaluate the 
onsisten
y of our model, the thermoa
ousti
 engine built by Yazaki et al. in 1998 hasbeen 
onsidered and the stability 
urves have been 
al
ulated by varying the stati
 pressure P0 inside the engine.The onset temperature ratio T0 is presented in Fig. 7 as a fun
tion of the square of the ratio r/δκ. The resultsobtained by Yazaki et al. [18℄ for both 
on�gurations (◦ : annular devi
e, • : straight devi
e) are 
omparedwith the theoreti
al ones (straight lines), when the os
illating frequen
y is sear
hed 
lose to the frequen
y ofthe mode λ = L/2. This frequen
y 
orresponds to the 2nd mode of the annular devi
e (
alled �TW� in Fig. 7)and to the 4th mode of the straight devi
e (
alled �SW� in Fig. 7). The model reprodu
es quite well the leftbran
hes of the stability 
urves, and it predi
ts an optimal ratio r/δκ 
lose to the experimental one. For larger

r/δκ, the onset temperature ratio is less important when 
omputed with the model. The di�eren
es betweenthe model and the measurements realized by Yazaki et al. may be explained with the following statements.Firstly, the temperature distributions are supposed to be linear along the sta
k and the thermal bu�er tube.Se
ondly, some parameters in our model, su
h as those of the heat ex
hangers, the length of the thermal bu�er



17 M. Guedra and G. Penelettube or the length of the glass pipe used for LDV, were �xed arbitrarily be
ause they were unknown (all theparameters used for the design are reported in Table 2).The model may also be used to investigate the typi
al mode sele
tion observed by Yazaki et al. In hisexperiments [18℄, Yazaki repla
ed one part of the loop with a glass pipe of smaller inner radius used for velo
itymeasurements by LDV. The resulting 
ross-se
tional area 
onstri
tion is not large (see Table 2), but we statedthe fa
t that this 
onstri
tion would be responsible for the mode sele
tion, by �killing� the �rst mode of theloop. Indeed, when no 
onstri
tion is introdu
ed in the model, the �rst mode (λ = L, dashed line in Fig. 7)naturally be
omes unstable for lower temperature ratios than the se
ond mode (dotted line). But when the
ross-se
tionnal area 
onstri
tion is added, the �rst mode of the loop may theoreti
ally be
ome unstable formu
h larger, physi
ally in
onsistent, temperature ratios (e.g. T0 ≃ 20 for (r/δκ)2 ≃ 2.6), and one 
an reasonablysay that the onset is impossible. To 
on
lude, the thermoa
ousti
 engine built by Yazaki is not favourable tothe onset of the �rst mode of the loop, due to this 
ross-se
tionnal area 
onstri
tion.4 About the appli
ability of the model for transient regimesAs shown in Se
t. 3, the model presented in Se
t. 2 
an be used for the determination of the onset 
onditions ofthe thermoa
ousti
 instability, but another advantage of this model is that it 
an also be used for the theoreti
alstudy of the transient regime leading to steady-state sound.If the a

urate a

ount of various nonlinear e�e
ts and the proper des
ription of heat transfer through thethermoa
ousti
 
ore are dis
arded in the 
ontext of this study, it is a
tually quite dire
t to propose the basi
formulation whi
h is ne
essary to 
ompute the transient pro
ess of wave amplitude growth and saturation. Onthe �rst hand, let's assume that it is possible to des
ribe heat transfer through the thermoa
ousti
 
ore bymeans of the following di�erential equation:
∂tT (x, t) = g (T (x, t), . . . ) , (21)where ∂t stands for partial time derivative, and where T (x, t) refers to the time-dependent, 
ross-se
tional
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Yazaki et al. Model[18℄Total length 2.58m 2.58mInner radius R1 20.1mm 20.1mmLength ofthe glass pipe unknown 0.94mInner radius ofthe glass pipe R2 18.5mm 18.5mmLo
ation of the
enter of the sta
k 0.5m 0.5mLength of the sta
k 4cm 4cmLength of the thermalbu�er tube unknown 20cmLength of the ambientheat ex
hanger unknown 2cmLength of the hotheat ex
hanger unknown 2cmSemi-width ofone sta
k pore 0.44mm 0.44mmPorosity of the sta
k 0.72 0.72Semi-width of oneex
hanger pore unknown 2× 0.4mmPorosity of ex
hangers unknown 0.88Room temperature Tc unknown 293KTable 2: Chara
teristi
s of the thermoa
ousti
 engine designed by Yazaki et al. [18℄
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ousti
 
ore. In this equation the fun
tion g is supposed toa

ount for the heat transfer pro
esses (di�usion, 
onve
tion, radiation) 
ontrolling the temperature distribution,while the dots in the argument of the fun
tion g refer to the geometri
al and thermophysi
al parametersof the devi
e under 
onsideration. On the other hand, the thermoa
ousti
 ampli�
ation operating in thethermoa
ousti
 
ore is des
ribed with the ordinary di�erential equation:
dtprms(x0, t) = ǫg (T (x, t)) prms(x0, t), (22)where dt denotes time derivative, where prms(x0, t) =

√
< p2(x0, t) > is the root mean square amplitude ofa
ousti
 pressure os
illations at some position x0 along the devi
e (< · · · > denotes time averaging over ana
ousti
 period), and where ǫg is the imaginary part of the 
omplex frequen
y introdu
ed in Se
t. 2. Notethat this equation is dire
tly derived from Eq. (1) be
ause prms(x0, t + ∆t) = eǫg∆tprms(x0, t), and be
auseit is assumed that ǫg << Ω and that during the time s
ale ∆t of a few a
ousti
 periods, the variations of thetemperature distribution are negligible, so that ǫg stays 
onstant.In order to 
ompute the initial start-up of thermoa
ousti
 os
illations up to the �nal stabilization of a
ousti
pressure amplitude, one must solve the set of 
oupled equations (21) and (22) with appropriate boundary andinitial 
onditions, provided that the nonlinear e�e
ts saturating the wave amplitude growth are in
luded inthese equations. For instan
e, the e�e
t of thermoa
ousti
 heat pumping by the a
ousti
 wave, whi
h tends toredu
e the temperature gradient externally imposed along the sta
k, 
an be in
luded in Eq. (21) in the formof an a
ousti
ally (proportional to p2rms) enhan
ed thermal 
ondu
tivity [12, 29℄ of the sta
k . More generally,as in the 
ase of the DeltaEC 
omputer 
ode, it is possible to a

ount (in a ne
essary simpli�ed way) for someof the nonlinear e�e
ts involved in the saturation pro
ess, su
h as minor losses at the edges of the sta
k [30℄,higher harmoni
s generation [9, 10, 12℄, or heat 
onve
tion due to a
ousti
 streaming [31, 32, 33℄.As mentioned above, no further derivations are presented in this paper 
on
erning the modeling of unsteadypro
esses in thermoa
ousti
 engines. This would indeed require to de�ne the pre
ise geometry of the devi
eunder 
onsideration and the thermophysi
al properties of its 
omponents, to quantify properly ea
h of the
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esses, and also to perform 
omparisons with experimental data. We will defer su
h studiesto a future publi
ation. Our main goal here is to point out the advantages of the formulation proposed inthis paper, whi
h 
an be used to study unsteady pro
esses o

uring in thermoa
ousti
 systems of 
ompli
atedgeometries. The transient regime whi
h pre
edes the stabilization of a
ousti
 pressure amplitude 
an exhibit
ompli
ated behaviours [7, 8, 34, 35℄, and it provides mu
h more information than the only value of a steadystate a
ousti
 pressure. If one is able to reprodu
e su
h 
ompli
ated dynami
s using an appropriate simpli�edmodel, then one is able to get a better physi
al insight on the nonlinear pro
esses whi
h 
ontrol the saturationof the thermoa
ousti
 instability.5 Con
lusionWe presented a formulation for the des
ription of the wave ampli�
ation in di�erent kinds of thermoa
ousti
engines. The model is suitable for the determination of the threshold of thermoa
ousti
 instability, and it 
an be
oupled to the equations des
ribing heat transfer through the thermoa
ousti
 
ore in order to des
ribe unsteadypro
esses leading to steady-state sound in the frame of the weakly nonlinear theory. In the frame of the lineartheory, this model 
aptures some interesting properties of thermoa
ousti
 engines, as the sta
k-lo
ation in�uen
eon the onset of the thermoa
ousti
 instability or the sele
tion of the unstable resonant mode of the devi
e whi
h
an be ampli�ed. As a 
omplementary tool to the 
omputer 
ode DeltaEC or to dire
t numeri
al simulations,the proposed analyti
al model should prove useful for designing thermoa
ousti
 engines and for investigatingthe nonlinear pro
esses involved in these devi
es.A
knowledgmentsWe would like to thank Pierri
k Lotton for his useful advi
es 
on
erning the manus
ript.
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oupled with the double alternator (�). The frequen
ies 80Hz and 1020Hz 
orrespond to theme
hani
al resonan
e of the alternator and the �rst mode of the loop, respe
tively.
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Figure 6: Frequen
y (a) and ampli�
ation 
oe�
ient (b) as fun
tions of the temperature ratio Tn = Th

Tc
forthe �rst mode of the loop without alternator (. . .) and for the two modes resulting from the 
oupling of thetwo elements : the mode 
lose to the resonan
e of the alternator (�) and the mode 
lose to the �rst resonan
eof the loop (−−).
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Figure 7: Stability 
urves for the se
ond mode of the loop (◦) and the fourth mode of the straight devi
e(•) obtained by Yazaki et al. [18℄, 
ompared with the theoreti
al ones (straight lines). In addition are plottedthe stability 
urves for the �rst mode (dashed line) and the se
ond mode (dotted line) of the loop when no
ross-se
tionnal area 
onstri
tion is introdu
ed in the model.


