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Since the pioneering works of Christiaan Huygens about the sympathy of pendulum clocks, syn-
chronization phenomena have been widely observed in nature and science. In this paper, we describe
a simple experiment which exhibits several aspects of synchronization when making use of a ther-
moacoustic oscillator driven by an external sound source. Both the synchronization region of leading
order around the natural frequency f0 of the oscillator and the ones of higher order (around f0/2
and f0/3) are measured as functions of the loudspeaker voltage and frequency. We also show that
increasing the coupling between the loudspeaker and the thermoacoustic oscillator gives rise under
some circumstances to the death of self-sustained oscillations (quenching). Moreover, two additional
set of experiments are performed : the first one aims at investigating the effect of a feedback loop
for which the signal captured by the microphone is delivered to the loudspeaker through a phase-
shifter; the second set of experiments aims at investigating the non-trivial interaction between the
loudspeaker and the thermoacoustic oscillator when this last one acts as a relaxation oscillator
(spontaneous and periodic onset/damping of self-sustained oscillations). The experiment is easy to
build and highly demonstrative; it might be of interest for classroom demonstrations or physics lab
dealing with nonlinear dynamics.

PACS numbers: 43.35.Ud, 05.45.-a

I. INTRODUCTION

Synchronization refers to the phenomenon by which a
self-sustained oscillator may change its natural frequency
when it is coupled to another system oscillating with a
different frequency. This process was reported for the
first time by Christiaan Huygens1,2 who observed that
two pendulum clocks hanging from the same beam syn-
chronized mutually: when coupled to each other, the fre-
quency of each pendulum changed slightly in order that
they vibrated in perfect harmony, while their motion
were opposite (anti-phase locking). Since the pioneer-
ing works of Huygens, the process of synchronization has
been evidenced or used advantageously in many fields
of science,3,4 including chemistry (e.g. the Belousov-
Zhabotinsky reaction), physics (lasers), medicine (arti-
ficial pacemakers), biology (synchronization of singing
crickets), electronics engineering (synchronization of tri-
ode generators), or even in social life (clapping audience).
The research devoted to this process is currently still
active.4,5

Synchronization is a well-known but not widely appre-
ciated process which can be described within the common
framework of nonlinear dynamics, and it is of interest for
teaching needs to have at one’s disposal some demon-
stration devices which are paradigmatic for elementary
problems (synchronization of a nonlinear oscillator by
an external force, mutual synchronization of oscillators,
chaotic synchronization, . . . ). For example, a simple and
low-cost experiment exhibiting mutual synchonization of
two metronomes resting on a plate that sits on two soda
cans has been proposed,7 while the famous Van der Pol

oscillator excited by an external periodic force8 can be
nowadays realized with operational amplifiers.9

Synchronization processes have also been studied in
the field of acoustics: the mutual synchronization of or-
gan pipes has been studied more than a century ago by
Lord Rayleigh6 (and revisited recently10,11): he notably
reported for the first time the quenching effect (or beat-
ing death2), which refers to the quasi-suppression of os-
cillations due to the nonlinear interaction of the oscil-
lators. Organ pipes, brass or reed musical instruments
are excellent examples of self-sustained acoustic oscilla-
tors but another interesting one is the thermoacoustic
oscillator, a modern version of the Sondhauss tube.12 A
thermoacoustic oscillator is basically composed of a gas
column in a pipe partially filled with a stack of solid
plates: the onset of thermoacoustic instability builds up
when a critical temperature gradient is applied along the
stack, and the frequency of self-sustained acoustic oscil-
lations generally corresponds to the first resonance of the
gas column. This device has been extensively studied for
the past three decades because it can be used as a new
kind of thermodynamic engine,13 but it is also interest-
ing as an autonomous oscillator excited by heat. Most of
the research works made about thermoacoustic oscillators
have dealt with their comprehension and optimization14

for energetic use, but one can also find a few papers
in which synchronization processes are considered.15–19

Spoor and Swift19 took advantage of the mutual syn-
chronization of two thermoacoustic engines in order to
cancel the vibrations of the pipes induced by high am-
plitude acoustic waves. Yazaki et al.15,16 reported that
Taconis oscillations, thermoacoustic oscillations observed
at cryogenics temperatures, exhibit synchronization and
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FIG. 1. (a) Photograph of the experimental set-up. (b) photograph of the hot side of the stack. (c) Sketch of the complete
experimental set-up.

chaotic dynamics when forced by external oscillations.
Müller and Lauterborn17,18 made an experimental study
of the thermoacoustic oscillator coupled through a small
hole to an electrodynamic loudspeaker excited by a si-
nusoidal voltage with varying amplitude and frequency.
Most of the works presented in the present paper are very
close, and complementary, to those made by Müller and
Lauterborn, but the main motivation here is to present
a simple apparatus that would be of interest for demon-
stration in classrooms. The experimental device is the
simplest thermoacoustic oscillator one can build, which
only requires a glass tube, a piece of ceramic catalysts
and a nichrome wire, while the study of its interaction
with an external oscillating force only requires a loud-
speaker and basic instrumentation.

In the following, we examine the nonlinear interaction
between a loudspeaker and a thermoacoustic oscillator.
This interaction is studied as a function of both the driv-
ing force (loudspeaker voltage) and the driving frequency,
which allows to draw the so-called Arnold Tongues.4 The
differences in the transition to synchronization for weak
forcing (saddle-node bifurcation) or strong forcing (Hopf
bifurcation) are highlighted. It is also shown that when
the distance between the loudspeaker and the open end
of the pipe is short, it is possible to observe the quench-
ing process within a certain range of driving force and
frequency. Experiments are also performed using a feed-
back loop between the microphone and the loudspeaker:
the insertion of a phase-shifting circuit along this feed-
back loop allows the control of the amplitude of self-
sustained acoustic waves,20 including the possibility of
beating death. Finally, a last set of experiments is pre-

sented, which aims at investigating the nonlinear inter-
action between the loudspeaker and the thermoacoustic
oscillator when this last one acts as an integrate-and-fire

oscillator:4 this particular case corresponds to a specific
regime for which periodic bursts of (instead of stable)
self-sustained acoustic oscillations are generated sponta-
neously in the resonator. It is shown that the external
action of the loudspeaker does not only lead to synchro-
nization but also to the stabilization of acoustic oscilla-
tions.

II. EXPERIMENTS

A. Experimental apparatus

The thermoacoustic oscillator considered herein is the
so-called acoustic laser,21 which is very easy to build with
minimum equipment. A photograph of the complete ex-
perimental apparatus is given in Fig. 1(a). The system
under study consists of a glass tube (length L=49 cm,
inner radius ri=26 mm, outer radius re=30 mm) open to
free space at one end, and closed by a rigid plug at the
other end. The core of the engine, i.e. the stack, is an
open cell porous cylinder (radius ri, length xs = 48 mm)
which is inserted into the waveguide. This stack is made
up of a 600 CPSI (Cells Per Square Inch) ceramic cat-
alyst with numerous square channels of section 0.9 mm
× 0.9 mm. In this device, imposing a large tempera-
ture gradient along the stack leads to the onset of self-
sustained acoustic waves oscillating at the frequency f0 of
the most unstable acoustic mode (generally, f0 ≈ c0/4L
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where c0 stands for the adiabatic sound speed at room
temperature T∞). As illustrated in Fig. 1(b), heat is
supplied to the side of the stack facing the plug using
an electrical heat resistance wire (nichrome wire, 36 cm
in length, 0.25 mm in diameter, resistivity=7 Ω/ft) regu-
larly coiled through the stack end, and connected to a DC
electrical power supply. Sound is captured using a 1/4
inch condenser microphone (model GRAS type 40BP)
flush-mounted through the plugged end of the resonator.
Forced synchronization is achieved with a loudspeaker
enclosure (Cabasse, type Brick M7) placed at a distance
d of the open end of the tube. Data monitoring is re-
alized with an oscilloscope and an audio spectrum ana-
lyzer while both the oscillating pressure and loudspeaker
voltage are recorded with a data acquisition card, as il-
lustrated in Fig. 1(c).

The post-processing of raw data consists in calculating
both the Fast Fourier Transform (FFT) and the Hilbert
transform of the sampled data. This enables the compu-
tation of the analytic signals

pana(t) = p(t) + ipH(t) = Ap(t)e
iΦp(t), (1a)

Uana(t) = U(t) + iUH(t) = Au(t)eiΦu(t), (1b)

of both acoustic pressure p(t) and loudspeaker voltage
U(t), where pH and UH stand for the Hilbert transforms
of p and U , respectively. The relevant parameters which
will be used in the following to analyze synchronization
processes are the instantaneous phases Φp,u(t) and am-
plitudes Ap,u(t).

B. Measurement of the Arnold tongues

As discussed earlier, the defining feature of synchro-
nization processes is the variation of the natural fre-
quency f0 of the autonomous oscillator due to the ex-
ternal action of a periodic force with frequency f . This
process can occur when f ≈ f0 (synchronization of the
order 1:1) so that the natural frequency f0 slips to the
frequency f of the external force, but it can also be ob-
served when the forcing frequency is close to a ratio m/n
of integer numbers. In other words, the synchronization
of order 2:1 might be observed when 2f ≈ f0 so that
the frequency of the autonomous oscillator locks to 2f .
This occurrence of frequency locking depends on both
the amplitude of the force and the frequency detuning
f − f0 (or more generally nf − mf0). By varying these
two parameters, it is then possible to measure the syn-
chronization regions, which are now commonly called the
Arnold tongues.

With the present device, it is very easy to change the
coupling between the loudspeaker and the thermoacous-
tic engine by simply varying the distance d [see Fig. 1(c)].
It is also easy to change the position ds of the stack along
the resonator, which enables the control of the amplitude
and the dynamics of thermoacoustic oscillations. Actu-
ally, we observed the higher order synchronizations of
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FIG. 2. Arnold tongues obtained in experiments, as a func-
tion of the driving frequency f and of the root-mean-square
amplitude Urms of the loudspeaker voltage. The cases (a),
(b) and (c) correspond respectively to (d=5 mm,ds= 8 cm),
(d=5 mm,ds=19 cm) and (d=1 mm,ds=8 cm). The soft grey
regions denoted by “PS” correspond to Perfect Synchroniza-
tion; the regions denoted by “QP” refer to “QuasiPeriodicity”
(loss of synchronization); the regions denoted by ’IPL’ corre-
spond to “ Imperfect Phase Locking” for which the signal
looks quasi-periodic but the phase difference stays bounded;
the region denoted by “BD” corresponds to “Beating Death”
for which the self-sustained oscillations are almost reduced to
silence.

3 : 1, 2 : 1 and 1 : 2, besides the 1 : 1 synchronization. In
Fig. 2, the Arnold tongues obtained in experiments are
plotted for three different cases in which both the cou-
pling distance d and the stack position ds are changed.

In order to obtain the above mentioned Arnold
tongues, the following experimental procedure was used.
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After having fixed the coupling distance d and the stack
position ds, all instruments are switched on except for the
frequency generator, and the heat power supplied to the
nichrome wire is fixed to Q0 = 22.6 W so that stable self-
sustained thermoacoustic oscillations are generated in the
waveguide at frequency f0. After a time delay of about 30
minutes, the frequency generator is switched on and the
Arnold tongues are measured by varying the forcing fre-
quency f around f0 (or around n×f0), and by gradually
increasing the loudspeaker voltage. Data acquisitions are
performed using a sampling frequency fs which is exactly
30 times the frequency f of the forcing (or fs = n×30×f
in case of higher order Arnold tongues) and the number
N of samples is chosen in order that the frequency res-
olution fs/N be less than 0.1 Hz. It is worth mention-
ing that the Arnold tongues which are plotted in Fig. 2
do not strictly correspond to the actual Arnold tongues.
The first reason is that only a finite number of operat-
ing points (f, Urms) could be measured and the second
reason is that it is impossible to detect the exact bounds
of the synchronization regions since the time required to
cross the bound with an infinitely small detuning δf re-
quires an infinite time. For instance, we observed that for
the device initially under a non-synchronous state, and
after having changed by δf=0.1 Hz the forcing frequency,
the device could take more than 30 minutes before syn-
chronization was attained. In the experiments, we chose
δf=0.1 Hz as the lower limit of frequency variations, and
we did not wait for more than 4 minutes before passing
to a new operating point. The results depicted in Fig.
2 have been obtained within a total time of more than
50 hours from a total number of data files which exceeds
1400. Note that an improvement of the experimental pro-
tocol could consist in automatizing the experiments over
several weeks.11

The results depicted in Fig. 2(a) correspond to those
obtained when the stack is placed at a distance ds = 8 cm
from the closed end of the resonator, while the distance
d between its open end and the loudspeaker is fixed to
5 mm. In the absence of forcing, the frequency of self-
sustained oscillations f0 equals 172 ± 0.05 Hz and the
root-mean-square amplitude prms of acoustic pressure at
the closed end of the resonator equals 292 ± 5 Pa. Note
that after more than 12 hours of measurements in this
device configuration, both the frequency and amplitude
of acoustic oscillations have slightly drifted to 172.6 Hz
and 330 Pa, respectively, due to a gradual change of the
temperature distribution in the thermoacoustic engine
(similar variations of f0 and prms have also been observed
in the other experiments). The results depicted in Fig.
2(b) correspond to those obtained with ds=19 cm and
d=5 mm: the initial values of f0 and prms are 173.5
Hz and 350 Pa, respectively. From the analysis of the
Arnold tongues in Fig. 2(a) and (b), it appears that the
position of the stack impacts the width of the leading
order Arnold tongue, but the differences between the two
set of measurements are not very significant.

Some of the results depicted in Fig. 2(a) and (b) re-
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FIG. 3. Transition to synchronization in case of weak forcing
(Urms ≈40 mV). (a) Acoustic pressure p(t) and frequency
spectra p(f) measured for the two operating points referred
to as (I) and (II) in Fig. 2(a). (b) Evolution with time of the
instantaneous phase difference Ψ(t) = Φp(t)−Φu(t), and evo-
lution with time of the real part ℜ (Ap) of the instantaneous
amplitude as a function of its imaginary part ℑ (Ap) in the
frame rotating at angular frequency ω = 2πf . (c) Normal-
ized amplitude modulation ∆A/Amax, and normalized time-
average phase difference ΩΨ as functions of frequency detun-
ing.

quire additional explanations: three different states are
drawn in the (f, Urms) plane. The first one, denoted
as “PS”, corresponds to “Perfect Synchronization”, for
which the instantaneous phase of pressure oscillations
locks to that of the oscillating force. The second one,
denoted as “QP”, corresponds to quasi-periodicity, for
which the thermoacousic oscillator keeps its own natu-
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tion in the phase space of the operating points (III) to (V ).
(c) Normalized amplitude modulation, and normalized time-
average phase difference in function of frequency detuning.

ral frequency f0. The last one, denoted as “IPL”, cor-
responds to “Imperfect Phase Locking”, for which the
instantaneous phase difference Ψ(t) = Φp(t) − Φu(t) is
not constant but stays bounded. These different states
are explained with more details in the following.

The transition from perfect synchronization to quasi-
periodicity in the case of weak forcing is illustrated by
different means in Fig. 3. The most obvious way of
analyzing the results consists in looking at the acoustic
pressure p(t) together with its FFT amplitude p(f): this

is done in Fig. 3(a) for two operating points referred to
as (I) and (II) in Fig. 2(a). The operating point (I)
is within the synchronization region: the pressure signal
does not exhibit any amplitude modulation, and the fre-
quency of self-sustained oscillations matches the forcing
frequency f = 172.1 Hz. The operating point (II) is
outside the synchronization region: the pressure signal
exhibits large amplitude modulations while two distinct
peaks are clearly visible on the spectrum. There exists
also other ways of analyzing raw data, which are illus-
trated in Fig. 3(b) for the two operating points (I) and
(II). The first one consists of plotting the instantaneous
phase difference Ψ(t) which should be constant in case of
perfect synchronization and unbounded in case of quasi-
periodicity.4 The second one consists in plotting the data
in some kind of a phase space, by tracing the real part
ℜ (Ap) of the instantaneous amplitude of acoustic pres-
sure as a function of its imaginary part ℑ (Ap), and in
the frame rotating at angular frequency ω = 2πf . As
illustrated in Fig. 3(b), the phase difference Ψ(t) of the
operating point (I) is constant while that of point (II)
gradually decreases with time; in the phase space, point
(I) is a fixed point while point (II) draws an elliptic limit
cycle. Finally, it is also interesting to look at the tran-
sition to synchronization as a function of frequency de-
tuning, for a fixed forcing amplitude Urms. In Fig. 3(c),
the normalized amplitude modulation ∆A/Amax and the
normalized, time-average phase-difference ΩΨ are plotted
as a function of the forcing frequency f . These two pa-
rameters are defined as

∆A

Amax

=
max (|Ap(t)|) − min (|Ap(t)|)

max (|Ap(t)|)
(2)

and

ΩΨ =
1

T

∫ T

0

(

Ψ(t)

2πf0

)

.dt (3)

where the duration T refers to the total duration of
data acquisition. The results depicted in Fig. 3(c) show
that the loss of synchronization, represented as vertical
dotted lines, corresponds to the appearance of beating
(∆A 6= 0) while the phase becomes unbounded (ΩΨ 6= 0).
Note however that frequency increment (or decrement)
δf is not sufficient here: increasing the number of data
points would allow one to check that the evolution of ΩΨ

with frequency detuning outside synchronization obeys a
square-root-law, which is typical of a saddle-node bifur-
cation expected by theory in the case of weak-forcing.22

The transition from perfect synchronization to quasi-
periodicity in the case of strong forcing is illustrated in
Fig. 4 using the same representations as those of Fig.
3. The driving voltage is much higher (Urms ≈ 1.45 V),
which leads to a more complicated transition. The op-
erating point referred to as (IV ) is here particularly in-
teresting. According to Fig. 2(b), this point is within
the region called “IPL”, but when looking at Fig. 4(a)
the motion of the forced nonlinear oscillator looks quasi-
periodic. However, it appears from the analysis of Ψ(t)
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in Fig. 4(b) that the instantaneous phase difference Ψ(t)
is not constant but bounded, which means that there is
an imperfect phase locking. In other words, the non-
linear interaction of both oscillators still corresponds to
synchronization, since the frequency of the thermoacous-
tic oscillator is still controlled by that of the external
force. In the phase space diagram, the difference be-
tween Imperfect Phase Locking and Quasi-Periodicity is
less obvious, since both of the operating points (IV) and
(V) correspond to limit cycles, but the the limit cycle of
point (IV) does not envelop the origin.22 Finally, from
the analysis of Fig. 4(c), the transition between perfect
synchronization and imperfect phase locking, which op-
erates through a Hopf bifurcation22 is clearly visible: it
corresponds to the bound for which amplitude modula-
tion appears while the time-average phase difference is
still zero.

The results depicted in Fig. 2(c) correspond to those
obtained when the stack is placed at a distance ds=8 cm
from the closed end of the resonator, while the distance d
between its open end and the loudspeaker is decreased to
1 mm. In the absence of forcing, we have f0 ≈171.3 Hz
and prms ≈230 Pa. The results obtained exhibit signif-
icant differences with those of Fig. 2(a) and (b), which
means that changing the distance d impacts the nonlinear
coupling between the loudspeaker and the thermoacous-
tic oscillator. First, the Arnold tongues are significantly
larger, and the leading order Arnold tongues becomes
asymetric (it is not centered around f0 for large forcing).
Second, a new region appears around the synchroniza-
tion region 2 : 1, which is called “BD” and corresponds
to “Beating Death”. The effect of beating death is related
to the fact that self-sustained oscillations are almost re-
duced to silence, and it is illustrated in Fig. 5. In Fig.
5(a), the difference between the amplitude of the spec-
tral component at frequency f0 ≈171.3 Hz and the one
at frequency f = 110 Hz is plotted as a function of the
driving voltage Urms. This difference, Lp(f) − Lp(f0),
is plotted in terms of Sound Pressure Levels, defined as
Lp = 20 log10 (p/p0), where p0=20 µPa. From the analy-
sis of Fig. 5(a), we can clearly see that a gradual increase
of the driving voltage Urms leads above some threshold
value to the abrupt extinction of self-sustained oscilla-
tions which are almost reduced to silence compared to
the forced oscillation. When drawing the “BD” zone in
Fig. 2(c), we had to choose arbitrarily a threshold value
of Lp(f) − Lp(f0)= 30 dB above which it is considered
that Beating Death occurs. In Fig. 5(b), the frequency
spectra of acoustic pressure are plotted for two operat-
ing points referred to as (V I) and (V II) in Fig. 2(c).
Point (V I) is within the quasi-periodicity region and its
frequency spectrum show both frequencies f and f0 to-
gether with their linear combinations. Point (V II) is
within the Beating Death region, and its frequency spec-
trum shows that the spectral component f0 is almost 50
dB lower than the one at frequency f , while all of the
combination frequencies have disappeared.

The results depicted in Fig. 2(c) are similar to those
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FIG. 5. Illustration of Beating Death in the case of f = 110
Hz. (a) Measured difference between the sound pressure level
Lp(f) due to forcing and the sound pressure level Lp(f0) due
to self sustained oscillations, as a function of the driving volt-
age Urms. (b) Frequency spectra corresponding to the op-
erating points referred to as (V I) and (V II) in Fig. 2(c).
Note that the peaks referred to as “Af t” correspond to mea-
surement “artifacts” related to electromagnetic interferences:
these peaks are located at the electrical network frequency
(50 Hz) and its harmonics, except for a peak at f ≈238 Hz.

obtained by Müller and Lauterborn,17 since we observed
both n : 1 synchronization and beating death in the fre-
quency range around f0/2. However, the shape of the
Arnold tongues, or the conditions by which quenching is
observed are very different from those obtained in ref.
15: this might be due to the fact that both the thermoa-
coustic engine and the coupling with the loudspeaker are
different in the two studies.

C. Phenomena in addition to synchronization.

Apart from the measurements of the Arnold tongues,
some additional experiments are interesting to do with
this simple thermoacoustic oscillator. In the following,
we present two other experiments which aim at investi-
gating additional phenomena other than synchronization.

1. Feedback loop.

In Fig. 6, we present the experimental set-up for which
the effect of a feedback loop is investigated. In this ex-
periment, as illustrated in Fig. 6(a), the loudpseaker
is no longer excited by the frequency generator, but by
the signal captured by the microphone itself, and ampli-
fied through the audio amplifier. Furthermore, a sim-
ple phase-shifting circuit24 is inserted along the feedback
loop and the effect of the assigned phase shift between
the loudspeaker and the microphone on the self-sustained
oscillations is investigated. The position of the stack is
fixed to ds=8 cm, the coupling distance d is fixed to 1
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mm, and the heat power Q0 supplied to the nichrome
wire equals 23 W. Note that this kind of experiment has
also been conducted by Müller and Lauterborn,17 where
the phase shifting circuit was replaced by a multi-effects
processor imposing an assigned time delay (instead of a
phase shift). However, they did not succeed in initiating
self-sustained thermoacoustic oscillations in their exper-
iments.
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FIG. 6. Effect of a feedback loop. (a) Sketch of the experi-
mental set-up. (b) Steady-state acoustic pressure prms as a
function of the assigned phase-shift between the loudspeaker
and the microphone signals, and for different values of the
voltage gain G = Uout/Uin, where Uin and Uout refer to the
electric voltages at the input and the output of the audio
power amplifier, respectively.

In Fig. 6(b), the steady state acoustic pressure is pre-
sented as a function of the phase difference between the
pressure measured by the microphone and the electrical
voltage applied to the loudspeaker. It is presented for
different values of the voltage gain G = Uout/Uin [see
Fig. 6(a)] monitored by the potentiometer of the au-
dio amplifier. Note that the phase shift cannot be ac-
curately adjusted in our experiments since it is set man-
ually using a potentiometer. Moreover, we could only
shift the phase between 0 and 3π/2 using this phase
shifter. When the voltage gain is set to zero (no feed-
back loop), the thermoacoustic oscillators sings with a
frequency f0 ≈171.7 Hz. When the voltage gain is set
to non-zero values, self-sustained oscillations take place
within a certain range of the assigned phase-shift, and the
maximum value of the steady state acoustic pressure is
reached for φp−φu ≈ π/2. This is consistent with our ex-
pectations since the acoustic oscillations at the open end
of the waveguide should be roughly π/2 out of phase with
those at the closed end of the waveguide (note also that
the loudspeaker itself also induces a small phase shift,
which depends on frequency). Moreover, if the voltage
gain is increased, the steady state acoustic pressure is

increased but the range of phase-shift along which self-
sustained oscillations can be observed decreases: for in-
stance, when the voltage gain is fixed to 30 × 10−2, self-
sustained oscillations are quenched by the loudspeaker as
soon as φp − φu exceeds 240◦. We did not make exper-
iments for larger values of G, which induced significant
distorsion of the signals.

2. Synchronization in a relaxation regime.

Another interesting aspect of the thermoacoustic oscil-
lator described in this paper is that it can operate as a
relaxation oscillator. When the stack is placed closer to
the open end of the resonator and when the heat power
supply is fixed to some value slightly above threshold, the
amplitude of self-sustained acoustic oscillations are not
stable, instead one can observe a spontaneous and peri-
odic onset and damping of thermoacoustic instability.23

The physical mechanisms which give rise to this kind of
integrate and fire regime are not very clearly understood,
but it seems that this effect is due to a competition be-
tween the thermoacoustic amplification process induced
by heating and the reciprocal effect of acoustic oscil-
lations (thermoacoustic heat transport along the stack,
acoustic streaming) which tend to decrease the assigned
temperature gradient. In the experiment described be-
low, the effect of external forcing by the loudspeaker is
investigated under that particular regime.

The experimental set-up is the same as the one of Fig.
1(c), but the stack is placed at a distance ds=25 cm from
the rigid end of the resonator, while the coupling dis-
tance d is fixed to 4 cm and the heat supplied to the
nichrome wire is fixed to Q0= 24.5 W. If the loudspeaker
is switched off (Urms = 0, see Fig. 7), an integrate and
fire regime of wave amplitude evolution takes place, with
a period of about 40 to 50 seconds. The frequency of self-
sustained oscillations is around f0 ≈ 177.1 Hz, but this
frequency actually varies during the process of wave am-
plification within each burst. For all of the experiments
presented in Fig.7, the forcing frequency f is set to 176.9
Hz (which differs slightly from f0) and the nonlinear in-
teraction between the loudspeaker and the thermoacous-
tic oscillator is investigated as a function of the driving
voltage Urms. Note that the loudspeaker is systemati-
cally switched on at time t=100 s while it is switched off
(except for the last case) at time t=150 s. For a very
weak forcing (Urms=4 mV), the spontaneous generation
of periodic bursts is not disrupted by the forcing. How-
ever, self-sustained oscillations do not vanish completely
between two bursts, instead a quasi-periodic regime of
oscillations takes place. For intermediate amplitudes
of loudspeaker voltage (Urms=10 mV and Urms=105
mV), the forcing impacts the integrate and fire regime
of wave amplitude evolution: as soon as the loudspeaker
is switched on, large amplitude modulations are clearly
visible. Moreover, as soon as the loudspeaker is switched
off, these modulation are quickly damped, and the inte-
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FIG. 7. Synchronization in a relaxation regime. The stack
position is fixed to ds= 25 cm while the coupling distance d
equals 4 cm; the heat power supply Q0 is fixed to 24.5 W
so that a spontaneous and periodic onset/damping of self-
sustained oscillations takes place. From the upper graph
to the lower graph, the effect of external forcing (frequency
f = 176.9 Hz) on the dynamics of wave amplitude evolution
is investigated with an increasing louspeaker voltage Urms.
Except for the first (no forcing) and the last graph, the loud-
speaker is switched on at time t=100 s, and switched off at
time t=150 s.

grate and fire regime takes place once again. It is however
worth noting that some additional time is required before
the occurrence of a new regime of periodic bursts. This
additional relaxation time increases with the amplitude
of forcing, and this is due to the fact that external forc-
ing also disrupts the evolution of the temperature field:
heat must be diffused through the device before a new
integrate and fire regime is attained. Finally, for larger
amplitudes of the loudspeaker voltage (Urms=175 mV
and Urms=390 mV), a new kind of nonlinear interaction

is observed. As soon as the loudspeaker is switched on,
large modulations of the acoustic pressure are generated,
which are however quickly damped: this corresponds to
the transition to synchronization, for which the natu-
ral frequency of the thermoacoustic oscillator gradually
shifts down to the external frequency f . Moreover, a less
obvious process of wave amplitude stabilization by exter-
nal forcing is also observed: the spontaneous generation
of periodic bursts disappears, instead stable acoustic os-
cillations occur. Note that if the loudspeaker is switched
off (Urms=175 mV), the thermoacoustic oscillator goes
back to its integrate and fire regime, but if the exter-
nal forcing is maintained (Urms=390 mV), then acoustic
oscillations stabilize to a finite amplitude. The results de-
picted in Fig. 7 could be partially interpreted by arguing
that when periodic bursts of thermoacoustic oscillations
are spontaneously generated, the nonlinear oscillator has
two unstable states, i.e. one without oscillations and the
other one with finite amplitude oscillations. Due to this,
the device switches alternately between the two states,
but a weak external force modifies this regime, making
one state more stable than the other one.

III. CONCLUSION.

We have presented a simple apparatus which exhibits,
by sound, several aspects of synchronization phenomena.
The results in this paper are not a complete investiga-
tion, and additional processes could be explored like, for
instance, the effect of a non-sinusöıdal but periodic driv-
ing force (or even an aperiodic force25); a deeper analysis
of experimental data would also require to use standard
tests in nonlinear dynamics like the calculation of the
embedding dimension and of the Liapunov exponents.4,18

It is also challenging to find a simple model able to re-
produce qualitatively the experimental results obtained
above. Finally, it would also be interesting to investi-
gate the mutual synchronization of two thermoacoustic
oscillators placed face to face (the adjustment of their
frequency could be achieved by replacing the rigid end
by a sliding piston).
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ed. by M. Nijhoff, Société Hollandaise des Sciences (1893).

2 B. Bennett, M.F. Schatz, H. Rockwood and K. Wisenfeld,
“Huygens’ clocks”, Proc. Roy. Soc. London Ser. A 458,
563-579 (2002).



9

3 I.I. Blekhman, “Synchronization in science and technol-
ogy”, New York, ASME (1988).

4 A. Pikovsky, M. Rosenblum, and J. Kurths, “Synchroniza-
tion - A Universal Concept in Nonlinear Science”, Springer,
Berlin (2001).

5 R.C. Hilborn and N.B. Tufillaro, “Resource Letter: ND-1:
Nonlinear dynamics”, Am. J. Phys. 65, 822-834 (1997).

6 J.W. Strutt (Lord Rayleigh), “The theory of sound”,
Dover, New York (1945)

7 J. Pantaleone, “Synchronization of metronomes”, Am. J.
Phys. 70, 992-1000 (2002).

8 B. Van der Pol and J. Van der Mark, “Frequency demul-
tiplication”, Nature 120, 363-364 (1927).

9 G. Qin, D. Gong, R. Li and X. Wen, “Rich bifurcation
behavior of the driven Van der Pol oscillator”, Phys. Lett.
A 141, 412-416 (1989).

10 M. Abel, S. Bergweiler and R. Gerhard-Multhaupt, “Syn-
chronization of organ pipes: experimental observations and
modeling”, J. Acoust. Soc. Am. 119, 2467 (2006).

11 M. Abel, K. Ahnert, and S. Bergweiler, “Synchronization
of sound sources”, Phys. Rev. Lett. 103, 114301 (2009).
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