
HAL Id: hal-02057305
https://univ-lemans.hal.science/hal-02057305

Submitted on 5 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parameter estimation for the characterization of
thermoacoustic stacks and regenerators

Matthieu Guédra, Flavio Bannwart, Guillaume Penelet, Pierrick Lotton

To cite this version:
Matthieu Guédra, Flavio Bannwart, Guillaume Penelet, Pierrick Lotton. Parameter estimation for
the characterization of thermoacoustic stacks and regenerators. Applied Thermal Engineering, 2015,
80, pp.229-237. �10.1016/j.applthermaleng.2015.01.058�. �hal-02057305�

https://univ-lemans.hal.science/hal-02057305
https://hal.archives-ouvertes.fr
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aLUNAM Université, Laboratoire d’Acoustique de l’Université du Maine - UMR CNRS 6613, Avenue

Olivier Messiaen, 72085 Le Mans Cedex 9, France

Abstract

This paper deals with the in-situ characterization of open-cell porous materials that

might be used as a so-called stack (or regenerator) in a thermoacoustic engine. More

precisely, the manuscript presents an inverse method aiming at estimating geometrical

and thermal properties of various samples of porous media surrounded by heat exchang-

ers and connected to a thermal buffer tube to form a ThermoAcoustic Core (TAC). This

estimation is realized from acoustic measurements, and it is expressed as a minimization

problem applied to the squared norm of the difference between experimental and the-

oretical transfer matrices of the TAC. Experimental data, obtained for different stacks

(ceramic catalyst, pile of stainless steel wire meshes, carbon and metallic foams) under

various heating conditions, are used in order to fit the theoretical forward model by

adjusting geometrical properties of the sample and heat exchange coefficients. Common

geometrical properties (porosity and average pore’s radius) obtained with the present

method are consistent with available data from manufacturers. Moreover, this method

allows to estimate the tortuosity of the material which is not given by manufacturers.

Estimation of heat coefficients (and their variations with heating) provides global in-

formation about anisotropic heat diffusion through the porous material employed as a

thermoacoustic stack submitted to a temperature gradient. Among the four characterized

samples, it appears that the carbon foam allows to get the highest temperature gradients
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and thus can be considered as the most efficient regenerator for energy conversion in a

thermoacoustic prime mover.

Keywords:. Thermoacoustics; Inverse Problem; Parameter estimation; Porous materials

1. Introduction

Thermoacoustic prime-movers are specific kinds of heat engines, which basically con-

sist of a porous medium, referred to as a stack or a regenerator, inserted into an acoustic

resonator. The operation of such a system consists in applying a steep temperature

gradient along the stack, which leads to the onset of self-sustained acoustic oscillations

at the frequency of the most unstable acoustic mode of the resonator. The resulting

mechanical (acoustical) work can be used for the production of electricity[1] or for ther-

moacoustic refrigeration [2]. Thermoacoustic engines have fundamental advantages such

as low maintenance costs, simplicity, and they are able to achieve good efficiency. Poten-

tial applications of thermoacoustic engines include waste heat recovery[3, 4, 5] or solar

powered thermodynamic engines[6, 7].

The operation of a thermoacoustic system – and especially the onset of self-sustained

waves in thermoacoustic prime movers – depends mainly on the thermal exchanges in-

volved in the stack and the heat exchangers. In the early versions of thermoacoustic

engines built in the mid 90’s, the thermal interaction between the fluid and the solid was

realized by using porous materials of simple geometry such as stacks of parallel plates

[8, 9] or honeycombed materials [10]. However, recent research works have shown that

the increase of efficiency of thermoacoustic systems may involve using more “exotic” ma-

terials, such as pin-array stacks [11], Reticulated Vitreous Carbon (RVC) foams [12] or

Stainless Steel wire meshes [13], which are clearly anisotropic materials.

The theoretical description of the porous elements in the active thermoacoustic cell

is essential for the design of thermoacoustic systems. The standard periodic frames

such as parallel plates or uniformly-shaped channels networks may be described with the

capillary-tube-based thermoacoustic theory [14, 15, 16, 17]. In this theory, the viscous

and thermal functions fν and fκ – whose analytical expressions depend on the geom-

etry of the channel – are introduced for taking into account the coupling between the

oscillating fluid and the solid medium. In 1991, Roh et al. [18] notably validated with
2



experiments Stinson’s theoretical work for rectangular pores [17]. Numerous works have

been made since then, in order to expand the theory to more complex porous frames. In a

series of papers [19, 20, 21], Wilen and Petculescu measured the thermoviscous functions

of different materials (notably RVC foams and aluminum foams), with and without tem-

perature gradient. In 2005, Muelheisen et al. [22] used a 4-microphones method in order

to measure the characteristic impedance and the complex wave number of RVC foams,

and compared their results with those obtained with semi-analytical [23, 24] and analyt-

ical [25] models of porous media. In recent works, Roh et al. developed a mathematical

model for inhomogeneously heated porous materials [26], based on the capillary-based

thermoacoustic theory, which showed good agreement with the experimental results ob-

tained by Wilen and Petculescu [20, 21], with an adjustement of shape factors nν and

nκ, together with the tortuosity q of the material.

However, as do the geometrical properties of the stack/regenerator, the temperature

distribution strongly affects the operation of a thermoacoustic system [27]. Therefore,

an accurate description of the onset and amplification processes governing the thermoa-

coustic instability should involve considering an accurate modeling of heat transfer in

each element constituting the ThermoAcoustic Core (TAC). This accurate description

remains arduous as it implies that the thermophysical properties – e.g. the axial and

transverse thermal conductivities – of the anisotropic stacks or regenerators are known.

In this context, our objective in this paper is to use an inverse method allowing to fit a

theoretical model describing acoustic propagation in the inhomogeneously heated TAC

with experiments, and to estimate geometrical and thermal parameters of the porous

material.

In previous studies [28, 29], we presented an experimental setup for the measurements

of the acoustical transfer matrix of a TAC under various heating conditions, and we used

the experimental data to predict the onset of self-sustained oscillations of any thermoa-

coustic device equipped with the TAC characterized beforehand. However, such a black

box approach does not provide information about the inside of the thermoacoustic core,

and therefore the main objective of this study is to evaluate an inverse method approach

to get information about the acoustical and thermal properties of the stack/regenerator.

More precisely, the purpose of the present paper is (1) to propose a theoretical description
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Figure 1: Schematic drawing and photograph of the TAC. Lengths are given in cm.

of the TAC and (2) to make use of the experimental results from [28, 29] so as to adjust

parameters which are generally hard to evaluate (tortuosity, heat exchange coefficient

. . . ). In section 2, a brief description of the TAC under study is presented. In section 3,

we describe the theoretical network modelling of the TAC with non-constant temperature

gradients. The inverse method used to fit this model with experimental data obtained in

the previous studies is presented in section 4 and the results of the parameter estimation

are presented and discussed in section 5 : this method allows notably to estimate the

porosity and the tortuosity of the porous sample, as well as the average inner radius of

the pores and the heat exchange coefficients with the walls.

2. Description of the ThermoAcoustic Core and T-matrix measurements

The TAC under study is shown in Fig. 1. In the following, we give a brief description

of this element and of the experimental procedure used for measuring its transfer matrix

(for a complete description of the measurements methods, the reader can find more

details in Refs. [28, 29]). The TAC consists of a cylindrical waveguide (inner radius R =

16.7mm) compounded of several aluminum and Stainless Steel pieces. Two honeycombed

ambient exchangers are used to remove heat from the system. The hot exchanger is made

of a piece of ceramic sample with squared pores of density 600 CPSI (Cells Per Square

Inch). The heat power is supplied to the system by means of a Nickel-Chromium resistant

wire which is regularly coiled across the whole cross section of the exchanger.
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The acoustic properties of the TAC can be characterized by means of the so-called

transfer matrix [30] (T-matrix), which gives a relationship between the complex ampli-

tudes of acoustic pressure and acoustic velocity at both sides of the TAC. More precisely,

the T-matrix of the TAC is here defined as




p̃(x6)

ũ(x6)



 =





Tpp Tpu
Tup Tuu



×





p̃(x1)

ũ(x1)



 , (1)

where p̃(xi) and ũ(xi) denote the complex amplitudes of acoustic pressure and acoustic

volume velocity at position xi (with xi = x1,6, see Fig. 1). These complex amplitudes are

defined from the relation ξ(x, t) = ℜ
(

ξ̃(x)e−iωt
)

, where ξ(x, t) denotes the fluctuations

of either acoustic pressure (ξ ≡ p) or acoustic volume velocity (ξ ≡ u), ℜ denotes the

real part of a complex number, and where ω stands for the angular frequency of acoustic

oscillations. Therefore, acoustic propagation through the TAC is only characterized by

the four complex elements Tij of its matrix, which depend on the frequency of acoustic

oscillations, on the geometrical and thermophysical properties of the stack and heat

exchangers, and on the assigned temperature distribution along the TAC. In previous

works, we performed the measurements of the T-matrices of various TAC by means of two

different methods, namely a classical two-load method [28] and another method based on

the use of an acoustic impedance sensor [29]. As a result, experimental data for different

kinds of TAC equipped with different stack materials (ceramic catalyst, stainless steel

grids, RVC and NiCr foams) are now available, which are obtained for different values

of heat power supply in the frequency range 30 Hz-500 Hz. These data can thus be used

to fit a model for the acoustic propagation through the TAC and to estimate some of

its physical parameters. In the following, we describe the model and the inverse method

used for the estimation.

3. Theoretical description of the TAC – the forward problem

3.1. Acoustic propagation

The propagation of harmonic plane waves in the TAC is derived from the transfer

matrices formalism, for which each element (namely the heat exchangers, the stack and

the thermal buffer tube, see Fig. 1) is considered as an acoustical two-port. As they

are made of honeycombed materials with quite large open cells (∼ R/10) and high
5



porosity, the ambient exchangers are neglected by considering that they do not perturb

the propagation of the plane wave, so that they can be considered as being part of the

large waveguide.

When a heat power Q is supplied to the hot exchanger, a temperature distribution

T (x) is established along the TAC, and sound propagation of plane waves along x is

described as the combination of five two-port elements (see Fig. 1). As a result, the

T-matrix of the TAC is defined as the following product:





Tpp Tpu
Tup Tuu



 = Tg,r ×Ttbt

(

T (x)
)

×Th

(

T (x)
)

×Ts

(

T (x)
)

×Tg,l, (2)

where the T-matrices Tg,l and Tg,r describe sound propagation at room temperature

(T (x) = Tc) through the two ducts of radius R at both sides, namely from x = x1 to

x2 and from x = x5 to x6, respectively. The T-matrices Ts, Th and Ttbt are those of

the stack, the hot exchanger and the thermal buffer tube, respectively, which depend on

the inhomogeneous temperature distribution T (x) along the TAC due to the heat power

Q supplied to the hot heat exchanger. If this temperature distribution is known, then

it is possible to calculate the above mentioned T-matrices. In the following, we derive

the governing equations from which these T-matrices can be determined. Considering a

piece of stack along which the temperature distribution T (x) is assigned, the extension of

Rott’s theory [14] to porous media proposed by Roh et al. [26] can be used to derive the

relationship between the complex amplitudes of acoustic pressure and volume velocity.

However, here, we use a simplified version of this theory which does not account for

the so-called viscous and thermal dynamic shape factors, but which accounts for the

tortuosity q of the material. With this assumption, the thermoacoustic wave equation

can be written as [see Eq. (52) in ref.[26]]:

ρ
d

dx

[

1− fν
ρ

dp̃

dx

]

+
1

T (x)

dT

dx

fκ − fν
1− Pr

dp̃

dx
+ q2

(

ω

c0

)2

[1 + (γ − 1)fκ] p̃ = 0, (3)

where c0 is the adiabatic sound speed, ρ is the mean density of the fluid, Pr is the Prandtl

number, and γ is the ratio of specific heats. The functions fν and fκ defined as

fν,κ =
2

(1− i) r
δν,κ

J1

(

(1− i) r
δν,κ

)

J0

(

(1− i) r
δν,κ

) , (4)

6



are the well-known functions [14] which characterize the viscous and thermal coupling

between the oscillating fluid and the waveguide walls (Jn is the nth order Bessel function

of the first kind), where δκ =
√

2κ
ω

and δν =
√
Prδκ stand for the frequency-dependent

viscous and thermal acoustic boundary layer thicknesses (κ denotes the thermal diffu-

sivity of the fluid), and where r denotes the radius of the channel (or of the capillary

tubes) which is (are) considered. Therefore it is considered here that any element of the

TAC is either described as a piece of a cylindrical duct (ambiant heat exchangers and

thermal buffer tube) or as a porous material made with many cylindrical channels (stack

and hot heat exchanger). In this latter case, the complicated structure of the material

(e.g. for a metallic foam) can be taken into account with its tortuosity, q. Moreover, it

is also possible to express the acoustic volume velocity as a function of the axial gradient

of acoustic pressure [see. Eq. (32) in ref [26]] as follows:

ũ = −i
φS

q2
1− fν
ρω

dp̃

dx
(5)

where S = πR2 denotes the cross-sectional area of the duct and where φ stands for

the porosity of the material (φ < 1 for the stack and the heat exchangers, and φ = 1

elsewhere). Introducing equation (5) into equation (3) leads after some algebra to a

second relation between p̃ and ũ as follows:

dũ

dx
= i

φSω

ρc20
[1 + (γ − 1)fκ] p̃−

1

T (x)

dT

dx

fκ − fν
(1− Pr)(1 − fν)

ũ. (6)

Finally, from equations (5) and (6), it is straightforward to express the T-matrix of

a very short piece of stack - with length dx much lower than the acoustic wavelength

2πc0/ω - which relates the pressure and volume velocity at position (x+ dx) to the same

quantities at position x:

p̃(x+ dx) = p̃(x) + i
q2ρωdx

φS
ũ(x) (7)

ũ(x+ dx) = i
φSωdx

ρc20
[1 + (γ − 1)fκ] p̃(x) +

(

1− T (x+ dx)

T (x)

fκ − fν
(1− Pr)(1 − fν)

)

ũ(x).(8)

From these relations, it is therefore possible to calculate the five T-matrices defined in

Eq. (2), just by connecting the appropriate number of elementary T-matrices character-

izing propagation of acoustic waves through a small length dx of each element (namely,

the stack, the hot heat exchanger, the thermal buffer tube and the two large ducts at
7



temperature Tc). It is worth mentioning that the impact of the temperature distribution

appears explicitely in the above mentioned equations, but also implicitely via the depen-

dance with temperature of the static density ρ, the sound speed c0 and the thermoviscous

functions fν,κ. We should also note that some parameters of equations (7-8), as well as

those in the definition of fν,κ in equation (4), are different depending on whether acoustic

propagation through the stack, the hot heat exchanger or the Thermal Buffer Tube are

considered. More precisely, we define these parameters as follows:

r = R, φ = 1, q = 1, ∀x ∈ [x1, x2], (9a)

r = rs, φ = φs, q = qs, ∀x ∈ [x2, x3], (9b)

r = rh, φ = φh, q = qh, ∀x ∈ [x3, x4]. (9c)

r = R, φ = 1, q = 1, ∀x ∈ [x4, x5], (9d)

r = R, φ = 1, q = 1, ∀x ∈ [x5, x6]. (9e)

Finally, using such a finite difference description of acoustic propagation through each

element, it is possible to calculate the T-matrix of the complete TAC under an assigned

temperature distribution T (x).

3.2. Heat diffusion

Computing the T-matrix of the TAC defined in equation (1) from equations (7-8)

implies to calculate the temperature distribution T (x) imposed by the heat source Q.

To that purpose, a simplified one-dimensional model is considered for the description

of steady-state heat transfer. Note that although it is clear that there may exist sig-

nificant temperature gradients along the transverse direction, the assumption of a one-

dimensional temperature field is well justified since the description of acoustic propaga-

tion through the TAC is based on the assumption of plane pressure waves. Therefore, a

more realistic description of the temperature field would also require, in the context of

this study, to reconsider the description of acoustic propagation within the TAC.

A schematic drawing of heat transfer through the TAC is given in Fig. 2. The simpli-

fied description of heat transfer in such a system mainly lies on four assumptions. First,

the heat conduction in the walls is discarded, assuming that they are equivalent to per-

fect thermal sinks. Second, heat is supposed to be supplied to the whole system through

8
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Figure 2: Schematic drawing of the TAC made of four separate media: the air in the thermal buffer
tube, the stack/regenerator (considered as an equivalent homogeneous fluid medium) , the hot exchanger
(considered as an equivalent homogeneous fluid medium) and the stainless steel / aluminium walls.

a volumic heat source Q dissipated in the total volume of the hot exchanger. Third,

the ambient heat exchangers are discarded and we simplify the problem by assuming a

zero heat flux at both sides. Finally, the thermal exchanges with the walls (radial heat

leakages) are introduced by means of the equivalent thermal coefficients hs, hh and ha

(Newton’s law for heat transfer), where the subscripts s, h and a are for the stack, the

hot exchanger (both of them are considered as equivalent homogeneous fluid media) and

the air in the thermal buffer tube, respectively.

Due to these assumptions, the steady-state temperature distribution can be described

by three heat equations defined in the stack, in the hot heat exchanger and in the thermal

buffer tube, respectively [31]:

λs

d2T

dx2
− 2hs

R
(T − Tc) =0, ∀x ∈ [x2, x3], (10a)

λh

d2T

dx2
− 2hh

R
(T − Tc) =− Q

lhπR2
, ∀x ∈ [x3, x4], (10b)

λa

d2T

dx2
− 2ha

R
(T − Tc) =0, ∀x ∈ [x4, x5], (10c)

where λs, λh and λa denote the longitudinal conductivities of the stack, of the hot

exchanger and of the air in the thermal buffer tube, respectively. Combining the set of

heat diffusion equations (10) with appropriate junction conditions, namely a zero heat

flux at boundaries,
dT

dx

∣

∣

∣

∣

x2

=
dT

dx

∣

∣

∣

∣

x5

= 0, (11)
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and the continuity of temperature and heat flux at the interfaces,

T (x−
3 ) = T (x+

3 ), (12a)

λs

dT

dx

∣

∣

∣

∣

x
−

3

= λh

dT

dx

∣

∣

∣

∣

x
+

3

, (12b)

T (x−
4 ) = T (x+

4 ), (12c)

λh

dT

dx

∣

∣

∣

∣

x
−

4

= λa

dT

dx

∣

∣

∣

∣

x
+

4

, (12d)

the complete heat transfer model defined by Eqs. (10) and Eqs. (11)-(12) is finally solved

using a finite differences scheme [33] to obtain the temperature distribution T (x) along

the TAC. Replacing this solution in Eq. (2) allows then to calculate the transfer matrix

of the TAC with an imposed temperature gradient.

4. The inverse problem

Once the theoretical description of the TAC is derived, an inverse method can be used

to fit the model with experimental data. The parameter estimation is performed with

two steps. First, the acoustical model defined by Eq. (2) with T (x) = Tc is considered

and the experiments performed without heating are used to estimate the porosity, the

tortuosity and the pore’s inner radius of the porous material. Second, the model defined

by Eq. (2) together with the thermal model derived in section 3.2 are considered and

the experiments are used to estimate the heat exchange coefficients hs, hh and ha in

the various parts of the TAC. Such a strategy is well justified because the geometrical

parameters do not depend on the temperature so that they can be estimated at first,

without heating. As the inverse problem is intrinsically the same for the two steps

mentioned above, the method is derived generally in this section.

The inverse problem consists in finding the parameters vector Υ with p elements

(where p is the number of parameters to estimate) which minimizes the squared norm S

of the difference between the experimental data and the theoretical transfer coefficients

given by Eq. (2):

S(Υ) =

4n
∑

i=1

|Y i − Yi(Υ)|2. (13)

In Eq. (13), n denotes the number of points on the frequency range, · · · denotes experi-
mental data, and Y i and Yi are the elements of the vectors obtained from a combination
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of the four T-matrix coefficients and defined as:

Y =





















































































T pp(ω1)
...

T pp(ωn)

T pu(ω1)
...

T pu(ωn)

T up(ω1)

...

T up(ωn)
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...

T uu(ωn)
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...

Tpp(ωn)

Tpu(ω1)
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Tpu(ωn)

Tup(ω1)

...

Tup(ωn)

Tuu(ω1)

...

Tuu(ωn)





















































































. (14)

The minimization of the norm S is a nonlinear parameter estimation problem [34]

which involves using an iterative process to be solved. This is realized by calculating

the parameters vector Υ at each step (m+ 1) with the Levenberg-Marquardt’s iterative

relation [35]:

Υ(m+1) =
[

Υ+ (H+ aI)
−1 ℜ

(

X†eY
)

](m)

, (15)

where † denotes the adjoint operator, and where the vector eY with 4n elements corre-

sponds to the prediction error, namely the difference between the measured and calcu-

lated values:

eY,i = Y i − Yi(Υ). (16)

In Eq. (15), X is the sensitivity matrix of size (4n× p) whose elements defined as:

Xij =
∂Yi(Υ)

∂Υj

with i = 1, 2, ...4n and j = 1, 2, ...p, (17)

are calculated using a first-order finite-difference approximation. The pseudo-Hessian

11



matrix H is then obtained from the sensitivity matrix X as follows:

H = ℜ
(

X†X
)

. (18)

The steering factor a in Eq. (15) allows to switch between the Gauss-Newton method

(a → 0) and the Steepest Descent method (a → ∞). At the beginning of the iterations,

a is thus set to an arbitrary large value. At each iteration m, if S(m) < S(m−1), the value

of a is divided by 2 in order to speed up the convergence with the GN method, otherwise

it is multiply by 2 in order to take advantage of the robustness of the SD method and to

enlarge the searching area.

Note that even though the minimization is realized on complex transfer coefficients,

the matrices which are used in the iterative relation (15) are purely real and guarantee

that the vector Υ is kept real at each step.

The iterative process is stopped when the relative variation of the parameters vector

Υ is less than 0.1% from one step to the other. Moreover, as the convergence of the

Levenberg-Marquardt method depends on the choice of the initial vector Υ(0), a good a

priori knowledge of the actual values of the solution is required[36, 34]. To ensure the

convergence, the inverse algorithm is also run a second time with a starting condition

corresponding to a variation of 20% of the solution estimated at first time, in order to

check that the same solution is reached.

The stability of the inverse method is controlled by the pseudo-Hessian matrix H

which must be non-singular, i.e. the sensitivity coefficients should not be linearly de-

pendent, and should be of the same order of magnitude [36, 34]. The stability of the

algorithm has been checked by means of simulated experiments with artificial added

noise and bias. For the acoustical problem (no heating), the estimation of the porosity,

the tortuosity and the pore’s inner radius of the stack/regenerator can be successfully

achieved, but the estimation of a fourth parameter may make the algorithm unstable

because an additional geometrical parameter would be correlated to the three above

mentioned parameters (that is the reason why we did not account for the dynamic shape

factors [26] in the description of acoustic propagation through the stack).

12



5. Results for parameter estimation

5.1. Geometrical parameters

The results obtained for the estimation of the porosity φs, the pore’s radius rs and

the tortuosity qs are summarized in Tab. 1 for the four materials: a Ceramic Catalyst, a

Stainless Steel wire mesh, a nichrome foam and a RVC foam. The comparisons between

experiments from Refs. [28, 29] and theoretical (after fitting) T-matrix coefficients are

also given in Fig. 3. The uncertainties on the estimated values given in Tab. 1 come from

two sources of errors in th eimplementation of the test bench to measure the T-matrices

[28, 29]: a random error due to noisy microphonic signals and systematic bias errors

due to badly known environmental parameters and to the precision of the experimental

apparatus itself. The bias error is estimated from the uncertainties on the T-matrix

coefficients [28], while the random error is estimated from the Signal to Noise Ratio

obtained on each microphone during measurements. However, it is worth noting that

the effect of a third source of errors, namely the errors due to all the fixed parameters in

the forward problem, cannot be quantified here. As this source of errors is not necessarily

small compared with noise and biais, we have to point out that the uncertainties provided

in Tab. 1 are probably underestimated.

In the case of the ceramic catalyst, the parameters vector Υ = [φs; rs] has only two

elements because this material is made of straight channels and its tortuosity is fixed

to its theoretical ideal value qs = 1. For this particular case, the hot exchanger and

the stack are made of the same material, so that rh = rs, φh = φs and qh = qs = 1

[see Eqs. (9)]. The inverse method is thus equivalent to the estimation of the porosity

and the pore’s radius of a porous sample of length ls + lh. The values of porosity and

radius obtained from the inverse method are consistent with those expected: the ceramic

catalyst being provided by manufacturers with a cell density of 600 CPSI, one can indeed

estimate the edge length of one cell, lcell, as

lcell =
2.54 · 10−2

√
600

≃ 1 · 10−3m, (19)

and considering the squared geometry of the channel, the porosity of the material can

be given by

φs =

(

2rs
lcell

)2

, (20)
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Figure 3: Modulus (upper graphs) and argument (lower graphs) of the four transfer matrix coefficients
Tpp, Tpu, Tup and Tuu as functions of frequency, for the four materials : ceramic sample, stainless steel
wire meshes, nichrome foam and RVC foam. The experimental results shown in solid lines come from
Refs. [28] and [29]. The dotted lines correspond to the theoretical results obtained after estimation of
the parameters φs (porosity), rs (average pore’s radius) and qs (tortuosity).

which gives, for a porosity φs = 0.90, an equivalent inner radius very close to the esti-

mated value:

rs =
lcell

√
φs

2
≃ 0.49mm. (21)

On the left of Fig. 3 are shown the modulus (upper graph) and argument (lower

graph) of the four T-matrix coefficients of the ceramic catalyst, as functions of frequency

from 50 to 200Hz (corresponding to the range used in experiments). The non-diagonal

coefficients Tpu and Tup are made dimensionless by normalizing them with the char-

acteristic impedance Zc = ρc0/S of the waveguide. The straight lines represent the

experimental results taken from Ref. [28]. The model defined by Eq. (2) and computed

with the estimated parameters φs = 0.90 and rs = 0.47mm give the results in dashed

lines. When looking at these graphs, one can observe that the model fitted with es-
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timated parameters reproduces quite well the experimental transfer coefficients on the

whole frequency range. The differences are mainly due to bias errors coming from the

measurement method and errors made on fixed environmental parameters such as room

temperature, static pressure and accurate location of the elements in the TAC. Ambient

heat exchangers can be taken into account with additional T-matrices (additional losses

/ reflexions) but this does not change significantly the results (though slightly improving

them).

For the estimation of the parameters of the three other materials, the porosity and the

average radius previously obtained for the ceramic sample are used for the modeling of the

hot heat exchanger in Eq. (2) (φh = 0.90, rh = 0.47mm, qh = 1). The results obtained

with the inverse method and presented in Tab. 1 are quite close to the manufacturer’s

data : the Stainless Steel grids are provided with a porosity of 0.45 and a half-edge length

of 45µm [37] and the nichrome foam is provided with an average radius of 0.3mm (no

data about porosity) [38], whereas the RVC foam is provided with a porosity of 0.97 and

a cell density of 100ppi corresponding to an average radius of almost 0.13mm [39]. The

tortuosity of the foams is not provided by the manufacturers and a direct comparison is

not possible, as well as for the tortuosity of the Stainless Steel regenerator which is due

to a random stacking of the grids.

As for the case of the ceramic catalyst, the Figure 3 present the T-matrix coefficients

for these three materials ; the only difference concerns the frequency range which was

larger for the experimental characterization of these samples [29]. As for the ceramic

sample, the model and the experimental data are in good agreement, but with a larger

bias between experiments and fitted theory.

5.2. Heat exchange coefficients

When a heat power Q is supplied to the hot heat exchanger, the geometrical pa-

rameters φs, rs and qs involved in the computation of the forward problem are those

obtained with the inverse method in Sect. 5.1. From the results presented in Fig. 3,

one can observe that a non-negligible difference between experimental and theoretical

data remains after estimation of these geometrical parameters. When the results of the

inverse method for φs, rs and qs are introduced in the model with a non-zero temperature

gradient, this bias is obviously reported in the estimation of the thermal coefficients. In
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order to minimize the effect of this residual bias due to acoustics on the inverse problem

associated to heat transfer, the minimization is applied to the “corrected” vector, now

defined as

eY,ij = Y i(Qj)bY,i − Yi(Qj ,Υ), (22)

where bY,i denotes the residual bias:

bY,i =
Yi(Q = 0,Υ)

Y i(Q = 0)
, (23)

obtained from the acoustical problem.

In the following, the inverse problem is applied to evaluate the heat exchange coeffi-

cients between the inside of the TAC and the external walls, namely the parameters hs, ha

and hh defined in Eqs. (10). To that purpose, we chose to fix the values λs, λa and λh of

the thermal conductivities of the stack, the fluid and the hot heat exchanger, respectively.

While the thermal conductivity of air λa = 2.5 10−2W/m/K (at room temperature) is

well known, it might be of interest to determine the thermal conductivities λs and λh

from the optimization algorithm as well (i.e. as for the heat exchange coefficients), but

however these parameters are too strongly correlated to the heat exchange coefficients so

that the inverse problem cannot converge to a unique solution. As a result, the values of

λs and λh are obtained from the porosity (determined beforehand) of the stack and the

hot heat exchanger, together with an assigned value of the thermal conductivity of the

solid material used for the stack or the hot heat exchanger, namely 3W/m/K for ceramic

(cordierite), 13.4W/m/K for stainless steel, 12W/m/K for Nichrome, and 6.3W/m/K

for Carbon. It is clear that such an approach has limitation because it does not account

for the impact of the tortuosity of the material on heat diffusion along the axis of the

TAC, but it was a necessary choice to get information about heat losses towards the

walls. As a result, we have to point out that the evaluations of heat exchange coefficients

presented in the following should be considered cautiously.

The results obtained for the modulii of the T-matrix after application of the inverse

problem are presented in Fig. 4 for the case of the stainless steel grids and for a gradual

increase of the heat input from Q = 9 W up to Q = 81 W. This example is here

used to emphasize that adjusting the values of the heat exchange coefficients enables to

reproduce experimental data quite well, since the theoretical variations of the T-matrix
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coefficients as a function of both ω and Q are almost aligned with their experimental

variations. This notably means that the forward model can be used, after application

of the optimization process, to predict the scattering of sound by the TAC for some

values of heating which were not used in experiments. In the example of Fig. 4 the

obtained values for heat exchange coefficients hs ≈ 50W.m−2.K−1, hh ≈ 40W.m−2.K−1

and ha ≈ 0.2W.m−2.K−1 slightly depend on the heat power Q, and more details about

these variations, as well as those for other stack materials are given in the next figure.

The results of estimations for the three heat exchange coefficients hs (thermoacoustic

stack sample), hh (hot exchanger) and ha (thermal buffer tube) as functions of the heat

power supply Q and for the four different stack materials are presented in Fig. 5. The

range of variations for the heat supply Q departs from 0 W up to 80 W, except for the
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Figure 5: Estimation of the three exchange coefficients hs (thermoacoustic stack sample), hh (hot
exchanger) and ha (thermal buffer tube) for the four materials, as function of the heat power Q.

case of the RVC foam (risk of combustion for a heat supply higher than Q = 18W ). From

the results depicted in Fig. 5 concerning the heat exchange coefficient hs between the

stack material and the surrounding walls, one can clearly see that the range of values for

hh is large, i.e. from hs ≤ 10W.m−2.K−1 for the RVC foam up to hs ≥ 150W.m−2.K−1

for the ceramic catalyst. Such a result is not surprising and can be explained by the

differences of the bulk thermal conductivities of the materials, by the geometry of the

stack/regenerator itself and the nature of the contact between the material and the inner

walls favorizing or not the heat transfer towards the surrounding walls. It is worth noting

that the ceramic catalyst, i.e. the only non-tortuous material, exhibits the higher hs

coefficient and therefore seems not to be the more adequate material for thermoacoustic

applications, since heat leaks towards the walls are not usefull for the process of energy

conversion. Another point concerning the results obtained for the estimate of hs is that

there exists significant variations (notably for the ceramic catalyst) of this coefficient with

the heating Q: such a result can be explained by the variation of thermal conductivities

with temperature for both the fluid and the solid frame, and maybe with some variations

(dilatation of material?) impacting the thermal contact with the surrounding walls. From

the results depicted in Fig. 5 concerning the heat exchange coefficient hh between the

hot heat exchanger and the walls, one can see that once again this parameters depends

on both the stack material and the heating. Such a result is, however, more surprising

because the material used for the hot heat exchanger does not change from one stack
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material to another one: in any case it is made with a Nichrome wire circulating through a

ceramic catalyst. These variations could be partly explained by the fact that the length lh

of the hot heat exchanger is not the same from one experiment to another: experimental

date for ceramic are obtained with lh = 1 cm, while those for stainless steel, and the

two foams are obtained with lh = 2.3 cm, lh = 1.3 cm and lh = 1.3 cm, respectively.

Moreover, hh depends on temperature while the temperature of the hot heat exchnager

does not only depend on the heating but also on the ability of the heat exchanger to

transmit heat through the stack. Anyway, the range of variations of hh from one series

of experiments to another one is not too large (i.e. from hh ≈ 100± 50W.m−2.K−1) and

finally the results obtained allow to get a rough idea of the numerous sources of errors due

to the very simplified description of heat transfer in the forward model. From the results

depicted in Fig. 5 concerning the heat exchange coefficient ha in the thermal buffer tube,

one can see once again that this heat transfer coefficient depends on the material used for

the stack, which should not be the case. However, because this coefficient should depend

on temperature, and because the heat transmitted through the TBT also depends on the

stack material, the results obtained are not completely surprising.

The resulting temperature distribution along the TAC obtained from the inverse

problem are shown in Fig. 6, for the four stack materials and for a heat supply Q = 9W .

The results obtained clearly show that the choice of a stack material strongly impacts

the spatial distribution of the temperature along the entire thermoacoustic core. From

the obtained results, one can conclude that the use of a RVC foam allows to get the

highest temperature gradient along the stack for a given heat supply, while the ceramic

catalysts seem to be worst due to heat leaks through the waveguide walls.

6. Conclusion

In this work, the theoretical description of the TAC which has been characterized

experimentally in Refs. [28, 29] is presented using a network formalism and a descrip-

tion of the steady-state heat transfer. This model, though simple, can be fitted with

experimental data using an inverse method in order to estimate acoustic and thermal pa-

rameters of the stack/regenerator placed in the TAC. The inverse problem (minimization

problem) is solved iteratively by using a Levenberg-Marquardt derivative method which,
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Figure 6: Normalized temperature distribution along the TAC, when equipped with the different samples.
The heat power is Q=9W. Note that depending on the material used for the experiments, the length of
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although very sensitive to the choice of parameters, leads to consistent results when an

a priori knowledge can be made on their actual values. As a first step, this is applied

to the experimental data obtained without heating in order to adjust the porosity and

the pore’s radius of a squared pores Ceramic Catalyst[28] and to adjust the porosity,

radius and tortuosity of more complex materials that can act as a regenerator[29]: a

stack of Stainless Steel wire mesh, a Nichrome and a RVC foams. The good agreement

between experimental and theoretical curves confirms that our model is consistent and

can be used to describe the linear acoustic behaviour of the TAC. As a second step,

experimental data are used for estimating heat exchange coefficients characterizing heat

transferred laterally towards the surrounding walls. This demonstrates the possibility of

estimating thermal parameters of the porous material from acoustic measurements. As

expected, the results obtained prove that the heat transfer processes are strongly corre-

lated with the anisotropy of the material. This method thus provides some information

about the thermal properties of the stack/regenerator without direct measurements which

would require an accurate instrumentation of the cell with thermal sensors. Finally, the

estimation of thermal parameters also leads to the quantification of the longitudinal

temperature distribution along the TAC which is one of the most important parameters

controlling the behaviour of thermoacoustic systems. Although the latter estimates of

heat exchange coefficients should be considered cautiously due to the simplistic descrip-

tion of heat transfer used in the forward model, these works confirm have the merit,
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in our opinion, to point out that a proper design of thermoacoustic engines imply to

improve the description of the temperature distribution through the TAC. This temper-

ature distribution is often assumed to be linear along both the stack/regenerator and the

thermal buffer tube, while the characterizations of both the mean thermal conductivity

and the thermal contact between a porous/tortuous material with its surrounding walls

are poorly documented, and poorly understood.
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Fig. 1–. Schematic drawing and photograph of the TAC. Lengths are given in cm.

Fig. 2–. Schematic drawing of the TAC made of four separate media: the air in the ther-

mal buffer tube, the stack/regenerator (considered as an equivalent homogeneous fluid

medium) , the hot exchanger (considered as an equivalent homogeneous fluid medium)

and the stainless steel / aluminium walls.

Fig. 3–. Modulus (upper graphs) and argument (lower graphs) of the four transfer

matrix coefficients Tpp, Tpu, Tup and Tuu as functions of frequency, for the four materials

: ceramic sample, stainless steel wire meshes, nichrome foam and RVC foam. The

experimental results shown in solid lines come from Refs. [28] and [29]. The dotted

lines correspond to the theoretical results obtained after estimation of the parameters φs

(porosity), rs (average pore’s radius) and qs (tortuosity).

Fig. 4–. Evolution of the modulus of the acoustical transfer matrix coefficients with the

heat power Q, for the stainless steel wire meshes. The experimental results shown in

grey solid lines come from Ref. [29]. The black lines correspond to the theoretical results

obtained after estimation of the heat exchange coefficients.

Fig. 5–. Estimation of the three exchange coefficients hs (thermoacoustic stack sample),

hh (hot exchanger) and ha (thermal buffer tube) for the four materials, as function of

the heat power Q.

Fig. 6–. Normalized temperature distribution along the TAC, when equipped with the

different samples. The heat power is Q=9W. Note that depending on the material used

for the experiments, the length of the sample can be slightly different, as well as the one

of the ceramic piece used as hot exchanger.
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Table 1: Estimated values of the geometrical properties of the porous samples.

ceramic Stainless Steel NiCr RVC
catalyst wire mesh foam foam

φs 0.90 ± 0.01 0.68 ± 0.01 0.92 ± 0.01 0.97 ± 0.01
rs (mm) 0.47 ± 0.05 (40± 4) · 10−3 0.31 ± 0.04 0.17 ± 0.02
qs 1a 1.06 ± 0.03 1.30 ± 0.04 1.13 ± 0.03

a : fixed parameter, not estimated

24


