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We show theoretically and experimentally that the propagation of an acoustic wave in an airflow
duct going through a pair of diaphragms, with equivalent amount of mean-flow-induced effective
gain and loss, displays all the features of a parity-time (PT ) symmetric system. Using a scattering
matrix formalism, we observe experimentally the properties which reflect the PT -symmetry of the
scattering acoustical system: the existence of a spontaneous symmetry breaking with symmetry-
broken pairs of scattering eigenstates showing amplification and reduction, and the existence of
points with unidirectional invisibility.
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Hydrodynamic instability theory shows that flow can
provide energy to small perturbations [1, 2]. If, in ad-
dition, these perturbations are compressible, then both
acoustic wave propagation and energy exchange with the
flow are possible, leading e.g. to the classical whistling
phenomena [3–5]. Thus, in the particular case of flow
duct acoustics, the wave can obviously be convected but
it also experiences gain or loss of acoustic energy due
to interactions with the flow inhomogeneities [6]. Conse-
quently, propagation of acoustic waves in ducts with flow
is a natural Non-Hermitian system where loss and gain
are available.

Non-Hermitian systems, where energy conservation is
broken, lead to dynamics governed by evolution equa-
tions with non-normal operators, where surprising phe-
nomena can appear due to huge non-normality especially
close to exceptional points [7–9]. The particular case of
PT -symmetry, where gain and loss are delicately bal-
anced, has attracted a lot of attention in the last two
decades [10–19]. It opens the possibility to obtain purely
real spectra from Non-Hermitian Hamiltonians, as well as
a spontaneous symmetry breaking where real eigenvalues
coalesce at an exceptional point to become complex con-
jugate pair. From a scattering point of view, another type
of spontaneous symmetry breaking for PT -symmetric
systems has been theoretically proposed [20]. It corre-
sponds to the transition of norm-preserving scattering
eigenstates, with unimodular eigenvalues, to symmetry
broken pairs of amplified and lossy scattering eigenstates,
with associated pairs of scattering eigenvalues with in-
verse moduli [20–24]. It is to be noticed that this type of
symmetry breaking is still waiting to be observed exper-
imentally [25, 26].

Initiated in the domain of quantum mechanics, many
works on PT -symmetry have displayed several intrigu-
ing effects such as power oscillation [15, 27–29], uni-
directional transparency [30–32], single-mode laser [33,
34], spectral singularity and Coherent Perfect Absorber
(CPA)-Laser [20, 35–38] or enhanced sensitivity [39]. A
majority of the studies has been conducted in optics with
some attempts in acoustics where the difficulty to obtain

gain has been recognized. Actually, whilst losses can be
easily introduced [40, 41], the gain for acoustic waves has
until now been obtained owing to active electric amplifi-
cation [42–45].

In this letter, we report the experimental realization of
a purely mechanical scattering PT -symmetric system for
the propagation of acoustic waves in a waveguide. The
loss and the gain are produced by two localized scattering
units made of diaphragms, one associated with loss and
the other associated with gain, see Fig. 1(a). In our ex-
periments, the Mach number of the flow is small enough
(Ma ' 0.01) such that the effect of convection on the
sound wave can be neglected, preserving the reciprocity
property, and the only effect of the flow is located at the
two diaphragms, characterized by normalized complex
impedances C1 and C2. Note that, for a larger Mach
number, an advected term in the Helmholtz equation
would lead to a generalized PT -symmetric system [46]
that would be non-reciprocal. The balance of gain and
loss is realized by finely tuning the flow rate and the
geometry of each diaphragm, ensuring a PT -symmetric
system that corresponds to C1 = C∗2 (note that the real
part of the two normalized impedances have to be equal
to get the parity symmetry). Measurements of the scat-
tering matrix components allow us to demonstrate uni-
directional invisibility and to verify the PT -symmetry
properties. Besides, by changing the distance between
the scatterers, the spontaneous symmetry breaking of the
scattering matrix is observed with the transition from
exact-PT -symmetric phase to PT -broken phase. In the
broken phase, with the experimental gain available, the
scattering eigenstates can be simultaneously fourfold am-
plified or reduced, and we show that this effect might be
enhanced by considering a finite periodic collection of the
set of two diaphragms, leading to CPA-Laser points.

System description and 1D model.— The description
of the set-up is shown in Fig. 1. We consider an acous-
tic waveguide where only plane waves can propagate
(kA < 1.841 [47], where A is the tube radius, k = ω/c0 is
the wavenumber, ω is the frequency and c0 is the sound
velocity). The propagation for the acoustic pressure p is
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FIG. 1. (a) Sketch of the acoustic PT symmetric system in
an airflow duct. (b) Corresponding 1D model. (c) Numerical
simulation with Large Eddies Simulation [51] of the flow in
the diaphragm in the presence of an acoustic wave.

then governed by the 1D Helmholtz equation. Two di-
aphragms are inserted into the tube and are separated
with a distance D (Fig. 1(a)). As their thicknesses t are
small (kt � 1), the acoustic velocity is conserved while
the pressure jumps between the two sides of the discon-
tinuities. Thus the propagation is governed by

p′′ + k2 p = 0, (1)

with the point scatterer jump conditions at the di-
aphragms: [

p′
]
x=±D/2

= 0,[
p
]
x=−D/2

=
C1

k
p′ and

[
p
]
x=D/2

=
C2

k
p′.

where prime is the derivative with respect to x. The
real part of the dimensionless parameters C1,2 (that
are acoustical impedances divided by the characteristic
impedance and multiplied by i) is associated to reactive
effects while its imaginary part is linked to the dissipative
or gain effects. We have thus a very simple 1D recipro-
cal wave model with two point scatterers at x = ±D/2
(Fig. 1(b)). The effect of the flow on acoustic propa-
gation is only and entirely contained in the normalized
impedances C1 and C2 that reflect the mean-flow-induced
effective gain and loss.

The system is PT -symmetric if and only if the two nor-
malized impedances are complex conjugated: C2 = C∗1
[48]. With the exp(−iωt) convention, there is absorption
if =(Ci) > 0 and gain if =(Ci) < 0. The overall behavior
of the acoustical system can be described by the transfer
matrix M (

p+2
p−2

)
=

[
M11 M12

M21 M22

](
p+1
p−1

)
(2)

where p+1,2 and p−1,2 are defined in Fig. 1(b). After some
algebra, the component of the overall transmission ma-
trix are found to be:
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)
where in the case of a PT symmetric system [21]: M11 =
M∗22 and <[M12] = <[M21] = 0. The transmission
and reflection coefficients for waves coming from left and
right are defined by tL = det(M)/M22, rR = M12/M22,
rL = −M21/M22, tR = 1/M22. Due to reciprocity we
have det(M) = 1 and then t = tL = tR. As discussed
in detail in [21], by permutation of the outgoing waves,
two different scattering matrices with different sets of
eigenvalues can be defined, leading to distinct symmetry
breaking. These two scattering matrices are

Sr =

[
rL t
t rR

]
and St =

[
t rL
rR t

]
(4)

where

(
p−1
p+2

)
= Sr

(
p+1
p−2

)
, and St = Srσx, (5)

σx is one of the Pauli matrices. The eigenvalues of Sr
and St may have both an exact and broken phases but
the symmetry-breaking points are not the same. In this
paper, we have chosen to consider both Sr and St and the
different phase transitions they imply. When computing
the scattering eigenvalues, it is useful to remind the PT -
symmetry conservation relations [20, 21, 46, 49] that can
be written for instance as S∗t = S−1t and leads to

r∗LrR = 1− |t|2 (6)

rLt
∗ + r∗Lt = 0 (7)

rRt
∗ + r∗Rt = 0 (8)

The eigenvalues of the scattering matrix St are given by

λ1,2 = t±√rRrL) = t
(

1±
√

1− |t|−2
)

. Then if |t| < 1,

the modulus of the eigenvalues is equal to 1. The case
|t| = 1 corresponds to symmetry-breaking and |t| > 1
correspond to the PT -broken phase. The eigenvalues of
the other scattering matrix Sr are given by s1,2 = (rR +

rL±
√

∆)/2 where ∆ = (rR−rL)2+4t2. The broken phase
condition can be written ∆ = 0 which leads to rR− rL =
±2i t. In term of the transmission matrix coefficients, it
is equivalent to M12−M21 = ±2i or =(C1) sin(kD) = ±1.
Experimental set-up.— As described in Fig. 1, the PT

symmetric system is mounted in a rigid circular duct be-
tween two measurement sections, upstream and down-
stream. Each measurement section consists in a hard
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walled steel duct (diameter 30 mm) where two micro-
phones are mounted. Two acoustic sources on both sides
of the system give two different acoustic states and the
four elements of the scattering matrix (transmission and
reflection coefficient on both directions) for plane waves
can be evaluated. A more detail description of the mea-
surement technique can be found in [50]. The desired
gain scatterer is realized by a finely designed diaphragm
submitted to a steady flow. In this geometry, a shear
layer is formed on its upstream edge and the flow is con-
tracted into a jet with an area smaller than the hole of
the diaphragm, see Fig. 1(c). This shear layer is very
sensitive to any perturbations like an oscillation in the
velocity due to the acoustic wave. The shear layer con-
vects and amplifies these perturbations (see the marked
zone in Fig. 1(c) and a strong coupling between acous-
tic and flow occurs when the acoustical period is of the
order of the time taken by the perturbations to go from
the upstream edge of the diaphragm to the exit of the
diaphragm. This corresponds to a Strouhal number of
the order of Sh = ft/Ud ∼ 0.2 [50, 51] where f is the
frequency of the acoustic perturbation, t is the thickness
of the diaphragm and Ud is the mean velocity in the di-
aphragm Ud = U0(A/a)2 with U0 the mean velocity in
the duct and a the radius of the diaphragm (Fig. 1(c)).
Eventually, this gain diaphragm has been chosen with an
internal radius a = 10 mm and a thickness t = 5 mm (see
Fig. 1 and the inset in Fig. 2). The other diaphragm,
that has to be lossy, has been chosen with an internal
radius a = 12 mm and a thickness t = 4.3 mm. Two re-
sistive metallic tissues have been glued in the diaphragm
to produce some local viscous dissipation along this very
fine wire mesh.

In a first step, the scattering coefficients of the two
diaphragms have been measured separately, allowing us
to deduce the values of the normalized impedance C1,2.
These parameters, that have to verify C2 = C∗1 to get
a PT -symmetric system, are plotted on Fig. 2. With
the chosen geometry and flow parameters, it can be ob-
served that there is a frequency fm where the desired
equality (C2 = C∗1 ) is achieved. In a second step, the
scattering matrix of the system composed by the two
balanced diaphragms is measured. All the subsequently
reported measurements are made at the frequency fm =
1920 Hz and at the Mach number Ma= 0.01 for which
C2 = C∗1 = 1.83 − 1.36i, allowing the system to be PT
symmetric. In order to be able to observe the symmetry
breaking, the distance between the two diaphragms D
is varied from 312 mm to 417 mm by inserting 22 rigid
metallic tubes of different lengths. The minimal distance
is chosen to minimize the hydrodynamical interactions
between the two diaphragms. The maximal D is chosen
to have points over half a wavelength at the measure-
ment frequency with a value of kD/2π approximately in
the range 1.7 – 2.4.

Results.— The measured transmission and reflection
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FIG. 2. Real and imaginary part of the measured impedance
parameters C1 and C2. When the imaginary part of C2 is
negative the diaphragm get some gain. At the frequency f =
fm, gain and loss are balanced C2 = C∗1 .
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FIG. 3. (a) Modulus of the scattering coefficients. (b) Norm
of the deviation from acoustic energy conservation property
and from the PT -symmetry property of the scattering matrix.
Symbols correspond to experimental measurements and solid
lines correspond to the 1D theory.

coefficients are displayed in Fig. 3(a). They are com-
pared to the theoretical values obtained by using the
measured value of C1 = C∗2 and the 1D modeling of Eqs.
(3). The reflections from left rL (impinging on the loss)
and right rR (impinging on the gain) appear as deeply
asymmetric, with two points with |t| = 1 and rR = 0 or
rL = 0. These two points correspond to the unidirec-
tional transparency phenomenon where the wave passes
unreflected with no amplitude change through the scat-
terers form one side, and is strongly reflected from the
other side. In order to verify experimentally the PT sym-
metry of the system, in Fig. 3(b), we plot the 2-norm
of the matrix StS

∗
t − I corresponding to the shift from

the PT symmetry conservation relations in Eqs (6)-(8).
For comparison the norm of the matrix St

tS∗t − I which
represents the deviation to the acoustic energy conser-
vation is also displayed. It appears that ‖StS∗t − I‖ is
nearly equal to zero in the whole range of paramaters
which unambiguously demonstrates that the system is
PT symmetric; meanwhile ‖SttS∗t − I‖ can take large val-
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ues confirming that our system strongly violates conser-
vation of acoustic energy because the mean flow can be
seen as a supplier of energy for the acoustic wave. Note
that the deviation from PT -symmetric conservation re-
lation for kD around 2.1 can be modeled by taking into
account the visco-thermal damping in the propagation
between the two diaphragms [52]. It can be noticed that
for kD multiple of π, the system is simultaneously PT -
symmetric and conservative; it can be verified (see Eqs.
3) that in these cases the scattering is only sensitive to
the real part of the normalized impedances C1 and C2

ignoring thus the effect of gain and loss.
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FIG. 4. Spontaneous symmetry breaking of the scattering
matrices. (a) green points: measurements, green line: 1D
theory; (b) blue points: measurements, blue line: 1D theory.
In each plot, the red lines corresponds the two SVD of the
scattering matrix. Dashed lines correspond to |t| = 1, i.e.
phase transition for St.

By varying the length of the duct between the two di-
aphragms, we can also inspect the spontaneous symmetry
breaking of the scattering matrix of the system [20]. In
Fig. 4, we show the eigenvalues of Sr and St that, since
they are different, lead to different symmetric and broken
phases [21]. We represent also the singular value decom-
position (SVD) of the scattering matrices. These two
SVD are identical for St and Sr (since St

tS∗t = Sr
tS∗r ) and

correspond respectively to the maximum and minimum
outgoing wave for any incoming waves with unit flux; by
definition they are upper and lower bound of the modulus
of the eigenvalues, and thus must be different from one
to allow the broken phase. For each choice of scatter-
ing matrix, the experimental measurements, very close
to the theoretical predictions, display clear signatures of
the spontaneous symmetry breaking with different bro-
ken phases for St and Sr. In the symmetric phase the
eigenvalues of the scattering matrices remain on the unit
circle in the complex plane, and the symmetry breaking
corresponds to pairs of non-unimodular scattering eigen-
values i.e. where the moduli are the inverse of each other
and different from 1. To the best of our knowledge, it
is the first experimental demonstration of the symme-
try breaking of the scattering matrix for PT -symmetric
systems as proposed in [20].

In the broken phase, a particularly interesting case is
the CPA-Laser where one eigenvalue of the S matrix goes
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FIG. 5. (a) Finite periodic case with N cells, green(red) is
a scatterer with loss (gain). (b) Transmission coefficient as a
function of kD and kW for N = 25. White regions correspond
to band gaps. (c) Transmission for kW/2π = 2.1

.

to infinity (Laser) and the other goes to zero (Absorber).
From the experimental results of Fig. 4 we can see that
this Laser-Absorber is not achieved because the maxi-
mum eigenvalue corresponds to a 3.5 amplification. From
Eqs. (3), it can be shown that the CPA-Laser condition
can be obtained for larger values of the gain parameter
(=(C2) ' 2.5) which cannot be achieved with our current
experimental setup. Nevertheless, in Fig. 5, we show that
quasi-CPA-Laser could be theoretically achieved by tak-
ing a finite periodic array of N cells of our PT -symmetric
system with a distance W between each cell (Fig. 5(a)).
The use of the 1D model shows that very near CPA-Laser
can be obtained by just tuning the number of cells and
the intercell dimensionless frequency kW (N = 25 and
kW/2π = 2.1 in Fig 5(b-c)). Fig. 5(c) indicates that,
by using interference Bragg effect in finite periodic case,
it is possible to approach very closely the conditions of
CPA-Laser.
Conclusion.— Owing to vortex-sound interaction pro-

viding gain and loss in an acoustical system, we have
obtained the experimental signatures of the spontaneous
PT -symmetry breaking in scattering systems. The scat-
tering matrix eigenvalues can remain on the unit circle in
the complex plane despite the Non-Hermiticity and the
symmetry breaking results in pairs of scattering eigen-
values with inverse moduli. The unidirectional trans-
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parency has also been observed. It is noteworthy that
this mechanical gain medium does not require to be elec-
tronically powered and that this PT -symmetric system
is very simple to manufacture: one tube, two diaphragms
and a small flow inside the tube. Therefore, this kind of
acoustic system can be seen as a building block to study
wave propagation with more complex PT -symmetry (for
instance in periodic systems), and, more generally, we
believe it provides an important connection between hy-
drodynamic instability theory, acoustic wave propagation
and Non-Hermitian physics.
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