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With flow, the acoustic effect of a locally reacting lined wall cannot be described by a single

quantity independent of the incident wave, such as a wall impedance.

At least two quantities,

intrinsic to the liner and to the flow, are required to describe the effect of the lined wall regardless
of the incident wave. In addition to the impedance, the unsteady tangential force exerted by the

wall on the flow has to be taken into account.

This force is due either to viscous effects or to

the unsteady transfer of axial momentum from the flow into the lined wall. The paper describes
a Stress—Impedance model where the two variables used are the impedance and the friction factor
that links the pressure to a tangential stress at the wall. The use of a wall stress helps to better
understand the mechanisms of momentum transfer between the flow and the wall in the vicinity of

an acoustic treatment.

I. INTRODUCTION

Despite its practical importance, the behavior of acous-
tic treatments in the presence of a grazing flow is still
poorly understood. This is due to the complexity of
the unsteady turbulent flow near the perforated plate
holes that has been demonstrated by numerical simula-
tions [16]. Most of the currently used models assume that
the effect of the flow boundary layer can be described by
the Ingard-Myers relation [5, 9] and that, for a locally re-
acting liner, the flow complexity can be captured by an
equivalent impedance, independent of the incident wave,
that must be empirically or semi-empirically determined.

Much work has been done to improve the description of
the boundary layer effect [6]. Despite these advances, the
commonly used models are still unable to explain the dif-
ference between the impedances deduced from measure-
ments in the flow direction and in the opposite direction
[2, 11, 15].

It has been shown in [10, 13, 14] that the oscillating
shear stress can play an important role in sound propaga-
tion with a grazing flow along a liner. This shear stress is
apparently due to the interaction between turbulent flow
and the rough wall which is the interface of the acoustic
treatment. Further attempts were made to account for
shear stress in terms of viscous stress [1, 7] or in term
of additional force acting on the walls of a cavity [8]. A
modified boundary condition was derived that introduces
a coeflicient 3, that characterizes the transfer, by the nor-
mal fluctuating displacement, of axial momentum from
the steady flow into the lined wall [1]. Another modified
boundary condition was more recently derived that uses
the momentum transfer impedance (r [10, 13, 14].

In this paper, a heuristic approach is used: The exis-
tence of a tangential surface force on the wall is postu-
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lated and this paper describes how this force can be de-
duced from measurements or calculations. The detailed
analysis of how this shear stress is created at the wall of
the liner is outside the scope of this paper and is yet to
be investigated.

The paper is organized as follows: Section II presents
the Stress-Impedance model and a way of computing
both the impedance and the stress, under the form of
an equivalent friction factor, from the knowledge of two
different wave numbers in a two-dimensional (2D) geom-
etry. Section III presents the application of this model
to the numerical simulations made in a 2D propagation
problem [4].

II. THE STRESS-IMPEDANCE MODEL

A. General equations

y
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FIG. 1. (color online) General view of the 2D problem.

The propagation in a two—dimensional (2D) duct of
height h with a shear flow of velocity U(y) is consid-
ered. The velocity is supposed to be uniform outside of
the boundary layer having a thickness ¢ and it decreases
and then vanishes on the lower wall. On this wall, the
duct is acoustically treated. The acoustic treatment is
described classically by an admittance Y;, = vy, /p. that
links the normal velocity into the wall v,, to the pressure
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at the wall p,, but also by a tangential stress 7, that is
intended to describe an unsteady transfer of momentum
from the flow into the wall due to wall roughness and
to turbulent and viscous effects. Those effects are sup-
posed to be confined near the wall in a layer of thickness
e smaller than the mean flow boundary layer J, see Fig. 1.
To simplify the notations, all parameters are nondimen-
sionalized. All velocities are nondimensionalized by the
speed of sound ¢y, so that the mean velocity becomes the
Mach number M (y). Distances are nondimensionalized
by the height of the channel h, time by h/cg, and pres-
sure by poc where pg is the mean density. Except very
near the wall (0 < y < ¢), all the dissipative effects can
be neglected and the dimensionless equations governing
the acoustic motion are

Diu+ Mv=—-0,p (1
Dy = — yD (
Dip = —0,u — Oyv (3
where u, v are respectively the velocities in the x and y
direction, p is the pressure, Dy = 9, + M0, is the convec-
tive derivative and M’ = d,M. To avoid singular terms
in the above equations when the boundary layer thick-
ness vanishes, it is advantageous to rewrite Egs. (1-3)
only in terms of pressure p and transverse displacement &
(v = D) which are the regular variables in the bound-

ary layer (those variables remain continuous when the
boundary layer thickness vanishes):

dyp = —Di¢ (4)
D}dy¢ = d7p — Difp (5)
The pressure and the displacement are taken under the
form p(z,y,t) = p(y)exp(j(wt — kz)) and &(x,y,t) =
&(y) exp(j(wt — kx)) and Eqgs. (4-5) become:
dyp = Q%€ (6)
0%d, ¢ = k*p — 0% (7)
where Q = w — kM (y).
removed for simplicity.

In the following, the hats are

B. Effect of the boundary layer

At the lowest order, when the boundary layer thickness
is very small compared to the height of the channel (§ <
1), Egs. (6-7) show that p,, = p} and &, = &, where
py, and & are the values at the wall when the flow is
uniform up to the wall. At this level of approximation,
the boundary layer only induces a jump in the normal
velocity wv}, = Qov,, where Q¢ = w—kMy and M is the
Mach number in the uniform flow.

A more precise description [3], at the first order in §,
is obtained by integrating Eqs. (6-7) over the boundary
layer, see Appendix A:

Pw — p:;) = 6109(2) gw (8)
v — & = 011K/ pu 9)

where
) 2 ) 2
Qo Q
0L, = 1—-(— ) d d 67y = 1—-(—) d
! ~/0 ( Q2 > v ‘ /O (QO> v

C. Stress along the wall

To study the near wall zone (0 < y < ¢), the effect of
a shear stress along the z direction is added to Eq. (7):

0%d, ¢ = k*p — Q%p — jkd, T (10)

By considering that the mean flow is very weak in the
near wall zone and that € < 1, this equation can be
integrated along y in w?&, = —jkr, where 7,, is the stress
at the wall and &, is an additional displacement due to
the stress. It can be noted that this relation has to be
modified (w become w — Usk/cq ) if a slip velocity Us is
considered at the wall to take into account the effect of
the roughness on the turbulent motion [12].

D. Equivalent boundary condition

At the lowest order, when the thickness of the bound-
ary layer § is negligible, the relation between p} and
vh = jQo&, pressure and normal velocity at the wall
when a perfect uniform flow is considered, and p,, and
Uy = jw(&E+E&;), pressure and normal velocity at the wall
when the boundary layer and the stress are considered,
are

* QO QOk
Dy, = Pw and vl = T g Tw (11)

In this case, the equivalent admittance Y, = —v} /p¥
(seen by a wave propagating in a uniform flow) can
be computed from the admittance of the wall (Y, =

—Vy /Pw) and f,, by
Y, = L (Yw + kfw) (12)
w w

where f,, = 7, /pw can be seen as an equivalent friction
coefficient.

In the uniform flow, Eqs. (6-7) result in d2p = —a®p
where a? = Q32 — k. The pressure can be written
p = Acos(a(l — y)) and, at the lined wall y = 0, the
relation between pressure and velocity is —v(0)/p(0) =
Y} = —jatan(a)/Q.

When two values of the wavenumber k are known, two
values of Y,* can be computed and Eq. (12) can be used
for the determination of the admittance Y,, and of the
friction coefficient f,,. For a more precise solution, the
influence of the boundary layer can be taken into account
by [3]:

02 Q k k2
w w w Qo

(13)



E. Links with previous formulations

When the Ingard-Myers boundary condition is used
without taking into account the surface force, Eq. (12)
applies with f, = 0. In some papers [1, 11], the
Ingard-Myers condition has been modified by using a
new parameter S, and the relation between the nor-
mal velocity at the wall with an uniform flow v}, and
the normal velocity in the liner v,, is transformed into

=(1—-(1-By)Mok/w)v,. Eq. (12) becomes:
Q kM
Y= —OYB + ngyﬁ (14)
In [13], the momentum transfer impedance {7 = —Ty /vy
is used. Using Eq. (12)
Q k
yr =2 <1 CT) Yo (15)
w w

In general, the admittance Y,, extracted using the present
Stress—Impedance model is not equal to the admittance
Yy extracted using the 3,~model or to the admittance
Y extracted using the (—model. Thus the three formu-
lations are not exactly equivalent and will give different
results.

When only two values of the complex wavenumber k
are known, they can always be described using two com-
plex numbers such as Y,, and f,, Y3 and 3, or Y and (r.
A true validation of these models can only be achieved
when more than two wavenumbers are known. This can
be done experimentally or numerically either by deter-
mining, at a given configuration, the higher order modes,
which are generally strongly attenuated, or by increasing
the channel size to have more propagating (or slightly
attenuated) modes.

III. APPLICATION OF THE
STRESS-IMPEDANCE MODEL

A. Numerical determination of the wavenumbers
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FIG. 2. (color online) Sketch of an array of 2D periodic cells
with Helmholtz resonators.

The linear acoustic propagation with flow is computed
in an array of 2D periodic cells with Helmholtz res-
onators, see Fig. 2. Neglecting the viscous and thermal
losses, the linearized Euler equations are solved in one
of the periodic cells by using the multimodal method as

described in [4]. In the numerical calculation, the geom-
etry is defined by the height of the duct h = 15 mm,
the depth of the resonator cavity B = 25 mm, the pe-
riod between two resonators which is equal to the width
of the cavity W = L = 5 mm, the thickness of the res-
onator neck 7" = 0.5 mm and the width of the hole D =
1 mm. With those dimensions, the resonance frequency
of the Helmholtz resonators is 2700 Hz. A resistive layer
has been added to insure some dissipation in the neck of
the Helmholtz resonators and the normalized resistance
is 0.05. A shear flow profile has been taken into account
and the Mach number is given as a function of the mean
Mach number My by M (y) = Mo(m+1)(1—(1—y)™)/m
where m = 30 to insure a small thickness of the boundary
layer.

The output of the numerical calculations is a trans-
mission matrix that links all the modes at the entrance
of one cell to the modes at the exit of this cell. In the
present calculation, 900 modes been considered. Using
the Floquet-Bloch approach, the wavenumbers in the pe-
riodic system are computed and the wavenumbers of the
least attenuated modes in each propagation direction kg
and kj are selected and will be used in the following to
compute the impedance and the friction coefficient f,,.
The value of kg and kg are plotted in Fig 3.
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FIG. 3. (color online) Real and imaginary values of the dimen-
sionless wavenumbers k}, (continuous lines) and —kj (dashed
lines) without flow (thick red curve) and with flow (Mo = 0.3,
in blue). Without flow kf = —kj.

B. Impedance and friction factor

When the boundary layer effect is neglected, Eq. (12)
is written, using k = k;g and k = kg,

YE =Y, + ki fu/w (16)

where Y+ = —jwa® tan(a®)/(QF)2. The two Egs. (16)
allow the determination of Y,, and f,,. The value of the
dimensionless impedance of the plate is computed by re-
moving the effect of the cavity from the impedance of
the resonator: Z,, = 1/Y,, + j/tan(wB). It is plotted
in Fig 4 and compared to the two values Z* obtained
from Y+ by assuming f,, = 0 in Eq. (16). Without flow,
the three values of the impedance are equal. The real
part is almost constant and equal to the resistance of the
dissipative layer divided by the percentage of open area.
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FIG. 4. (color online) Real and imaginary values of the

equivalent impedance without flow (in red) and with flow
(Mo = 0.3, in blue). The symbols represents the value
computed with the Stress-Impedance model, the continuous
line (resp. dashed line) is the value obtained by considering
fuw =0 from k} (vesp. kj).

The imaginary part increases linearly with the frequency
and is related to the mass of fluid moving in the hole
and its vicinity. With flow, the two impedances Z* de-
duced by assuming f,, = 0 are different showing again
that the equivalent impedance depends on the direction
of the incident waves in the classical approach [4]. On
the contrary, the impedance is determined in a unique
way in the Stress-Impedance model.

The additional effect, which is supposed to describe
the difference between impedances with different wave
incidences (i. e. different values of k), is the tangential
force acting on the lined wall. It is described by the
friction coefficient f,, which is plotted in Fig 5.
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FIG. 5. (color online) Modulus and phase of the friction co-
efficient f, in the case with flow (Mo = 0.3).

The amplitude of the friction coefficient starts from 0
and increases to reach a maximum amplitude at 3.5 kHZ,
which is slightly higher than the resonance frequency of
Helmholtz resonators with flow (3.3 kHz). The phase of
the friction coefficient indicates that stress and pressure
are in opposition of phase at low frequencies. The phase
decreases regularly and the opposition of phase occurs
again at 3.8 kHz. This indicates that there is a char-
acteristic time delay (0.26 ms) between stress and pres-
sure. Looking at Fig 6, it can be thought that a part
of this stress comes from the unsteady force applied to
the vertical walls of holes by an hydrodynamic mode that
is created at the level of the upstream wall and that is
convected and amplified. This convection time may ex-
plain the delay between stress and pressure. However,
the results of the numerical simulation should be inter-

preted with caution because an artificial damping of the
hydrodynamic modes has been added near the rigid wall
to mimic the destruction of coherent structures by tur-
bulence (see Fig. 3 in [4]). This damping results in an
artificial change in momentum along the = direction. A
more precise numerical simulations (possibly including
turbulence, viscous and thermal effects) will have to be
carried out to analyze more precisely the forces exerted
by the lined wall on the fluid.

—
—

FIG. 6. (color online) Pressure field computed in a hole at
3600 Hz. The magenta curves (pg1 and pg2) represents the
pressure distribution on the vertical walls of the hole.

The acoustical effect of a lined wall with grazing flow
cannot be described by a single quantity independent of
the incident wave, like the wall impedance. At least two
quantities are needed. The two quantities used in this
Stress—Impedance model are the impedance and a fric-
tion factor which links the pressure to a tangential stress
at the wall. Compared to the previous model given in
[1], the use of a wall stress can help to better understand
the mechanisms of momentum transfer between the flow
and wall in the vicinity of an acoustic treatment.

Appendix A: Derivation of Egs. (8) and (9)

Assuming that the length scale of the variation of p
and ¢ along the axis y are much larger than J, these
functions can be developed for 0 < y < ¢ in p(y) =
Pw + 1y Y+ O0% pyy) and £(y) = &u + &, y + O(8* &)
where the prime indicates a partial derivative along y.
Integrating Eq. (6) from 0 to ¢ , yields, up to the order
d, to:

) ) )
/ Dypdy = ps — pu — / Qedy = / QPdy e, (Al)
0 0 0

Doing the same operation in the case where the flow is
uniform up to the wall leads to

Ps — Py = 02 Eu (A2)
Eliminating ps from these two equation leads to:
§ Q 2
b= [ 1= (o) we @y
0 0

which is Eq. (8).



On the same way, integrating Eq. (7) from 0 to d ,
yields, up to the order §, to:

5 ]{72
fs—é“w:/o <W—1> dy pw

Doing the same operation in the case where the flow is
uniform up to the wall leads to

k2
G—&u=0|57"1] Pw
03

Subtracting those two equations to eliminate &5 leads to:

K[ )
@*EJLZ*/ 1() a4y pu
2z J, 0

(A4)

(A5)

(A6)

which is Eq. (9).
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