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For acoustic waves in lined ducts, at given frequencies, the dispersion relation leads to a transcendental equation for the wavenumber that has to be solved by numerical methods. Based on Eckart explicit expression initially derived for water waves, accurate explicit approximations are proposed for the wavenumber of the fundamental mode in lined ducts. While Eckart expression is 5 % accurate, some improved approximations can reach maximum relative error of less than 10 -8 . The cases with small dissipation part in the admittance of the liner and/or axisymmetric ducts are also considered.

Introduction

In a duct with a locally reacting liner, a waveguide with admittance boundary conditions at the wall, the dispersion relation allows to calculate the wavenumbers as a function of the frequency and of the liner admittance [START_REF] Morse | Sound waves in Ducts and Rooms[END_REF] . Since this dispersion relationship leads to a transcendental equation, there is no closed form expression for the wavenumber and iterative numerical methods are most often used. In view of the numerous applications of lined ducts [START_REF] Aurégan | Slow sound in lined flow ducts[END_REF][START_REF] Eversman | The effect of mach number on the tuning of an acoustic lining in a flow duct[END_REF][START_REF] Jones | Comparison of acoustic impedance eduction techniques for locally-reacting liners[END_REF][5][START_REF] Farooqui | Guiding acoustic waves over obstacles using linear surface modes[END_REF][START_REF] Nayfeh | Acoustic propagation in ducts with varying cross sections[END_REF][START_REF] Campos | On the acoustic modes in a cylindrical duct with an arbitrary wall impedance distribution[END_REF][START_REF] Bi | An improved multimodal method for sound propagation in nonuniform lined ducts[END_REF][START_REF] Rienstra | A classification of duct modes based on surface waves[END_REF][START_REF] Vaidya | The propagation of sound in ducts lined with circumferentially non-uniform admittance of the form ηo+ ηq exp (iqθ)[END_REF] , it could be very interesting to have an accurate explicit expression of the wavenumber rather than a numerical value.

In the field of water waves, Eckart 121 gave an approximated value of the wavenumber with 5% accuracy on the whole frequency range. Thereafter, other explicit approximations, extremely accurate but also more complex, were proposed for water waves [14][15][16] . To the best of our knowledge, this type of explicit approximations of the wavenumber has not been used in acoustics although the dispersion relation of water waves and acoustic waves in lined ducts are very similar. In this letter, we first show how the Eckart formula and some of its improvements can be used to compute, with an accuracy of up to 2.8 × 10 -7 %, the wavenumber of the fundamental mode in a lined duct with a purely reactive admittance. Then, we present an extension of these explicit approximations from the two-dimensional (2D) case to the axisymmetric case. Finally, we show that we can also predict the wavenumbers when the real part of the admittance is slightly negative, modelling moderate dissipation in the liner.

It should be noted that the proposed explicit approximations are not valid for multimodal propagation and/or highly dissipative liners. Let us start by considering the sound propagation in a 2D waveguide where the lower wall is rigid while the upper wall is compliant and described by a admittance Y (Fig. 1(a)).

Application to Non-Dissipative admittance

2D case

When the distances are non-dimensioned by the height of the channel H, the Helmholtz equation, governing the propagation of the acoustic pressure p, is ∆p + k 2 p = 0, where k = ωH/c 0 is the reduced frequency, ω is the frequency and c 0 is the sound velocity. The boundary conditions are ∂ y p = 0 at y = 0, for the rigid wall and ∂ y p = Y p at y = 1, for the wall with liner. For a uniform admittance Y , the modal solution can be written under the form p = A cosh(αy) exp(i(-ωt + βx)), where

β 2 = α 2 + k 2 , (1) 
leading to the dispersion relation:

Y = α tanh(α). (2) 
To solve this equation with α as the unknown is the central subject of this paper. Of course, once α is found it yields the wavenumber β through Eq. ( 1). When Y > 0, a nice explicit approximation (coming from Eq. ( 2)) of α as a function of the admittance Y is given by the

Eckart formula 12 α E = Y tanh(Y ) . ( 3 
)
This relationship is valid for the fundamental mode (α real) and it takes into account the two limit cases: α 1 for which Y α 2 and α → +∞ for which Y α, giving a good approximation between these two limits. Eq. ( 3) holds for acoustic wave propagation in a 2D lined duct up to the resonance frequency of the liner (where Y → +∞). This is illustrated in Fig. 1(b) where α and then β are computed exactly as well as by the Eckart approximation.

In this case, the admittance is given by Y = k tan(kB) where B is the height of the liner made of lossless tubes non-dimensioned by H.

In the following, the error ε on an approximate transverse wavenumber α app is defined Another and much better approximation can be obtained by an empirical fit of the error of the Eckart approximation 16 which leads to explicit expression

using ε = |(α app -α)/α|
α 0 = Y + Y 1.986 e -(1.863+1.198Y 1.366 ) tanh(Y ) (4) 
that is called in the following the 1-Step approximation. Using this relation, the error is reduced to ε = 0.02% and is shown in blue dotted line on Fig. 2(a) that is indistinguishable from zero.The four coefficients of Eq. ( 4) were used as initial guess band (±1) in order to obtain formulas of the cases discussed later.

To increase further the accuracy of the prediction, it also possible to use the first iteration of the Newton method that can be written explicitly with a particularly simple expression. Considering α 0 as an initial value, we obtain the 2-Step approximation 15 :

α * = α 0 2 + Y cosh 2 α 0 α 0 + sinh α 0 cosh α 0 . (5) 
The error in α * is around 2.8 × 10 -7 % and is displayed in intends to apply directly, the Newton's method (Eq. ( 5)) with Eckart approximation (α E ) instead of α 0 , the error will be around 8.4 × 10 -3 %

Axisymmetric circular case

Often, practical situations involve circular ducts and the same type of work as in the 2D case can be done for axisymmetric circular ducts with liner. In dimensionless form, the equation governing acoustic pressure p in axisymmetric circular ducts in the transverse direction is

p + 1 r p +(k 2 -β 2 ) p = 0,
where k = ωR/c 0 is the reduced frequency and R is the duct radius.

The admittance boundary condition is ∂p ∂r = Y p for r = 1. For a uniform admittance, the solution is then searched under the form p = AI 0 (αr) exp(i(-ωt + βx)) where

α 2 = β 2 -k 2 ,
leading to the dispersion relation:

Y = α I 1 (α) I 0 (α) (6) 
where I 0,1 are the modified Bessel function of order 0 and 1. Following the idea of Eckart we obtain the new approximation

α E = Y I 1 (Y )/I 0 (Y ) . ( 7 
)
The maximal error for Y > 0 is then 7.56%. (see Fig. 2(a)).

As in 2D case, one can achieve a better accuracy by a 1-Step approximation α 0

α 0 = Y + Y 2.5285 e -(.0216+2.6034Y 0.4615 ) I 1 (Y )/I 0 (Y ) (8)
with an error that is around 0.93%. The corresponding 2-Step approximation α * has a 3.2 × 10 -5 % error as in Fig. 2(b):

α * = α 0 + J 0 (α 0 )(Y I 0 (α 0 ) -α 0 I 1 (α 0 )) α 0 (I 0 (α 0 ) 2 -I 1 (α 0 ) 2 ) ( 9 
)
If one intends to apply directly the Newton's method (Eq. ( 9)) with Eckart approximation (α E ) instead of α 0 , the error will be around 0.01%.

Application in dissipative Cases

2D case

The Eckart approximation, which is valid for Y real and positive, can be extended to cases of great interest for acoustics: the cases when the real part of the admittance is slightly negative corresponding to a moderate dissipation (given by a positive imaginary part of Y ).

The results of this continuation of the Eckart approximation in the complex plane is displayed in Fig. 3 tanh(Y ) (10) with a maximal error of 7% (Fig. 4(c)). The corresponding 2-Step approximation α * (Eq.

( (5)) with Eckart approximation α E (Eq. ( 3)) instead of â0 , the error is around 3.1%. 

2D Circular case

Following the same lines as previously, the Eckart approximation (Eq. ( 7)) error is around 11.5% as shown in Fig. 4 one can achieve 6.33% error using the approximation α0 = Y + Y 2.0583 e -(2.0334+0.3717Y 1.0407 )

I 1 (Y )/I 0 (Y ) . (11) 
The error in α * (Eq. ( 9)) will be 0.02% as in Fig. 4(f). On directly applying Newton method (Eq. ( 9)) with Eckart approximation α E (Eq. ( 7)) instead of α0 , the error will be around 1%. 

Conclusion

Explicit approximations for wavenumbers have been proposed to analyze the propagation in a lined duct. The very simple Eckart expression approximates with a reasonable accuracy the exact dispersion relation when the dissipation is weak and the imaginary part of the admittance is not too negative. It has been shown that the accuracy can be improved by introducing empirical corrections and/or by using the explicit first iteration of the Newton method. These explicit approximations may be used easily for practical purposes: explicit one-mode determination can simplify models based on low frequency acoustic wave propagation and several applications, in 2D ducts [START_REF] Aurégan | Slow sound in lined flow ducts[END_REF][START_REF] Eversman | The effect of mach number on the tuning of an acoustic lining in a flow duct[END_REF][START_REF] Jones | Comparison of acoustic impedance eduction techniques for locally-reacting liners[END_REF][5][START_REF] Farooqui | Guiding acoustic waves over obstacles using linear surface modes[END_REF][START_REF] Nayfeh | Acoustic propagation in ducts with varying cross sections[END_REF] as well as Axisymmetric ducts [START_REF] Nayfeh | Acoustic propagation in ducts with varying cross sections[END_REF][START_REF] Campos | On the acoustic modes in a cylindrical duct with an arbitrary wall impedance distribution[END_REF][START_REF] Bi | An improved multimodal method for sound propagation in nonuniform lined ducts[END_REF][START_REF] Rienstra | A classification of duct modes based on surface waves[END_REF][START_REF] Vaidya | The propagation of sound in ducts lined with circumferentially non-uniform admittance of the form ηo+ ηq exp (iqθ)[END_REF] , can be made simpler using this type of approximation at least as a starting point.
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 1 Fig. 1. (color online) (a) schematic description of the 2D problem for duct of height H with lining
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  for the 2D case. It can be seen that this approximation is accurate around Y = 0 and for (Y ) large. When (Y ) is negative the error increases quite rapidly with | (Y )|.The effect of the dissipation is weak when (Y ) is positive and large but adding dissipation significantly increases the error when (Y ) is low or negative. Then, the worst error is 20% corresponds to the largest negative (Y ) and the largest (Y ) that we have considered (Fig.4(a)). Following a procedure similar to the non-dissipative case, an improved 1-Step approximation is found as α0 = Y + Y 2.0987 e -(1.8340+0.6507Y 1.1891 )

  )) has only 0.28% error (Fig. 4(e)) for (Y ) ∈ [-0.5, ∞], (Y ) ∈ [0, 0.5]. Applying (Eq.
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 3 Fig. 3. (color online) Error of the Eckart approximation (Eq. (3)) in the complex plane of the

  (b). Then, Fig. 4(d) shows that, for Y Real ∈ [-0.5, ∞], Y Imag ∈ [0, .5],

  Fig. 4.(color online) Errors with respect to exact solution of Complex Admittance Y using
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for large α, Eckart [START_REF] Eckart | The propagation of gravity waves from deep to shallow water[END_REF] proposed an explicit approximation of α given by α = Y / f (Y ). For water waves, this explicit definition approximates α with 5% accuracy. 17 To evaluate this error, we start from a given α. From the dispersion relation Eq. 2, we obtain the associated admittance Y . Introducing this admittance in the approximated relation Eq.

3, we obtain the approximated α E and we can compute the error.
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