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Abstract: In the classification of the plant kingdom, the microalgae occupy a particular place 

from their geographical localization, their behavior with respect to the environmental 

constraints but also from their morphology, their physiology and their biochemistry. These 

various aspects make their cellular machineries very flexible and able to produce many 

organic molecules with various biological activities such as proteins, polysaccharides, 

pigments and lipids of interest. With regard to the lipids, microalgae are able to produce many 

varieties and great amounts of fatty acids, especially of polyunsaturated fatty acids, making 

them candidates of interest within the framework of the production and exploitation of lipids 

in various sectors of industry and health. These fatty acids present in the lipids produced by 

microalgae can be used alike manner as those resulting from marine sources of animal origin 

such as fish in the field from health. The aims of this chapter are to present the biochemical 

diversity of the lipids and the fatty acids contained in various species of microalgae of marine 

and freshwater environments. Then, this review will give examples of how these plant 

resources can represent an alternative to the animal ones, particularly fish, in the area of the 

prevention of pathologies such as cardiovascular diseases and cancers. 
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1. Introduction 

Microalgae are photosynthetic unicellular organisms belonging to phytoplankton and, as 

primary producers of marine and freshwater ecosystems, have large potential not only as 

feeding other organisms in the food chain but also as producer of several metabolites with 

high added value [1]. Among the total volume of water of the Earth, more than 95% are 

represented by marine water (oceans representing 70% of the area of the planet) while only 

3% was constituted by freshwater. There are over 50,000 different species of microalgae, 

found in benthic and littoral habitats, of which only a few have been characterized [2,3]. They 

include commonly organisms such as diatoms, dinoflagellates, green and yellow-brown 

flagellates and, sometimes, up to cyanobacteria. Most of the microalgae leave in suspension in 

the water column and movement can be detected during season variations, through blooms of 

algae and microalgae on area of the seas. The group of microalgae is diverse in morphology 

and in its biochemical composition, including pigments, lipids, fatty acids, vitamins, sterols 

and polysaccharides [4-6]. Therefore microalgae have a great potential in several economic 

fields such as aquatic nutrition and biodiesel production [5] and several culture conditions 

have been developed including laboratory scale conditions to produce microalgae with 

controlled parameters or outdoor production, for the industrial use. Actually, it is estimated 

that numerous active substances originating from marine organisms are used in the industry 

and can be used as an alternative source of chemically synthesized medicine in health, 

cosmetics, pharmaceuticals and new fuels [5,7-9].Beside their mediatic use as a source of 

biodiesel, microalgae also appears as an alternative source of lipids and especially 

polyunsaturated fatty acids (PUFAs) of interest for human health.  

 

2. Microalgae as an alternative source of lipids 

Because the common source for eicosapentaenoic acid (EPA) and docosahexaenoic acid 

(DHA), i.e. fish oil, fails to meet the increasing demand for purified EPA and DHA, 

alternative sources such as microalgae that may contain large quantities of high-quality EPA 

and DHA are considered as potential source of these economically-important fatty acids, 

especially under heterotrophic growth conditions that could reduced the costs of lipids 

production [10-12]. Indeed, numerous works have described microalgae as producers of 

various lipids, including neutral and polar lipids such as glycerides, phosholipids and 

galactolipids, and fatty acids having biological activities in health field and especially PUFAs 

of the n-3 series [5,7,13-21]. 
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The lipid content of algae, as expressed related to the microalga dry weight, is considered to 

be in a range of 1 to more than 70% according environmental conditions [22]. Lipids contain 

glycerol, oses, or bases esterified to fatty acids. Lipid analyses established that microalgae 

contain saturated, monounsaturated and polyunsaturated fatty acids (Figure 1). Among the 

fatty acids, the n-3 and n-6 series have interest [23]. However, numerous microalgae are 

known to contain various fatty acids. The main constituents of the lipid fraction of Chlorella 

vulgaris are oleic (18:1n-9), palmitic (16:0) and linolenic (18:3n-3) acids, accounting for 41, 

22 and 9% of the total amount, respectively [24]. In Dunaliella salina these fatty acids 

account for more than 80% of the total of fatty acids [25]. The diversity of fatty acids that can 

be produce by microalgae is also in function of length or unsaturation index. For example, 

Rodríguez-Meizoso et al. established the short chain fatty acid composition of the green 

microalga Haematococcus [26]. 

Actually, fish and fish oil are the main sources of long chain PUFAs (n-3) but it has been 

raised pollutants or toxins could be accumulated in fish. Moreover, the use of fish oil is quite 

poor partially due to problems linked with odor, taste and oxidative stability [27]. 

Consequently, production of long chain n-3 PUFAs by microalgae is in increasing 

development for incorporation into infant milk formulations and for use as dietary 

supplements and food additives [27]. Under optimal culture conditions, Chlorella minutissima 

can produce an EPA content of up to 45% of its total fatty acid content [20]. Microalga such 

as Porphyridium sp., which shows a relatively low lipid content, contains significant amounts 

of several major fatty acids such as palmitic acid, ARA (20:4n-6), EPA (20:5n-3) and linoleic 

(18:2n-6) acid [28,29]. Spirulina provides an interesting source of γ-linolenic (18:3n-6) acid 

(20–25% of the total lipid fraction), a precursor of prostaglandins, leukotrienes and 

thromboxans involved in the modulation of immunological, inflammatory and cardiovascular 

responses [30]. This microalga is also a natural source of active fatty acids such as lauric 

(12:0), palmitic and oleic acids, with the n-3 fatty acid DHA (22:6n-3) accounting for up to 

9.1% of the total fatty acids content [31]. Used as dietary supplement, microalgae rich in EPA 

or in DHA, Odontella aurita and Isochrysis galbana, respectively, have been reported to have 

beneficial effects in health [17,32]. 

Microalgae are known to produce and accumulate n-6 PUFA. One of the most studied 

microalga is the green freshwater Parietochloris incisa because is the richest plant source of 

arachidonic acid (ARA). In this microalga, ARA is incorporated into the triacylglycerols 

(TAG) while usually, saturated or monounsaturated fatty acids resides in these lipids. This 

microalga has the ability to transfer ARA from TAG to polar lipids according to 
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environmental temperatures. Indeed, from 25°C to 12 or 4°C, ARA is incorporated into the 

PC and DGTS polar lipids [33]. This ability can be interesting according the bioavailibility of 

fatty acid depending on lipid in which they are incorporated, for human nutrition  

Beneficial effects of marine food ingredients and dietary supplements are generally due to the 

n-3 PUFAs, specifically EPA and DHA. As described above microalgae contain not only n-3 

PUFA but also unsaturated or n-6 fatty acids. In the following sections, benefits ascribed to 

the n-3 PUFAs will be described in the context of cardiovascular diseases and cancer. 

 

3. Microalgae PUFAs and health benefits  

Microalgae represent a major resource of valuable bioactive compounds and biochemicals 

such as pigments, polysaccharides, sterols, polyunsaturated fatty acids and vitamins with 

potential applications in the food, pharmaceutical and cosmetics industries [4-6,34]. 

Therefore, the health benefits of microalgae are being investigated and more recognized and 

appreciated within the last three to four decades, especially since the introduction of probiotic 

nutritional supplements [35]. Beneficial health effects of food ingredients and dietary 

supplements are attributed to a great extent to long chain polyunsaturated fatty acids (LC-

PUFAs). These LC-PUFAs cannot be synthesized by higher plants and animals and only 

healthy human adults are able to elongate 18:3n-3 to EPA in an extend lower than 5% and 

convert EPA to DHA in a rate inferior to 0.05%, being inhibited in childhood and elderly life 

[36,37]. However, some microalgae have the ability to synthesize LC-PUFAs with particular 

interest (Figure 4), namely γ-linolenic acid (GLA, 18:3n-6, Arthrospira), ARA (20:4n-6, 

Porphyridium), EPA (20:5n-3, Nannochloropsis, Phaeodactylum, Nitzschia, Isochrysis, 

Diacronema) and DHA(22:6n-3, Crypthecodinium, Schizochytrium) [14,19,27,38,39].  

LC-PUFAs, especially of n-3 and n-6 series such as EPA, DHA, and ARA are considered 

pharmacologically important for dietetics and therapeutics [34] and have been used for 

prophylactic and therapeutic treatment of chronic inflammations (rheumatism, skin diseases, 

and inflammation of the mucosa of the gastrointestinal tract). Also, they are believed to have a 

positive effect on cardiovascular diseases, coronary heart diseases, atherosclerosis, 

hypertension, cholesterol, and cancer treatment [35].  

 

3.1. Cardioprotective effects of n-3 PUFAs  

There are some epidemiologic data indicating that populations with a high intake of n-3 

PUFAs, such as Eskimos and Japanese in fishing villages, have a low risk of cardiovascular 

diseases [40,41]. There is convincing evidence that marine products (fish or microalgae) rich 
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in n-3 LC-PUFA (especially in EPA, 20:5 n-3 and DHA, 22:6 n-3) reduce the risk of 

cardiovascular diseases (CVD) and a dietary deficiency in n-3 LC-PUFA is firmly linked to 

increased morbidity and mortality from coronary heart disease.  

In the literature, recommended daily intakes of n-3 LC-PUFA vary from 200 mg to 1 g EPA 

and DHA [42]. Recent evidence shows that the intake of EPA and DHA is inversely related to 

cardiovascular risk in a dose-dependent manner up to about 250 mg/day in healthy 

populations, and intake of 1 g/day is associated with a marked protection from sudden cardiac 

death [43-46]. 

In fact, n-3 PUFAs have the ability to reduce the risk of cardiovascular disease, through a 

reduction of factors involved in metabolic syndrome development, by modification of serum 

lipid profile. The main effect of n-3 PUFAs on plasma lipids is a reduction of the 

concentration of plasma triacylglycerols. EPA and DHA are mainly involved in a reduction of 

TAG synthesis and adiposity. During obesity, the body mass index and waist circumference 

are inversely correlated with EPA and DHA intakes [47]. These effects are attributable to the 

increased lipolysis and decreased lipogenesis, mainly in the liver, that have a central role in 

the control of whole-body lipid homeostasis [48]. In addition, there are several reports 

indicating that consumption of n-3 PUFAs increases the levels of plasma HDL-cholesterol in 

human [49-51]. Hypotensive effects of n-3 PUFAs have been shown in animal and clinical 

studies, and seem to be correlated to the plasma phospholipids composition in EPA and DHA 

that contribute to modulation of membrane fluidity, activities of membrane enzymes and 

receptors, and production of eicosanoids [52]. n-3 PUFAs consumption has been associated 

with the regulation of eicosanoid production which are bioactive substances that influence 

various functions in cells and tissues being important in the prophylaxis and therapy of 

chronic and degenerative diseases including reduction of blood cholesterol, protection against 

cardiovascular, coronary heart diseases, atherosclerosis, diabetes, hypertension and metabolic 

diseases [53-56]. Other important role of n-3 PUFAs is attributed to gene expression 

regulation, as well as cholesterol and fasting triacylglycerol (TAG) decreases [57].  

The cardioprotective effects of the n-3 PUFAs has been reported through many 

epidemiological studies in human and animal models but also in cell culture studies [58-61]. It 

has been shown that n-3 fatty acids improve disorders related with obesity increasing the fatty 

acid beta-oxidation and the adiponectin levels in serum of obese rats [62]. 

In type 2 diabetes patients, dietary EPA and DHA have been shown to reduce TAG and 

VLDL-cholesterol levels and to increase the HDL-cholesterol level, in blood [63]. Patients 

with dyslipidemia have been shown to have significant decrease in blood TAG and increase in 
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HDL-cholesterol after a consumption of EPA and DHA during 3 and 6 months [64]. Adan et 

al. showed that EPA and DHA feeding reduces serum cholesterol and TAG levels, and 

decreases platelet aggregation in hypercholesterolemic rats [65]. 

Recent studies in hypercholesterolemic rats have shown that DHA supplementation reduced 

total weight gain, adiposity index, HDL-cholesterol and glucose plasmatic concentration 

regardless of the dose and form of supplementation [66]. In addition EPA and DHA also play 

a key role in normalizing platelet hyper-aggregability. When added to the diet, EPA and DHA 

can alter the phospholipid membrane composition of the cells, and impact on the synthesis 

and action of eicosanoids, and regulate transcription factor activity and abundance [67-70]. 

 

Microalgae LC-PUFAs and cardiovascular diseases (CVD) 

Many studies have reported high amounts of n-3 fatty acids such as EPA and DHA in fish and 

other marine sources such as microalgae [5,20,21]. Fish oil supplements and other sources 

such as microalgae provide EPA and DHA usually used for human diets [17,71]. For 

example, the marine diatom Odontella aurita is one of the microalgae known to be rich in 

EPA and currently approved as a dietary supplement [6,17]. During dyslipidemia in rats, the 

use of the marine diatom Odontella aurita has shown beneficial effects as a reduction in the 

risk factors for high-fat induced metabolic syndrome such as hyperlipidemia, platelet 

aggregation and oxidative stress [17]. Due to its ability to produce PUFAs, mainly DHA and 

EPA, the microalga Isochrysis galbana [72] induced a decreased glucose, triacylglycerol and 

cholesterol blood levels in alloxan-induced diabetic rats. However, an increased light-density 

lipoprotein level and a decreased high-density lipoprotein level were observed in the diabetic 

rats, but also in the healthy ones [32]. 

Some studies showed beneficial effects of Chlorella, especially when administered on the 

presence of underlying disorders such as in streptozotocin induced diabetes rats [73,74]. 

Cherng et al. also showed that Chlorella pyrenoidosa has the ability to prevent dyslipidemia 

in rats and hamsters models fed chronic high fat and could be potential in use to prevent 

intestinal absorption of redundant lipid from daily intake and subsequently to prevent 

hyperlipidemia as well as atherosclerosis [75]. Feeding animals with Chlorella pyrenoidosa 

enhances the hypoglycemic effects of exogenous insulin at a dose, which does not produce 

hypoglycemia in streptozotocin-induced diabetic mice, suggesting that insulin sensitivity is 

increased in these mice [73,74]. In rabbit fed a high cholesterol diet for 10 weeks, Chlorella 

vulgaris, another species of Chlorella, showed anti-lipidemic and anti-atherosclerotic actions 
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[71]. Another observation has indicated that Chlorella intake can reduce cholesterol levels in 

patients with hypercholesterolemia [76]. 

Arthrospira sp. (Spirulina sp.) grows profusely in certain alkaline lakes in Mexico and Africa 

and has been used for ages as food by local populations [77]. It is extensively produced 

around the world (3000 tons/year) and broadly used in food and feed supplements, due of its 

high protein content and its excellent nutritive value, such as high γ-linolenic acid level (20–

25% of the total lipid fraction) [78,79], which is a precursor of prostaglandins, leukotrienes 

and thromboxans involved in the modulation of immunological, inflammatory and 

cardiovascular responses [30]. In addition, this microalga has various possible health 

promoting effects: the alleviation of hyperlipidemia, suppression of hypertension, protection 

against renal failure, suppression of elevated serum glucose level [27], anticarcinogenic 

effects and have hypocholesterolemic properties [80]. 

The dinoflagellate Crypthecodinium cohnii seems the most efficient microrganism for the 

large-scale production of DHA devoid of EPA. The marine protists Thraustochytrids offer 

promising possibilities for DHA and other major PUFA production. Crypthecodinium cohnii 

as well as Thraustochytrium and Schizochytrium are able to produce large biomass and lipid 

amounts, and DHA at levels up to 60%. Now, organically produced DHA-rich microalgae oil 

is available. Clinical trials with DHA-rich oil indicate comparable efficacies to fish oil for 

protection from cardiovascular risk factors by lowering plasma triglycerides and oxidative 

stress [81,82]. 

 

3.2. Cancer preventive effect of n-3 PUFAs 

Although increased fat consumption has been associated with the development of specific 

types of cancer such as breast, colonic and pancreatic cancer, epidemiological studies have 

shown that the rate of breast cancer is 4 to 5 times higher in Western countries that in Japan 

suggesting that diet, and particularly diet rich in n-3 and n-6 long-chain polyunsaturated fatty 

acids (PUFAs), may have an influence on tumor emergence (reviewed in [69,83,84]). 

Saturated fatty acids and mono-unsaturated fatty acids have been shown to have only a weak 

effect on promoting tumors whereas n-6 PUFA have been associated with a greater capacity 

to induce tumor formation [83,85]. By contrast, n-3 PUFAs are thought to have a cancer 

preventive action and a high dietary intake of fish is associated with a lower incidence of 

cancers [86-88]. However cohort studies that examined the effect of n-3 PUFAs on breast, 

colorectal and prostate cancer incidence yielded mixed results, and most of them did not show 

a significant association between n-3 PUFAs consumption and cancer risk [89-91]. 



8 
 

Nevertheless the Women’s Intervention Nutrition Study (WINS) provided evidence that a 

reduction in dietary fat intake to 22% of total energy intake led to a 24% reduction in the 

recurrence rate of breast cancer [92]. Similarly, a recent meta-analysis of data from 489 000 

individuals showed insufficient evidence of a protective effect of n-3 fatty acids on colorectal 

cancer risk [93]. However, a reduced risk observed in men warrants further investigations 

[93]. Besides, about 20 clinical studies have investigated the use of n-3 PUFAs from fish oil 

or purified EPA and DHA in the treatment or prevention of cancer cachexia suggesting the 

interest of long chain PUFAs as adjuvant of conventional cancer therapy [84,94-97]. 

Marine microalgae have been identified as an important alternative source of DHA and EPA 

and could be used to replace fish oil which may be depleted in the future by the 

overharvesting of n-3 PUFA rich fish [21,98]. Indeed algal oils rich in DHA are nutritionally 

equivalent to fish oils in several tests [98] and extracts from the marine EPA-rich microalgae 

Odontella aurita demonstrated anti-proliferative effect on cultures of bronchopulmonary and 

epithelial cells [99]. The mechanism by which DHA and EPA could provide protection 

against the appearance of a tumor, or directly influence cancer cells by reducing their 

malignancy, remains unclear, since cohort studies do not reveal any correlation between fat 

intake and cancer [89,100]. Nevertheless, some evidence hints that DHA not only acts as an 

anti-proliferative agent by lengthening the cell cycle between the G2/M transition [101], but is 

also a proapoptotic factor, increasing caspase-3 and the Bax protein level [102,103]. In 

addition, DHA has been shown to affect cell proliferation, whatever its source (i.e., fish oil or 

microalgae) [104]. It has also been shown that the n-3 PUFAs and DHA, in particular, can act 

on lipid peroxidation as well as on the proteins implicated in the ROS mechanism leading to 

cell death [105,106]. It is also possible that DHA can induce several different pathways 

leading to apoptosis, and in particular, the Bax pathway that has been described for the HL60 

cell line [103]. Besides, other authors have shown that DHA has a cytotoxic effect on cancer 

cells by decreasing the level of superoxide dismutase 1, allowing an increase in lipid 

peroxidation to occur [107]. This suggests that DHA could reduce tumor numbers by acting as 

soon as a cell begins to change and becomes pre-cancerous; this might explain the low level 

of breast cancer in populations with a high DHA diet. Furthermore, one of the main problems 

in most of cancer is the ability of cancer cells to metastasize and some studies have shown 

that diet can affect the metastatic potential of cancer cell lines known to have a high 

metastatic phenotype (reviewed in [69]). 

 

Effect of n-3 PUFAs on Cancer Cell Proliferation and Apoptosis  
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Several studies showed that DHA and EPA together or alone inhibit the growth of cancer cell 

lines [108-112] In addition DHA was shown to act both as an antiproliferative agent by 

lengthening the cell cycle between the G2/M transition [101], and as a proapoptotic factor 

(Figure 2), increasing Bcl-2, procaspase-8, and caspase-3 activity in cancer cell lines 

[70,102,113]. Incorporation of n-3 PUFAs in membranes decreased arachidonic acid (AA) 

content and n-6/n-3 PUFA ratio in the membranes, without modifying the unsaturation index 

[114]. Consequently, the modification of AA metabolism, especially the inhibition of the 

production of eicosanoids, may explain in part the antiproliferative and proapoptotic effect of 

n-3 PUFAs [115,116]. Associated with growth arrest and apoptosis, an increased lipid 

peroxidation and ROS production was reported in n-3 PUFA-treated cancer cells 

[105,106,117-122] suggesting a role for ROS in mediating antiproliferative effect of n-3 

PUFAs. Indeed the reduced form of glutathione (GSH) as well as cytosolic glutathione 

peroxidase activity were decreased in cancer cells treated with DHA [106,119,121] whereas 

main antioxidant enzyme activities (i.e., superoxide dismutase and catalase) were increased 

[106,119]. However, some differences between DHA and EPA may be noted as reported in 

glioblastoma cells where the levels of reactive oxygen species and thiobarbituric acid-reactive 

substances were significantly higher in DHA-treated cells than in EPA- and AA-treated 

groups [119]. Finally the use of various antioxidant molecules was shown to inhibit n-3 

PUFA-induced apoptosis suggesting the involvement of lipid peroxidation-derived ROS 

[105,106,117-122]. 

The n-3 PUFAs may also exert their growth inhibitory effects on cancer cells by altering the 

plasma membrane composition and associated signaling events [68]. One emerging view is 

that DHA-containing phospholipids modify the biophysical organization of the plasma 

membrane which in turn modifies protein activity and cellular functions [123-127]. Model 

membrane studies suggest that the energetically less favorable interaction between cholesterol 

and PUFA, especially DHA, promotes lateral phase segregation into sterol-poor/PUFA-rich 

and sterol-rich/saturated fatty acid-rich microdomains [126,128,129]. Since lipid rafts are 

predominantly enriched in saturated fatty acids containing sphingolipids and cholesterol, the 

incorporation of PUFA, especially DHA, determines in cancer cells a disruption of lipid rafts 

and a formation of the PUFA-rich/cholesterol-poor non-raft domains [125]. The effect of n-3 

PUFAs on lipid rafts and their signaling pathways has been studied in several cell types with 

cancerous origin or not [130]. Particularly, the raft marker caveolin-1 is partially displaced on 

treatment with DHA and EPA [131,132]. In the MDA-MB-231 breast cancer cell line, 

Altenburg and Siddiqui showed that n-3 PUFAs exposure resulted in a decreased level of the 



10 
 

chemokine receptor CXCR4, which requires intact lipid rafts for signaling [133]. Schley et al. 

have shown in the MDA-MB-231 cell line that a combination of EPA and DHA induces a 

modification in the lipid raft composition including fatty acids, phospholipids, cholesterol, 

ceramides, and DAG content of membrane rafts [134]. These alterations of lipid content are 

accompanied by a decrease of EGFR in rafts and an increased whole cells level of 

phosphorylated EGFR and p38 MAPK [134]. Increased phosphorylation of EGFR and p38 

was already reported as a proapoptotic signal in cancer cells [134-138]. Furthermore DHA 

induces the upregulation of EGFR tyrosine phosphorylation and the increase of EGFR 

association with the Sos1 guanine nucleotide protein exchange factor in cancer cell lines 

including MDA-MB-231 [139]. These data suggest that EGF/Ras/Erk signaling is being 

disrupted in DHA-treated breast cancer cells by the exclusion of EGFR protein from lipid raft 

microdomains [134,139]. Corsetto et al. have recently examined the PUFA incorporation in 

breast cancer lipid rafts and showed that PUFA are incorporated preferentially in 

phosphatidylinositol, phosphatidylserine, and phosphatidylcholine that may be relevant to the 

formation of biologically active metabolites such as prostaglandins, prostacyclins, 

leukotrienes, resolvines, and protectines [125]. These authors conclude that while EPA may 

contribute to cell apoptosis mainly through a decrease of AA concentration in lipid raft 

phospholipids, DHA may change the biophysical properties of lipid rafts decreasing the 

content of cholesterol and the distribution of key proteins such as EGFR, Src, heterotrimeric 

G-proteins subunits, or sphingomyelinase. Indeed DHA decreases the sphingomyelin content 

in lipid rafts of breast cancer cell lines [125]. This might be due to an activation of 

sphingomyelinase, leading to the production of ceramide, which is well known to be 

associated with apoptosis and cellular stress [140-143]. Increased activity of the neutral 

sphingomyelinase in response to EPA and DHA treatment was previously reported in Jurkat 

leukemic cells [116] and n-3 PUFA-mediated alteration of lipid rafts was linked to oxidative 

stress modulation [123]. In human endothelial cells, DHA reduced oxidative-stress-induced 

calcium influx through modification of lipid raft composition [127]. Then PUFAs appeared as 

proliferation inhibitors and apoptosis inducers in cancers at least in part through remodeling 

of lipid rafts, MAPK and ROS pathways [69]. 

 

PUFA-Induced Inhibition of Cell Migration and Invasiveness  

Because metastasis is the leading cause of death from cancer, reducing the invasive potential 

of cancer cells is almost as important as destroying in the primary tumor. Recently, we 

showed that DHA reduces the invasive potential of the MDA-MB-231 breast cancer cell line 
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(Figure 3) [113]. Interestingly cholesterol levels in lipid rafts, which are altered by n-3 PUFA 

[134], are critical for the migration, invasion, and angiogenesis of cancer cells [144]. As an 

example, methyl-β-cyclodextrin reduced uPAR and matrix metalloproteinase-9 (MMP-9) 

colocalization in lipid rafts and inhibited breast carcinoma cell migration and invasion [144]. 

In addition the DHA induced reduction of breast cancer cells migration may also be due to 

inhibition of voltage-gated Na+ channels [145,146]. Indeed DHA inhibits voltage-gated Na+ 

channels (neonatal Nav1.5) in a dose-dependent manner, and tetrodoxin, a compound that 

specifically blocks this type of channels, reduces MDA-MB-231 cell migration at the same 

level that observed in the presence of DHA [146]. The authors concluded that DHA-induced 

suppression of cellular migration occurred primarily via down-regulation of voltage-gated 

Na+ channel mRNA and functional protein expression [146]. Moreover voltage-gated Na+ 

channels localization in lipid rafts, such as shown in cardiac cells [147], may be affected by 

PUFAs [145]. As another example, exposure of MDA-MB-231 breast cancer cells to n-3 

PUFAs results in decreased surface levels of the main chemokine receptor CXCR4, and in a 

reduction of the CXCR4 ligand-dependant migration of cells [133]. This suggests that the 

disruption of required lipid raft domains for CXCR4 signaling and the displacement of 

CXCR4 from the lipid raft domains are potential mechanisms behind the inhibited migratory 

response after DHA and EPA treatment [133].  

 

4. Conclusion 

The use of microalga in our lifespan will continue to be more and more attractive as many 

molecules derived from these microorganisms can be beneficial to our health and particularly 

in the metabolic disease and cancers [5,6]. Microalgae can be considered as the future main 

providers of PUFAs and other metabolites having high added values [5]. A selective 

modulation of the production of these molecules by microalgae might be possible. In this way 

it is of interest to increase our knowledge about the control of carbon metabolism in these 

organisms and their growing parameters such as the water temperature, pH, salinity, light and 

nutrients under a stress condition [148,149]. For example it is known that astaxanthin is 

preferentially produced by Haematococcus pluvialis under light stress [148]. Consequently, 

this brings to biotechnological perspectives to produce nutraceutics compounds in both food 

and pharmaceutical industries. Food industry will be able to produce these nutraceutics for 

new food processes in order to fight against obesity and big pharma will be able to use the 

microalga potential as well to research new natural molecules with a better target against 

some cancers that can improve lower side effects on patients. Indeed the potential of DHA has 
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already been shown as an adjuvent in chemotherapy [150]. Finally the relative amounts of n-6 

PUFA to n-3 PUFAs may be more important for cardiovascular disease and cancer risk than 

individual dietary amounts of these fatty acids, and PUFAs may also have interesting 

synergistic effect with canonical treatments that make them considered as powerful nontoxic 

adjuvants [84,94-97]. 
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 Figure Legends 

Figure 1. Marine microalga n-3 fatty acids and major polar lipids. A, α-linolenic acid (ALA, 

18:4n-3), octadeca-9z,12z,15z-trienoic acid; B, eicosapentaenoic acid (EPA, 20:5n-3), eicosa-

5z,8z,11z,14z,17z-pentaenoic acid; C, docosahexaenoic acid (DHA, 22:6n-3), docosa-

4z,7z,10z,13z,16z,19z-hexaenoic acid; D, monogalactosyldiacylglycerol (MGDG); E, 

digalactosyldiacylglycerol (DGDG); F, sulfoquinovosyldiacylglycerol (SQDG); G, 

phosphatidylglycerol (PG). 

 

Figure 2. DHA-induced apoptosis in the MDA-MB-231 breast cancer cell line. Nuclear 

staining by Hoechst method of: A, control cells with normal nuclei; B, C and D, 72h-treated 

cells (100 µM DHA) showing apoptotic nuclei with condensed nuclear bodies (arrows). Bars 

correspond to 25 µm. 

 

Figure 3. Reduction of the invasive potential of breast cancer cells by DHA. The MDA-MB-

231 cell line was treated with 100 µM DHA for 24h incubation then invasive cells were 

counted using Boyden chamber's assay with Matrigel®. 
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