
HAL Id: hal-01906088
https://univ-lemans.hal.science/hal-01906088

Submitted on 26 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Kullback-Leibler divergence as an estimate of
reproducibility of numerical results

Florent Calvayrac

To cite this version:
Florent Calvayrac. Kullback-Leibler divergence as an estimate of reproducibility of numerical results.
2015 7th International Conference on New Technologies, Mobility and Security (NTMS), Jul 2015,
Paris, France. �10.1109/NTMS.2015.7266501�. �hal-01906088�

https://univ-lemans.hal.science/hal-01906088
https://hal.archives-ouvertes.fr


Kullback-Leibler divergence as an estimate of

reproducibility of numerical results

Florent Calvayrac
Institut des Molécules et Matériaux du Mans

LUNAM UMR6283

Faculté des Sciences et Techniques Université du Maine

F-72085 Le Mans Cedex France

Email: Florent.Calvayrac@univ-lemans.fr

Abstract—In large software projects using nu-

merical solutions of equations, small changes in

compiler options or parallelization methods can in-

duce slight variations in the last digits of floating

point numerical results, due for instance to the non-

commutativity of operations. Unfortunate changes in

the code (bugs) can induce even larger deviations in

the results. We propose to use the Kullback-Leibler

divergence estimated from the compression ratio of

the results compared to reference results in order to

automatically quantify those changes and automatize

regression tests of numerical codes in software forges.

We use the TDDFT PW-TELEMAN project as an

example.

Index Terms—Kullback-Leibler, numerical, repro-

ducibility, software forge

I. INTRODUCTION

It is well known that a priori semantically

identical changes in a program computing a

numerical solution to a mathematical problem,

for a given numerical precision, can neverthe-

less influence numerical results, not speaking

of programming errors. One thinks for instance

of the compiling options used, the compiler

suite chosen, the number of processors used

in a parallel implementation, or underlying

hardware or operating system,

Indeed, numerical operations in a computer

are not associative, therefore the final result

might depend on the order of execution of

these operations, which is unpredictible on a

parallel computer or a GPU. Besides, IEEE

standards for the floating point representation

of real numbers and operations are not com-

plely respected when high-performance com-

piler options are chosen, such as when the

floating point division is replaced by an inverse

multiplications, or power functions or square

roots are approximated. Some processors such

as the Intel family do not respect the IEEE

standard by default (they actually exceed it)

unless explicitely specified in the compiler

options, with a performance penalty.

Therefore, a comparison of output files of

numerical programs on various installations

will always lead to some discrepancies, espe-

cially in the last digits of the results, even if

the code and the inputs are unchanged. Regres-

sion tests after a code change for performance

reasons, or an addition of features, based on

a straightforward comparison of results will

always detect bugs, when a manual inspection

will show that bugs have not been introduced

in the sources.

Except for manual inspection and plotting of

results, it is hard to quantify if the results of a

numerical code have changed in a significant

way when some change has been applied in

the process leading to the production of those

results. This is especially true for codes using

iterations in imaginary time to find stationary

solutions of partial differential equations. In

this case, the number of iterations to achieve a

given numerical precision can vary when some

parameter is changed, but nevertheless the end



result is essentially the same if no mistake

has been made in the coding process, up to

a few digits in the last part of the numerical

representation. Only a specific extraction of

the results of the last iteration, along with a

problem-specific distance criterion in between

the reference result and the instance being

tested, can give a satisfying automatic measure

of the quality of the numerical result. Never-

theless, such an extraction is not automatic in

the sense that it is problem-dependent.

Besides, in some application domains of nu-

merical computations such as the aeronautical

world, safety rules ask that the results of a

specific code, for instance in finite elements

calculations, can be reproduced bit for bit. This

can be tricky considering that even in a space

of a few years many unsuspected parameters

can change in a computer system ; some au-

thors have even proposed that virtual machines

should be provided with a full environment

and run on emulators in order to ensure full

reproductibility of numerical experiments.

Some vendors such as Intel now provide

libraries that guarantee numerical reproducibil-

ity of results, in exchange for a performance

penalty.

In this paper we discuss a method to auto-

matically estimate the changes in the output

of a numerical code, without having to define

problem-dependent metrics, or having to dig

too deep in the hardware or software used,

for instance by changing the rules of floating

point operations in order to guarantee a non-

changing result, as some authors propose, or by

doing statistical analysis of results, which can

be problem-dependent and time consuming.

II. METHOD

We implemented a simple and universal

method which, given two sets P and Q of

results of a numerical code, estimates the so-

called Kullback-Leibler [1] divergence D from

cross-entropies D = H(P,Q) − H(P ). This

formula is not symmetrical under exchange of

P and Q, but could be easily symmetrized,

without bringing much more information. If the

two sets of results are identical, D will be zero.

The present approximate implementation for

this estimation consists in the computation of

De =
S(C(P + P ))− S(C(P +Q))

S(C(P + P ))

where S is the file size obtained by using the

C nondestructive compression program. Here

+ is the file concatenation operator and − is

the traditional substraction. For several well-

known compression programs C such as bzip2,

gzip,compress, or zip, the information entropy

in the compressed file is indeed strongly in-

creased, and the reduction in file size after

compression roughly reflects the information

entropy of the original file.

We think that using a compression program

helps to create an algorithmic expression of the

contents of the output of the numerical code,

even if the output, as a text file, contains vary-

ing information when for instance the compiler

options are changed, the compiler changes, or

the number of iterations changes, since the

results are essentially similar from one itera-

tion to the next and compress very efficiently

with modern file compression programs. Many

programs used in physics or chemistry indeed

only output one text file from which various

numerical results have to be extracted after

the run, depending on the need, and those

results are mixed with various informations

such as iteration number, convergence criteria,

parallelization choices, etc, which are fairly

repetitive and thus are well suited to nonde-

structive file compression programs. The same

goes for numerical results, in which we found

a quite high potential for compression, since

they do not change significally from one small

step iteration to the next, and exhibit many

similarities in a given file even if the number

of iterations to achieve convergence differ.

III. RESULTS AND DISCUSSION

First, we will discuss some of the numer-

ical optimizations which we noticed induced



slight changes in numerical results of a typical

large-scale numerical project, namely the so-

called PW-TELEMAN effort on which we have

been working for a number of years in an

international collaboration [2], [3]. This code

has been recently open-sourced in a software

forge on http://www.pw-teleman.org where the

present implementation is also avalaible in

the form of scripts. This code solves the

time-dependent functional theory equations in

real time on a regular numerical grid, within

the local approximation in time and space,

which generates a set of non-linearily coupled

one-particle Schrödinger equations, to be first

solved to find a stationary solution, which is

then submitted to a time-dependent perturba-

tion, allowing to compute a wealth of observ-

ables such as electronic emission currents.

A. Examples of optimizations changing numer-

ical results

The first step consisted in optimizing the

FFT routines which are used to compute the

kinetic energy of the electrons by going to

reciprocal space and also to solve Poisson’s

equation. Historically the NETLIB library was

used [4]. In 2012, a move to the FFTW3

library [5], optionally coupled to the Intel MKL

library, has been successfully implemented,

and has allowed a typical speedup of 50 %. A

second effort, done in parallel to the previous

step, was devoted to a further parallelization of

the code. A MPI parallelization already existed

since more than 15 years, with a distribution of

propagation of the wave functions over the pro-

cessors and a reduction of the density in order

to compute the coulombic potential as well as

the exchange-correlation potential by sharing

the grid across the processors. An implementa-

tion in OpenMP in the same spirit has been also

achieved in 2012 by P.-G.Reinhard. However,

the migration from FFTW3 to FFTW3-OMP

does not bring a significant speedup of the cal-

culations. Another implementation, using MPI

instead, has been done on the grid points, on

top of that done on the wave functions. Indeed,

the size of the computation box is one of

the major bottlenecks of our code. One can

occasionally uses about 250 000 grid points,

but the standard is more close to a million,

and sometimes even more than a million and a

half. Meanwhile, the CPU time almost linearly

scales with the number of points. This is why in

2013, a MPI parallelization on the grid points

has been implemented. The speedup compared

with a serial calculation, using FFTW3, ranges

from 2 (for 24 wave functions, box size of

963, and 16 processors) to 15 (for 240 wave

functions, box size of 963 and 48 processors).

There is of course a compromise between the

number of processors, the box size and the

number of wave functions to be found. Indeed,

increasing the number of processors does not

systematically enhance the speedup because

one then increases the number of communi-

cations between the processors.

During the past two years, the use of GPU

cores has also been tested, first by using ready-

made versions of FFTW and linear algebra

routines (CULA). With one GPU core per CPU

core, the typical gain is about 1.5 compared to

the FFTW3 version. We then started to repro-

gram in the CUDA language the calculation of

the exchange-correlation potential and of the

multipoles used in the FALR method to com-

pute the coulombic potential, as well as various

field transform operations. On a mixture of

cases, the typical speedup went to a factor of

3, using either a combination of cheap CPUs

and GPUs (GTX280) or top of the range ones

such as K20. A further speedup to a factor of

4-5 was achieved using asynchronous memory

transfers in order to increase the utilization of

GPUs, the constant memory transfers bringing

a huge performance penalty, and finding the

optimal register size and block sizes for each

GPU (typically, 72 registers on a K20, block

sizes of (64,1,1) for 3D grid operations and

(512,1,1) for FFTs).

When using a MPI parallelization on the

wave functions on top of the use of GPUs (one

GPU per core), a speedup by a factor 3 vs



Fig. 1. Typical results on the PWTELEMAN library for

various options

the pure MPI case on CPUs is also attained

because the asynchronous transfers are very

hard to coordinate in this case.

All possible compilations options and avail-

able compilers (here, the latest versions of

GFORTRAN and Intel Fortran) are combined

with a shell script, generating a set of exe-

cutable files, which are then run on the speci-

fied examples, with a varying number of pro-

cessors and GPUs.

B. Discussion of the results

We present on figure 1 the results of a typ-

ical analysis of output files with the presently

discussed method, for the same input file,

namely a carbon dimer represented on a 1283

cubic grid of points separated by 0.4 a.u,

inducing first the computation of the ground

state, then 1000 time steps. The corresponding

input file is given as C2-128 in the samples

of the distribution of PWTELEMAN. All the

combinations of options and a ranging on the

number of processors used gave rise to more

than 1000 results ; here we give the results

for the lowest values of the divergence, close

to average values (5 percent), and the higher

values obtained. We used the latest version of

bzip2 as a compression program.

The results indeed show that changes in

compiler options or in the number of proces-

sors will result in a value of De of a few

percent, reflecting the slight changes in the

numerical results, due to the noncommutativity

of numerical operations, which hopefully are

limited to the last digits. Various messages

in the output of the programs also change,

explaining the small change in the results.

If the compiler is changed, going from the

latest GFORTRAN implementation to the com-

mercial Intel suite of compilers, or the paral-

lelization methods (MPI/OpenMP) or the way

the FFT is computed (NETLIB/FFTW3 library

/ CUDA) those results change to about ten

percent. Reassuringly, the use of GPU leads

to a value of De of less than one percent

on monoprocessor systems. Programming bugs

that either lead to no executable file, to a

program failing to reach completion, or to a

notable change in results will be immediately

detected by a value of De far exceeding this

ten percent value. This allows for an automatic

quantification of regression in the code when a

change is made in the sources, discarding small

numerical artefacts related to performance in-

creases or variations in systems architecture,

be it hardware or software relard. A threshold

has to be defined first by manual inspection

of the results, but we are confident that a

fifteen percent rule is reasonable, which we

could try by voluntarily or not introducing bugs

in the code base, which immediatly result in

a divergence of fifty percent or more of the

results.

IV. CONCLUSION

In the present paper, we have demonstrated

in the case of a typical numerical code that an

approximate method to compute the Kullback-

Leibler divergence of results after changes are

made in the production process of those re-

sults can help automatically estimate the repro-

ducibility of numerical results, even if the com-

piler, the hardware, the parallelization method

is changed. This way, bugs can be detected

without having to define problem-dependent,

specific metrics for the changes in numerical

results, or to spend too much effort in arcane

hardware, numerical, or software problems in

order to ensure bit for bit reproducibility.



ACKNOWLEDGMENT

The author would like to thank GENCI

and CRIHAN for computational time (projects

projects x2014096171 and 007 respectively),

and all the indirect contributors to the present

paper, especially K.Brymora, D.Brusson, P.-

G.Reinhard, E.Suraud, M.Dinh, as well as

many other contributors to the PWTELEMAN

library.

REFERENCES

[1] S. Kullback and R. A. Leibler, “On Information and

Sufficiency,” The Annals of Mathematical Statistics,

vol. 22, no. 1, pp. 79–86, 1951. [Online]. Available:

http://dx.doi.org/10.1214/aoms/1177729694

[2] F. Calvayrac, P.-G. Reinhard, E. Suraud, and C. Ullrich,

“Nonlinear electron dynamics in metal clusters,” Physics

Reports, vol. 337, no. 6, pp. 493–578, 2000.

[3] J. Wang, C.-Z. Gao, F. Calvayrac, and F.-S. Zhang,

“Collision dynamics of proton with formaldehyde:

Fragmentation and ionization,” The Journal of Chemical

Physics, vol. 140, no. 12, p. 124306, Mar. 2014.

[Online]. Available: http://scitation.aip.org/content/aip/

journal/jcp/140/12/10.1063/1.4868985

[4] P. Swarztrauber, “Vectorizing the FFTs,” in Parallel Com-

putations, G. Rodrigue, Ed. New York: Academic Press,

1982, pp. 51–83.

[5] M. Frigo and S. G. Johnson, “The design and implementa-

tion of FFTW3,” Proceedings of the IEEE, vol. 93, no. 2,

pp. 216–231, 2005, special issue on “Program Generation,

Optimization, and Platform Adaptation”.


