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The determination of the state-resolved physical information within the framework of time-dependent
density functional theory has remained a widely open question. We demonstrated the ability to
extract the state-resolved probability from the knowledge of only the time-dependent density, which
has been used as the basic variable within the time-dependent density functional theory, with
the help of state-resolved single-electron capture experiments for collisions of protons on helium
in the energy range of 2-100 keV/amu. The present theoretical results for capture into states of
H(1s), H(2s), and H(2p) are in good agreement with the most sophisticated experimental results
of H+ + He(1s2) system, validating our approach and numerical implementation. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4962908]

INTRODUCTION

By virtue of its computational advantages, time-
dependent density functional theory (TDDFT)1–4 is among
the most powerful quantum mechanical approaches to access
on a first-principles basis, the regime of the nonlinear and
the nonperturbative response in a strong-excitation process,
where TDDFT in principle has huge advantages and is
most urgently needed. In practice, however, applications
of TDDFT are hampered by the lack of exact knowledge
about two essential ingredients, namely the time-dependent
exchange-correlation (XC) potential and the functional for the
physical observable. On the one hand, most implementations
of TDDFT utilize the adiabatic approximation where, ground-
state density functionals are used in the calculation of the
time-dependent XC potential. Accordingly, the failures of the
time-dependent XC potential were all traced back to its lack
of nonlocality in space and time. On the other hand, even
when the time-dependent XC potential (and, therefore, the
one-body electron density) was known exactly, the calculation
of physical observables would still be a non-trivial problem.
Within the framework of TDDFT, the one-body electron
density replaces the many-body wave-function as the basic
variable. The Runge-Gross theorem5 assures that the one-body
electron density determines all observables, which means that
all physical quantities of interest can in principle be expressed
exactly as a functional of the one-body electron density. In
fact, it turns out that some observables may be obtained
quite straightforwardly in that fashion, whereas others are
rather cumbersome to express as explicit functionals of the
one-body electron density, for which a suitable algorithm
needs to be found.

a)wangfeng01@tsinghua.org.cn

A prominent example is a theoretical description for a
strong-excitation process of a finite system. When a finite
system is exposed to strong excitations such as irradiation
with high-intensity laser pulses or collisions with fast, highly
charged ionic projectiles, some of the electronic density can
move far away from the systems center. Simulating this
process in TDDFT typically leads to a situation where the
density that remains bound integrates to a fractional number of
electrons,6,7 and no accurate functionals for the state-resolved
probabilities of systems are known. Fortunately, the existence
of abundant experimental data for atomic collision systems
could in turn help to guide theoretical development. Thus, ex-
tracting the state-resolved physical information directly from
the one-body electron density is an important subject from
both fundamental and technological points of view. At present,
there are already some efforts underway8–11 along this way.

In this work, we therefore focus our attention on the
open problem of designing algorithms for the extraction
of the state-resolved probabilities from the time-dependent
one-body electron density. We formulate a novel conceptual
development that allows the determination of the state-
resolved probabilities of the ionization and excitation of
systems in a uniform fashion, and depends only on the
time-dependent one-body electron density in the spirit of
TDDFT. After that, we have tested this new method with
the help of state-resolved single-electron capture experiments
for collisions of protons on helium in the energy range of
2-100 keV/amu.

METHOD

We shall now introduce our algorithms for the extraction
of the state-resolved probabilities from the time-dependent
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one-body electron density (atomic units with m = |e| = ~ = 1
are used throughout this work unless otherwise indicated).
Let us consider a time-dependent N-electron system under
the influence of an external perturbation that is switched off
at time t. The system then evolves freely in time t ′, where
t ′ > t. The starting point is the expansion of the exact time-
dependent state-vector |Ψt (t ′)⟩ of the system in terms of the
complete set {|Φm⟩,m = 1,2, . . .} of stationary many-body
wave functions of the system in absence of the external
perturbation as

|Ψt (t ′)⟩ =

m

CN
m (t)|Φm⟩e−iωmt′, (1)

where CN
m (t) and ωm are the expansion coefficients, and the

corresponding eigen-frequencies of these eigen-states. The
density ρt (r, t ′), which involves the information compression
from the many-body density to the one-body density, is defined
as

ρt (r, t ′) = ⟨Ψ|
N

i=1

δ(r̂i − r̂)|Ψ⟩

=

n

Dn,n (r, t) +

m


n,n,m

Dm,n (r, t) ei(ωm−ωn)t′,

(2)

where the notation r̂i denotes the operator of space coordinate
r for the ith electron, and

Dm,n (r, t) = CN∗
m (t)CN

n (t)ρNm,n (r)

= CN∗
m (t)CN

n (t)⟨Φm|
N

i=1

δ(r̂i − r̂)|Φn⟩. (3)

Here ρNm,n (r) is the diagonal elements of the transition
matrices12 and ρNm,m (r) is the eigen-densities ρNm (r) of the
mth eigen-state of the N-electron system.

In the non-degenerate case of ωm , ωn for m , n, the t ′

time-averaged density may be expanded in the form,9

lim
τ→∞

1
τ

 τ

0
ρt (ri, t ′) dt ′ =


m

PN
m (t)ρNm (ri) , (4)

at some sampling points {ri, i = 1, . . . ,L}. Equation (4)
provides a recipe to extract the occupation probability
PN
m (t) = |CN

m (t)|2 of the respective N-electron eigen-densities
from ρt (r, t ′). Furthermore, the solution of Equation (4) can be
transformed into a problem of the constrained fitting, i.e., we
have fitted the right-hand side of these equations to their left
hand side with PN

m (t) as adjustable parameters.
As of today, it is not possible to extract the state-

resolved ionization probabilities directly from the density
in an elementary way. After the strong excitations, in order
to determine the ionization of the initial N-electron system,
including the case of the ionization-states, each of which
contains a different number of electrons n where n ≤ N ,
Equation (4) has been generalized, being partly inspired by
the ensemble description of electronic structure problems
of a system with a noninteger number of electrons,13

as

lim
τ→∞

1
τ

 τ

0
ρt (ri, t ′) dt ′⇐=

N
n=1

Mn
m=1

Pn
m(t)ρnm (ri) , (5)

where the symbol ⇐ stands for the phrase: “is fitted to,” Mn

is the dimension of truncated state space, and Pn
m(t) is the

occupation probability of the mth eigen-state of the n-electron
system. We would also like to mention that Equation (5) can
be rigorously derived starting from the many-body wave
function, along similar lines as in Ref. 14. In fact, the
power of the fitting procedure is out of the ordinary, yielding
one key benefit: it enables Equation (4) can be generalized
straightforwardly to ionization case. Moreover, as a matter of
principle, one can always find a unitary transformation that
makes the spatial patterns of the degenerate eigen-densities
different from each other, yielding another key benefit: it
enables Equation (4) also can be applied to degenerate
case.

It is important to note that solving Equation (5) on
a series of random samples of size L of space coordinate
r, and consequently from that, statistically averaging, what
is a more accurate and unbiased estimation of Pn

m(t). One
of the key findings of our work is that Equation (5)
produces results within the uncertainty of the experiments
as long as the number of sampling points, L(Na), was
chosen appropriately as a function of average number of
electrons remaining in bound states, Na, within the finite
volume V centered around the ionic core, with the basic
relation,

Na(t) =

V

ρt (r) dr =
N
n=1

n
Mn
m=1

Pn
m(t). (6)

The basic idea to introduce this factor is in order to
avoid overfitting,15 as it can exaggerate minor errors in
the data. For a specific L(Na) presented in this paper,
we refer the reader to Equation (8). Here and in what
follows, we would like to refer the algorithm presented
here as density-fitting analysis (DFA), which is intuitively
very plausible, and can be judged a posteriori by the
applications.

APPLICATIONS

To validate the applicability of DFA algorithm presented
above, the H+ + He(1s2) colliding system has been chosen
serving as a benchmark. In order to describe the microscopic
collision processes, we employ Ehrenfest dynamics,16 in
which the electron dynamics follows TDDFT, while the
movement of the ionic cores follows the classical Newton’s
law. For an unbiased representation, the Kohn-Sham orbitals
and densities are discretized on a uniform mesh inside a
real-space rectangular box with three side-lengths of 60, 60,
and 120 a.u. whose size is sufficiently large to support orbitals
with the principal quantum number of 1 and 2 for hydrogen
atom.17 The real-time propagation was performed with the
enforced time reversal symmetry method.18 Since the time-
step is controlled by the mesh-spacing, we use an optimized
time-step of 0.01 a.u. for a selected mesh-spacing of 0.3 a.u.
under a condition that the time propagation is unitary. The y-z
plane is chosen as the scattering plane, taking the z-direction
as the incident direction. The system has been propagated
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from an initial separation between projectile and target cores
of 70 a.u. to the same final distance in the z-direction, and 20
impact parameters between bmin = 0.5 a.u. and bmax = 6.5 a.u.
in the y-direction have been considered for each impact
energy.

After the collision, the wave function of the system
becomes a wave packet, which is a coherent superposition of
those states that will survive in the interaction. Then this wave
packet expands gradually during its time evolution. Although
a given lattice can provide a high-fidelity representation of
the initial, relatively small, wave packet, it indeed cannot
directly or completely represent arbitrary highly excited
or continuum states whose spatial extents go beyond the
boundaries of the numerical grid. Provided that the time
propagation is carried out to a large scale, the fraction of the
wave function associated with highly excited or continuum
states can be removed by absorbing boundary condition19

that was placed at the boundary of the simulation box.
The absorption leads to a loss of the number of electrons
remaining in the simulation box, NH

a (t) + NHe
a (t), where

NH
a (t) and NHe

a (t) are average numbers of electrons around
proton and He core, respectively, which have nonintegral
values in general, so we have to interpret them in a
probabilistic sense with the aid of Equation (6). The
convergence of the calculations with respect to selected
numerical parameters has been demonstrated in previous wide
applications.20–26

The H+ + He(1s2) colliding system consists of 2 active
electrons and 2 ionic cores. The interaction between ionic
cores and active electrons is described by means of a
norm-conserving pseudopotential27 generated by a software
package APE (version 2.2.0).28 The pseudopotential removes
the singularity at the nucleus, and thus can be expressed
accurately on a relatively coarse real-space grid. We here
simulate the collision process at different impact parameters
using a software package OCTOPUS (version 4.1.2)29,30 with
XC potential under the adiabatic local-density approximation
(ALDA)31 parameterized by the Perdew-Zunger32 scheme. In
order to apply DFA algorithm, the eigen-densities involved
must be specified. Although the eigen-density of the excited
state is generally not readily accessible from TDDFT, it
can be supplied by the other electronic structure methods,

such as quantum chemistry methods. Therefore, this does
not represent one major limitation to the applicability of
DFA algorithm. In addition, some desired eigen-densities
can be approximately calculated from TDDFT, using a
technique of Ref. 11 in the appropriate limit. For the
present study, only the eigen-densities of H(1s), H(2s), and
H(2p) states were needed, and because of its one-electron
simplicity, were easily determined by the direct solution
of the stationary Schrödinger equation using APE software
package.

In the following, we briefly report the results of some
calculations. To this end, we first demonstrate the collision of
H+ + He(1s2) at an incident energy of 15 keV/amu with an
impact parameter of 2.5 a.u. Figure 1 gives first insight into
the collision process showing the spatially and time-resolved
electron density distribution in order from (a) to (h). During
the collision, the electronic distribution extending both the
helium core and the proton is seen from (c) to (d). While
approaching the helium core, the proton accumulates some
charge around it. It then scatters and leaves the helium core
picking up a part of the electronic charge. In (h), which is
the final stage of the collision, the proton is seen to possess
a spatially extended electron cloud, suggesting the formation
of an excited hydrogen configuration. Since the space of
the simulation box is limited, after (b) two translational
transforms in both momentum and coordinate21 are conducted
to the electrons and ionic cores so that the proton always
stays inside the simulation box. After the collision has
concluded, the electron densities centered around the ionic
cores show slow rotations and fast oscillations exhibiting
beatings between finite number of survived eigen-states, as
shown in Figure 2. Clearly, to cover more eigen-states will
require even larger sizes of simulation box, i.e., in a practical
application, the summation over eigen-states in Equation (5)
will therefore be truncated according to the finite size of
the simulation box in a straightforward manner. For the
present study, the size of the simulation box is chosen
appropriately to support the eigen-states of H(1s), H(2s),
and H(2p).

It thus follows that the cross section of electron capture
into the H(χ) state for a given impact energy is given
by

FIG. 1. Time development of the electronic density distribution in the scattering plane of x = 0 a.u. in the collision of H+ + He(1s2) at an incident ion energy
of 15 keV/amu and impact parameter of 2.5 a.u. The projectile and target are separated by 70 a.u. in the incident z-direction in (a), closest approach in (b), and
the final stage of the calculation (h) where the two ions are again separated by 70 a.u. in the incident z-direction. The initial projectile position is depicted as •
in (a). The contour plot of the electronic density is scaled logarithmically.
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FIG. 2. The free time evolution of electron density distribution around the projectile at an incident ion energy of 15 keV/amu and impact parameter of 1.5 a.u.
after the collision. The contour plot of the electronic density is scaled logarithmically.

σχ = 2π
 bmax

bmin

P1
χ(b)bdb, (7)

where P1
χ(b) is the capture probability for a given projectile

velocity and impact parameter b.
A quantity of central importance to DFA algorithm

is the number of sampling points L(Na). In the present
study, for capture into states of H(1s), H(2s), and H(2p)
of H+ + He(1s2) system, the following choice of L(NH

a )
seems to work best (and is determined once and for
all):

L(NH
a ) = C0 +

2
n=1

C1,n

exp[C2,n(NH
a − C3,n)] + 1

, (8)

with C0 = 30, C1,1 = 300, C2,1 = 25, C3,1 = 0.1, C1,2 = 300,
C2,2 = 30, and C3,2 = 0.01, respectively, by sampling only in
regions of space where at least one of the eigen-densities more
than 1.0 × 10−5 is located.

The cross sections obtained with DFA algorithm for
electron capture into the H(2p) state are compared to the
experimental results in Figure 3. We see that at impact energies
below 10 keV/amu, the other experimental data exhibit a
less steep decrease with decreasing energy, compared to the
results of Hippler et al.33 and Van Zyl et al.,39 corrected

FIG. 3. Cross sections for electron capture into H(2p) in H+ on He(1s2).
Experiment: ▹, Hippler et al.;33 △, Andreev et al.;34 ◃, Gaily et al.;35 �,
Hippler et al.;36 ⃝, Hughes et al.;37 ♦, Pretzer et al.;38 ×, Van Zyl et al.;39

▽, Risley et al.40 Theory: ■, present data.

for experimental errors caused by charge changing collisions
with the background gas.41 Note that in the energy range of
approximately 2–200 keV/amu the uncertainty is about 20%
for H(2p), at lower and higher energies the experimental data
are less certain.41

The cross sections obtained with DFA algorithm for
electron capture into H(2s) and H(1s) states are compared to
the experimental results in Figures 4 and 5, respectively. Since
the charge transfer mainly populates the H(1s) ground state
in the H+ + He(1s2) system, we compare the charge-transfer
cross sections for the H(ls) state obtained from the present
method to experimental total capture cross sections which
include small contributions from excited states.

The present results of the cross sections, obtained with
DFA algorithm, agree quite well with experimental data
for incident energies above ∼5 keV/amu in the energy
range of 2-100 keV/amu. This is a strong indication that
the DFA algorithm captures the essential features which
contribute to a sensible description of a phenomenon
which crucially involves excited states of the system. For
lower impact energies, the discrepancy between theory and
experiment is relatively large. One possible reason may be
the application of the pseudopotential. The pseudopotential
is not expected to be valid for describing collisions

FIG. 4. Cross sections for electron capture into H(2s) in H+ on He(1s2).
Experiment: ▹, Ryding et al.;42 ▽, Jaecks et al.;43 ◃, Hippler et al.;44 �,
Hughes et al.;37 ♦, Andreev et al.;34 ⃝, Crandall et al.;45 △, Fitzwilson et al.46

Theory: ■, present data.
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FIG. 5. Cross sections for electron capture into H(1s) in H+ on He(1s2).
Experiment: �, Stedeford et al.;47 △, Williams et al.;48 ⃝, Allison.49 Theory:
■, present data.

at small impact parameters where the overlap between
the pseudopotential cores is non-negligible, and thus the
calculated total cross section is inaccurate for lower impact
energies because of the large contribution from small impact
parameters. At higher energies, i.e., near the peak of
these cross sections, the pseudopotential results are less
inaccurate because of the large contribution from larger impact
parameters.

In TDDFT, all physical observables of interest should be
calculated from the time-dependent density, while the time-
dependent Kohn-Sham orbitals (KSO) are merely auxiliary
quantities and have no rigorous physical meaning. However,
this caveat is often ignored in practice.10 Now, let us compare
our method with other, more approximate KSO approaches. It
is quite straightforward to obtain approximate state-resolved
cross sections directly from the time-dependent KSO. This
is similar in spirit to the calculation of the ion probabilities
from the KSO that can be found in Ref. 14. All one needs
to do is project the time-dependent KSO onto the eigen-state
wave-functions of H(1s), H(2s), and H(2p) centered at proton.

FIG. 6. Cross sections for electron capture into H(2s) in H+ on He(1s2).
Experiment: ▹, Ryding et al.;42 ▽, Jaecks et al.;43 ◃, Hippler et al.;44 �,
Hughes et al.;37 ♦, Andreev et al.;34 ⃝, Crandall et al.;45 △, Fitzwilson et al.46

Theory: ■, present data; N, from KSO method.

FIG. 7. Cross sections for electron capture into H(1s) in H+ on He(1s2).
Experiment: �, Stedeford et al.;47 △, Williams et al.;48 ⃝, Allison.49 Theory:
■, present data; N, from KSO method.

For the case of H+ + He(1s2) scattering which initially has
two electrons both in the 1s orbital of the helium atom,
the state-resolved probability to capture a single electron by
proton is evaluated as

P1
χ = (2 − NH

a (t))|⟨φH (χ)|ψ1s(t)⟩|2, (9)

where φχ is the eigen-state wave-function of the H(χ) state
centered at proton, ψ1s(t) denotes the time-dependent KSO.
Here and in what follows, we would like to refer the algorithm
that presented Equation (9) as the KSO method.

Figures 6 and 7 show the cross sections for electron
capture into H(1s) and H(2s), respectively, calculated by the
DFA and KSO methods. The two results are in reasonable
agreement with the experiment measurement, as should be
expected, giving a good check on the overall numerical
methods. It is very interesting to see that the two results
are more in agreement with each other in the high-energy
regime as well as in the lower-energy regime, while the
KSO results are totally larger than the DFA results in the
medium-energy regime. In the medium-energy regime, DFA
results decrease more rapidly than the KSO results as the
impact energy decreases, and DFA results get closer to the
experiment.

Finally, one should realize that the predictive power of
TDDFT is subject to the accuracy of the approximations
made in two essential ingredients, namely the time-
dependent XC potential and the functional for the physical
observable, excluding numerical approximations that are
normally controllable. It has been demonstrated that the time-
dependent XC potential discontinuity in a real-time simulation
dramatically affects the population of the resulting spatially
confined regions or isolated subsystems. This indicates the
importance of a proper account of the discontinuities in
TDDFT descriptions of ionization, dissociation, or charge
transfer processes.50 In the present study, our benchmark
calculations rely on the adiabatic local-density approximation
(ALDA) for the time-dependent XC potential, which is local
in time, i.e., has no memory effects, and has no account of
the discontinuities. However, one should realize that whether
an approximation appears accurate or not depends on what
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is being measured and how sensitive the observable is, and
on the details of the external perturbation. Again, we would
also like to stress that the benchmark problem selected here
is a very severe test of DFA algorithm, since one deals
here with an extremely strongly correlated, strongly perturbed
few-electron system. In view of this, of particular interest
to us is that, the use of L(Na) seems a breakthrough in
the handling of DFA algorithm, making it possible to use
a very simple ALDA for the time-dependent XC potential
in practical applications of TDDFT to treat systems with
a fractional number of electrons, thus it deserves further
development.

CONCLUSIONS

In summary, we have derived and carried out a
computational method to extract the state-resolved probability
from the knowledge of only the time-dependent density, in the
spirit of TDDFT, taking as an example the H+ + He(1s2)
colliding system. Very good overall agreement between
experimental and theoretical data is found, which provides
further evidence for the applicability of the DFA algorithm to
rather complex many-electron systems. Of course there were
lots of other avenues to be explored, one conclusion that can
be drawn at this stage is that the DFA algorithm demonstrates
its high promise as a new tool in the arsenal of TDDFT
methods.
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