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Water ice is a molecular solid whose behavior under compression reveals the interplay of covalent bonding
in molecules and forces acting between them. This interplay determines high-pressure phase transitions, the
elastic and plastic behavior of H2O ice, which are the properties needed for modeling the convection and internal
structure of the giant planets and moons of the solar system as well as H2O-rich exoplanets. We investigated
experimentally and theoretically elastic properties and phase transitions of cubic H2O ice at room temperature
and high pressures between 10 and 82 GPa. The time-domain Brillouin scattering (TDBS) technique was used
to measure longitudinal sound velocities (VL) in polycrystalline ice samples compressed in a diamond anvil
cell. The high spatial resolution of the TDBS technique revealed variations of VL caused by elastic anisotropy,
allowing us to reliably determine the fastest and the slowest sound velocity in a single crystal of cubic H2O ice
and thus to evaluate existing equations of state. Pressure dependencies of the single-crystal elastic moduli Cij (P )
of cubic H2O ice to 82 GPa have been obtained which indicate its hardness and brittleness. These results were
compared with ab initio calculations. It is suggested that the transition from molecular ice VII to ionic ice X
occurs at much higher pressures than proposed earlier, probably above 80 GPa.

DOI: 10.1103/PhysRevB.96.134122

I. INTRODUCTION

H2O is one of the most abundant compounds appearing
in all aggregate states in the universe [1–3]. Mainly it is
accumulated as solid ice subjected to high pressure (HP) in the
interiors of the outer planets of the solar system such as Uranus
and Neptune or the satellites of Jupiter and Saturn [2,4,5] and
in H2O-rich exoplanets [6,7]. In order to model the internal
structure and compositional differentiation of these planets
applying gravitational observations, pressure dependencies of
densities and of elastic moduli of the constituting compounds
are required [1,6,7]. Interplay of inter- and intramolecular
bonding in H2O ice upon compression leads to a complex
P-T phase diagram with strongly changing elastic behavior
of the ice phases. Moreover, the molecular nature of H2O is
expected to disappear at very high pressures [8–10].

Solid H2O is known to crystallize in 14 different poly-
morphs in which the molecules build crystal lattices [2,9,10].
All but two molecular phases are confined to a narrow
pressure interval below ∼2.5 GPa . Above this pressure H2O
ice assumes, at room temperature, a cubic structure with
disordered H2O molecules [11,12]. This cubic ice VII phase
(with proton positions much more strongly disordered than
those of oxygen) transforms below 278 K [2,10,13] into ice
VIII having a closely related tetragonal structure with ordered
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proton positions [11,14]. It has been proposed in the literature
that the molecular nature of ice VII and VIII vanishes upon
compression due to shifting of protons to the symmetric
positions, halfway between the oxygen anions, and another
ionic form of ice, named ice X, appears [8,15–18]. However,
the transition pressure has remained controversial with values
between 40 and 100 GPa [8,10,12,15,16,19,20]. Moreover,
transitions to intermediate phases such as a tetragonally
distorted ice VII above 14 GPa [21], “ionized” ice VII above
55 GPa [16], or a phase with protons occupying octahedral
interstitials of the O sublattice [22] were suggested to explain
the controversial structural observations from neutron and
x-ray diffraction (XRD) studies. Measurements of the refrac-
tive index of H2O ice to 120 GPa showed a systematic shift
with pressure but slight changes in n(P) were recognized at 40,
60, and 90 GPa [20]. In the pressure region from 60 to 90 GPa,
ice VII was supposed to evolve into symmetric ice X but no
explanation for the kink in n(P) at 40 GPa was proposed [20].

None of the existing high-pressure XRD measurements
on ice VII and ice X, where intensities of the diffraction
patterns are dominated by x-ray scattering from the O
sublattice, detected a jump in the equation of state (EOS),
ρ(P ) [19,23–25]. This implies a negligible hysteresis of the
phase transition; e.g., the transition from ice VII to ice X
upon compression and the reverse one upon decompression
should occur at the same pressure. Also, coexistence of the
two phases is expected to be confined to a very narrow
pressure range. An extended two-phase pressure region could
artificially appear in the experiments where lateral pressure
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variations in the sample areas illuminated with probing x rays
are significant. Because H2O ice is a weak scatterer of
x rays, sample irradiation with expanded beams was the
only way to obtain signals of acceptable quality, especially
at pressures approaching 100 GPa where the samples are
thin. This could explain why in some publications there
are kinks in the measured pressure dependencies of ρ(P )
comparable to or exceeding the experimental uncertainties
[24,25]. Nevertheless, most of the high-pressure XRD studies
provided a single ρ(P ) to describe compressibility of the
both cubic ice phases [17,19,23,24,26]. The reported ρ(P )
and, accordingly, bulk moduli, B(P ) = ρ(∂P/∂ρ)T , evince,
however, substantial differences exceeding 20% at ∼60 GPa
[17,27]. Apart from pressure gradients, possible reasons for
these differences could be a significant yield stress of the cubic
H2O ice combined with a large elastic anisotropy strongly
biasing the interplanar distances for different crystallographic
orientations [19,21,23,24]. Quality of the XRD data could not
be improved by using quasihydrostatic pressure media such as
He or Ne because embedding of ice samples in these media
led to formation of clathrates or intercalation of the inert gas
atoms into the ice structure [21].

So far, no convincing criterion to confirm an EOS measured
using the XRD technique has been proposed. Attempts to
determine an EOS of the cubic H2O ice applying optical
interference patterns in an H2O ice sample compressed in
a diamond anvil cell (DAC) did not clarify the situation as
well: Zha et al. [20] reported pressure dependence of the
thickness of a compressed H2O ice sample h(P) using their own
refractive index n(P) and compared the obtained dependence
h(P )/h0 with a selection of earlier ρ(P ) from the XRD
measurements. Unfortunately, their experimental data points
h(P )/h0 scattered much stronger than the selected ρ(P ). This
result was biased by a loss of the circular shape of the sample
and considered to provide only qualitative insight so that no
independent EOS could be deduced. A limited reliability of
the available experimental equations of state of the cubic
H2O ice led to an important consequence for the theory:
Theorists miss an experimental reference by comparison of
the theoretical equations of state calculated using different
functionals describing the O-H interaction [17]. Absence of
the most appropriate functional prohibits further progress in
ab initio studies of H2O ice, including the cubic phases.

A significant elastic anisotropy of the cubic H2O ice
was recognized in some XRD experiments, however, without
any reliable quantification [19,21,23,24]. Frequency-domain
Brillouin scattering (FDBS), conducted on single crystals
of ice VII compressed in a DAC up to 8 GPa, showed
a strong dependence of the longitudinal and transversal
sound velocities, VL and VT , on crystallographic orientations
resulting in the anisotropy factor A = 2C44/(C11 − C12) =
3 at the highest pressure [28]. The maximum and mini-
mum longitudinal sound velocities, VLmax and VLmin, cor-
respond in cubic single crystals to the velocities along
the crystallographic directions 〈111〉 and 〈100〉, respec-
tively, as given by the expressions VL〈111〉 = (C∗/ρ)1/2 =
[(C11 + 2C12 + 4C44)/3ρ]1/2 and VL〈100〉 = (C11/ρ)1/2. For
single crystals of ice VII compressed to P = 8 GPa, Shimizu
et al. [28] reported VLmax = VL〈111〉 = 7.82 km/s and VLmin =
VL〈100〉 = 6.30 km/s (Fig. 1).

FIG. 1. Earlier data on VL(P) of ice VII and ice X at high
pressures. Symbols represent experimental data from classical FDBS
measurements: Open green triangles pointing left and right are
VL〈111〉(P ) and VL〈100〉(P ), respectively, obtained for single crystals
of ice VII by Shimizu et al. [28]; open blue triangles pointing up and
down are VL〈111〉(P ) and VL〈100〉(P ), respectively, calculated from
the Cij (P ) dependencies reported by Zha et al. [30]; diamonds
and circles are longitudinal sound velocities VLav(P ) derived from
averaged FDBS spectra of polycrystalline ice samples by Polian
and Grimsditch [26] and Ahart et al. [29], respectively. The error
bar shows the full width at half maximum (FWHM) of the FDBS
peak at 77 GPa shown in the latter work. Lines represent theoretical
VL〈111〉(P ) and VL〈100〉(P ) calculated for ice X: solid lines, earlier
results of Journaux et al. [3]; dashed lines, our ab initio calculations.
The inset shows orientational distribution of VL in a single crystal of
ice VII calculated using the Cij values at 40 GPa reported by Zha
et al. [30]. This distribution is equivalent to the statistical distribution
of sound velocities in grains of a texture-free polycrystalline sample
along a selected spatial direction and depicts the ideal shape of an
averaged FDBS spectrum collected for such a sample. Directions
of the fastest and the slowest sound propagation in the cubic
ice crystal are 〈111〉 and 〈100〉, respectively. The star indicates
that the Cij values were obtained using the envelope method and
are consequently approximate. The distribution has a maximum at
11.64 km/s and its center of mass (corresponds to the most probable
velocity) is located at 11.56 km/s. For a texture-free sample with
B and G calculated using the same Cij values applying the Voigt
approximation we obtained VL = 11.26 km/s. This value deviates
from the most probable velocity by 13% of the difference between
the fastest and the slowest velocities in a single crystal. Applying
the Voigt-Reuss-Hill approximation to determine G of the same
polycrystalline sample we obtained VL = 10.92 km/s which deviates
even stronger from the most probable velocity, namely by 27%.

Even though single crystals of ice VII disintegrate into
polycrystalline domains upon further compression in a DAC
[19,23,29,30], multiple resolved FDBS peaks with varying
frequencies have been observed by scanning over such sam-
ples. This observation was explained by varying orientation
of elastically anisotropic ice grains upon scanning and used
to construct Cij (P ) of ice VII to 40 GPa by applying the
so-called envelope method [29,30]: At each selected pressure,
the FDBS peak giving the maximal VL is attributed to the
crystallographic direction 〈111〉 while that giving the minimal
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VL to the direction 〈100〉. However, at pressures below 10 GPa
this approach led to a smaller value of A = 2.4 when compared
with the single-crystal data in Ref. [28]. This indicated a
limited applicability of the envelope method by examination
of polycrystalline samples using the classical FDBS. Inde-
pendent FDBS studies on polycrystalline samples reported
only averaged sound velocities VLav(P ) and VT av(P ) to
∼80 GPa [26,29]. A remarkable tendency of VLav(P ) to
approach VLmax(P ) (Fig. 1) was yet neither recognized nor dis-
cussed in the literature. As we show below, this is due to a large
elastic anisotropy of cubic ice VII. Furthermore, there is an
astonishing contradiction between the claimed phase transition
to ice X at 40–60 GPa and absence of a jump of VLav (which
should approach VLmax) upon this transition in the reported
classical FDBS measurements [26,29]. Such a jump is required
by the recent theoretical calculations of Cij (P ) of ice X predict-
ing at 40–60 GPa much higher VLmax(P ) for this phase than for
ice VII [3] (see Fig. 1). The jump had to be observed in the clas-
sical FDBS measurements on polycrystalline texture-free sam-
ples of cubic H2O ice because of the following two reasons: (i)
the transition from phase VII to phase X is hysteresis-free and
(ii) pressure variations along the sample depth are negligibly
small (see below for more details). Accordingly, the sample
volume irradiated with a laser (throughout the whole sample
depth) in the classical FDBS measurements had to be either ice
VII or ice X, provided the lateral pressure gradients within the
irradiated sample area are negligible. As already emphasized
above, two phases can be detected at the same pressure
only if the phase transition exhibits a significant hysteresis,
proportional to the density jump associated with the transition.
It is to be recalled that in all the existing XRD measurements
no density jump upon the transition from ice VII to ice X
has been reported. Accordingly, experimental information on
VLmax and VLmin of cubic H2O ice at P > 40 GPa is the key to
clarification of the recognized contradiction.

These considerations show that even in the case of a solid
having cubic structure its elastic anisotropy can strongly bias
the quality of the data obtained using XRD and classical FDBS,
especially for samples under nonhydrostatic load. These two
techniques deliver better results for single crystals compressed
quasihydrostatically and were applied for establishing the
primary pressure scale, a central problem of the condensed
matter physics. However, the maximal achieved pressures
remained below 60 GPa and the results reported by different
groups deviate [31–33]. In addition to the nonhydrostatic
loading and to the elastic anisotropy, the classical FDBS data
are known to be sensitive to the experiment geometry which
can introduce systematic errors [33]. Since quasihydrostatic
loading conditions and persistence of single crystals cannot be
expected at pressures above 100 GPa [34], other methods suit-
able for establishing a reliable primary pressure scale should
be considered. Our results demonstrate that the here applied
time-domain Brillouin scattering (TDBS) having a high spatial
resolution [35,36] provides the needed performance.

II. METHODS

A. High-pressure technique

Samples of H2O ice studied here between 10 and 82
GPa were compressed in a Boehler-Almax Plate DAC [37]

with diamond anvils having culets of 300 μm in diameter.
They were prepared by filling a hole in a preindented
stainless steel gasket with distilled water which solidifies at
room temperature above ∼1 GPa. The samples had an initial
diameter of about 100 μm and thickness of <30 μm and
contained thin iron disks of ∼2 μm in thickness and <70 μm
in diameter sticking to the culet of one of the anvils. The
disk served as the optoacoustic generator of coherent acoustic
pulses launched into and propagating through the ice sample
(see below). It was produced prior to filling the sample volume
with water by squashing a small iron sphere between the anvil
culets and thus had a similarly high surface quality to that
of the culets. The generator thickness was estimated from the
difference of the water ice thickness in two neighbor positions,
above and near the generator. The latter values were obtained
using the optical interference method [20,38]. We note that
thickness of neither the generator nor the ice sample was
needed in our TDBS measurements because these values are
not required for the signal treatment (see below). Finally, a few
ruby grains were distributed around the optoacoustic generator
for the pressure measurement via the calibrated shift of the R1
fluorescence line [39]. Broadening of the R1 and R2 fluores-
cence lines of ruby was recognized upon load increase but the
lines were clearly separated up to the highest pressure of the
work.

The ice samples, obtained by solidification of water upon
compression, were first brought to the maximal pressure of 57
GPa or of 82 GPa, then gradually decompressed and the TDBS
signals collected, as outlined below. This procedure assured
the same high degree of polycrystallinity of the samples on
pressure change. Texture-free polycrystalline H2O ice samples
cannot be obtained on pressure increase because large crystals
having specific orientations with respect to the anvil culets
form by solidification of water. These large ice crystals
disintegrate upon further compression but samples become
nearly texture-free at relatively high pressures, in excess of
20–30 GPa [22,23]. Our TDBS measurements could not
provide in this case statistically reliable information about
VL values for all possible orientations in a single crystal of
H2O ice because sound velocities were measured for only one
propagation direction, along the sample depth. In this work we
performed two sets of measurements: In the first one, the start-
ing maximal pressure was 57 GPa, the sample thickness was
14.4 μm, and the optoacoustic generator diameter was 66 μm.
In the second one, the starting maximal pressure was 82 GPa,
the sample thickness was 13.5 μm, and the generator diameter
was 40 μm [35].

B. TDBS technique

To obtain reliable values of the longitudinal sound velocities
and information about their spatial variations in a sample
of cubic H2O ice under compression, we applied the TDBS
technique recently adapted to transparent samples subjected
to Mbar pressures in a DAC [35,36]. The technique is based
on a coherent phonon generation and detection by picosecond
laser pulses [40]. In our setup, described in detail elsewhere
[35,36], a pulsed Ti:sapphire laser (Spectra-Physics, 2 W,
λL = 808 nm, 2.7 ps pulse width) was used. Its radiation was
split into two beams and the frequency of one of them was
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FIG. 2. Processing of a TDBS signal collected from an H2O ice sample compressed in a DAC to 33 GPa. (a) Raw transient reflectivity signal
S(t). (b) Corresponding filtered signal s(t) where the nonoscillating background, caused by a transient heating of the sample, was removed.
Here, both amplitude and the phase change with time: A(t) cos[φ(t)]. (c) The amplitude-variation-free signal cos[φ(t)] (solid blue line) and
normalized root-mean-square error (NRMSE) between the windowed complex exponential exp[j φ(t)] and the corresponding extracted complex
exponential (dashed black line). The insets show, with a higher magnification, the time segments indicated by the gray background where
the signals (blue solid lines) deviate significantly from the best fit by the harmonic function (dashed-dotted lines). These time segments were
excluded from further consideration due to a large NRMSE exceeding 10%. (d) Instantaneous signal frequency derived using the synchronous
detection technique (solid red line) and the SNR (dashed black line). Gray background in (d) indicates time segments with a poor SNR (smaller
than 10 dB) and/or with a large NRMSE (greater than 10%).

doubled (λ = 404 nm, 1.9 ps pulse width). The latter beam
was focused on the optically absorbing optoacoustic generator
(a thin iron disk) which lunched, due to subsequent transient
heating and expansion, ultrashort acoustic pulses into the ice
sample. Even though the transient heating of the optoacoustic
generator did not exceed 3 °C [41], its expansion produced
a significantly strong density perturbation within the acoustic
pulse permitting a reliable detection of its propagation through
the transparent ice sample. For this purpose we used the
time-delayed pulses of the second beam with λL = 808 nm.
Interference of reflections of this probe beam from different
stationary surfaces/interfaces in the DAC and from the moving
photogenerated acoustic pulse, due to the acousto-optic effect,
resulted in an oscillating signal S(t) (Fig. 2) recorded using a
photodetector. At each instant of time t , the signal frequency
f (t) is related to the velocity of the longitudinal acoustic
wave VL at the position where the laser-generated picosecond
acoustic pulse is located during its propagation through the
sample depth. No indication of a contribution of transversal
acoustic waves was recognized in the collected signals. The

lateral resolution of our TDBS measurement of 4.5 μm was
defined by focusing of the pump and probe beams while the
in-depth resolution of <0.1μm was limited by the width of
the acoustic pulse [35]. Frequency of the collected TDBS
signal (and its variations with depth due to elastic anisotropy of
the sample material) (Fig. 2) was converted into longitudinal
sound velocity (and its variations) applying the classical
formula VL(P ) = (fBλL)/[2n(P )], where fB = f (t) is the
(time-dependent) frequency of the Brillouin oscillations, λL

the wavelength of the pulsed probe laser beam (λL = 808 nm),
and n(P) the refraction index of the sample material whose
pressure dependence was measured earlier using optical
methods. In the present study, the value of n(P) of cubic
H2O ice was taken from Ref. [20] where it was determined
to 120 GPa. Variations of VL along the sample axis were
traced with a resolution of 0.23–0.25 μm defined by the
chosen temporal window size equal to the duration of one
Brillouin oscillation. This data treatment is described in detail
in the following section. Accordingly, a TDBS signal (Fig. 2)
collected at one given lateral position from a 15 μm thick
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sample contained up to 75 independent VL measurements. We
also used a larger temporal window of 2.5 Brillouin oscillations
in order to evaluate the effect of averaging over a larger depth
range on the derived VLmax and VLmin. In order to further
improve statistics, we performed lateral scans over distances
of 20–70 μm with steps of 2–4 μm. Such combination of a high
in-depth resolution and lateral scans increased the number of
spatially resolved VL data dramatically and permitted a reliable
application of the envelope method: The extreme values of VL

obtained from all our TDBS signals collected at the chosen
pressure could be attributed, with a high degree of confidence,
to the maximal and minimal possible sound velocities in a
single crystal of H2O ice, VLmax and VLmin. If we follow
the majority of earlier publications claiming that the H2O
ice has cubic structure in the entire pressure range of our
measurements, then our experimental dependencies VLmax(P )
and VLmin(P ) correspond to VL〈111〉(P ) and VL〈100〉(P ) in a
single crystal of the cubic ice phases, respectively.

C. TDBS signal treatment

Special attention was paid to the goodness of the temporal
TDBS signals collected at each lateral position on the sample
(Fig. 2). In particular, frequency components of each signal
were brought out by applying the fast Fourier transform
(FFT) to the signal. Such treatment of the entire signal gave
information about various frequencies present in the complete
signal but did not give any information about the moment
in time (related to the depth coordinate) when a particular
frequency showed up. Thus, FFT gave information on the
elastic properties along the complete path of the acoustic pulse
propagation in the sample but lacks an in-depth resolution.
And this is the same limitation as in the classical FDBS
measurements.

In order to overcome this limitation, a demanding time-
frequency analysis was applied. To simplify such analysis,
each raw TDBS signal was preprocessed through a procedure
in which the experimental signal S(t) [Fig. 2(a)] was initially
filtered to remove the nonoscillating background caused by
a transient heating of the sample which modified optical re-
flectivity. The resulting background-free signal s(t) [Fig. 2(b)]
could then be described by the equation

s(t) = A(t) cos[φ(t)], (1)

where A(t) is the time-dependent amplitude of the signal and
φ(t) = 2π

∫
fB(t ′)dt ′ + ϕ(t) is the time-dependent phase of

the signal. The phase could be split into a slowly varying part
2π

∫
fB(t ′)dt ′, the time derivative of which is proportional

to the Brillouin frequency, and a rapidly varying part ϕ(t)
that could exhibit abrupt jumps, for example, due to the
arrival of an acoustic echo at interfaces inside the DAC. Then
the background-free signal was converted to its analytical
form san(t) by applying the Hilbert transformation which
allowed separate access to the time-dependent amplitude
A(t) = abs[san(t)] and to the time-dependent phase φ(t) =
arg[san(t)] [42]. The complex exponential exp[jφ(t)] is free
of variations in the amplitude [Fig. 2(c)] while information on
the varying frequency is conserved. Then, any time-frequency
analysis can be applied to this “damping”-free signal [Fig. 2(c)]
in order to reveal the time moment when one of the frequencies
emerges in the signal.

For example, the short-time Fourier transform (STFT)
[43] with the window size at FWHM as small as one
Brillouin cycle (if the signal quality permits) could be
used. Here, the frequency corresponding to the temporal
window containing the treated Brillouin cycle can be obtained.
However, the temporal resolution of the STFT technique
is strongly limited by the signal-to-noise ratio (SNR). For
this reason, we developed a numerical equivalent of another
more robust time-frequency analysis technique, namely the
well-known synchronous detection technique (SDT) [44]. For
this technique the preprocessing described above is mandatory.
Roughly speaking, SDT is a Fourier transform without any
limitation in the frequency resolution whose principal aim is
to find the value fm that maximizes the norm of the following
integral ISD in the chosen moving time window W:

ISD(t) =
∫ +∞

−∞
W (τ − t) exp[jφ(τ )] exp(−j2πfmτ )dτ .

(2)

Assuming a slow variation of the Brillouin frequency within
the window, we can approach the term 2π

∫
fB(t ′)dt ′ by the

product 2πf̃Bt , where f̃B is the mean Brillouin frequency
within the window that one seeks to recover. If there is no
abrupt phase jump, i.e., ϕ is constant within the window W,
the value fm found for the moving window centered on time
t corresponds to f̃B indeed. We note that if ϕ is constant,
it does not affect the norm of ISD and corresponds to the
argument of ISD calculated with fm = f̃B . If ϕ is not constant
within the window then both recovered values of f̃B and ϕ are
wrong and should be ignored. The way to identify the latter
situation for each position (instant of time) of the moving
window is the calculation of the normalized root-mean-square
error (NRMSE) serving as a goodness criterion:

NRMSE = RMS{W (t) exp[jφ(t)] − W (t) exp[j (2πf̃Bt + ϕ)]}
2

, (3)

where the normalization by 2 relies on the maximum difference
in amplitude that two trigonometric functions could have.

In the present work the signal analysis was performed
recursively in order to achieve a good frequency resolution
in a short calculation time: After 10 iterations we could

approach the theoretical resolution of 20 kHz while the signal
frequencies ranged between 25 GHz and 75 GHz. We note that
the frequency resolution was not limited here by the processing
technique but by the SNR. The applied signal processing
method is well suited for signals containing one frequency
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FIG. 3. Experimental and theoretical VL(P) data for H2O ice at
high pressures as reported in the present work. Symbols represent the
experimental data between 10 and 82 GPa: Solid triangles pointing up
and down are our experimental VLmax(P ) and VLmin(P ), respectively,
obtained for the window sizes W equal to one (smaller dark-red
triangles with error bars) and two-and-half Brillouin oscillations
(larger red triangles; error bars are smaller than the symbols). Our
theoretical values of VL〈111〉(P ) and VL〈100〉(P ) for ice VII and ice X
from ab initio calculations are represented by dotted and dashed lines,
respectively. Some of the earlier experimental and theoretical results,
presented in Fig. 1 in the same style, are shown for comparison.

component varying in time. Some issues can arise for signals
containing two (or more) different frequency components
simultaneously. If these components are close compared with
the frequency resolution, the retrieved frequency will be a
weighted average of the different individual frequencies. For
signals containing different but well separated frequency com-
ponents, an analysis using the SDT in a limited frequency range
around each individual frequency can allow an independent
retrieving of the different frequency components so far. The
result of such a treatment of the preprocessed signal [shown in
Fig. 2(c)] is given in Fig. 2(d). Here we applied two goodness
criteria: The first one requires that the SNR exceed 10 dB and
the second one that the NRMSE remain below 10%. In each
recorded TDBS signal we excluded from further consideration
the temporal sections where at least one of the two criteria was
not fulfilled. Such sections are highlighted in Fig. 2(d) with a
gray background.

The frequency dependence on time [such as that shown in
Fig. 2(d)] obtained for each particular lateral position could be
converted to the variation of VL in time (or depth of the acoustic
pulse position at this time instant) by applying the above given
classical formula. The maximal and minimal longitudinal
sound velocities, VLmax and VLmin, obtained after comparison
of all signals collected at the chosen pressure are summarized
in Fig. 3. The experimental uncertainties of these VLmax and
VLmin values, and of the corresponding frequencies fmax and
fmin, were determined using the Cramer-Rao lower bounds
expressed in Eq. (17) of Ref. [45]. We note that in this equation,
the SNR is b2

0/(2σ 2), where b0 is the amplitude of the signal
and σ 2 is the variance of the independent Gaussian noise. In

our case, the SNR is calculated by assuming that the measured
signal is S = x + n, where x is the actual signal and n the
noise. Assuming that x and n are not correlated, we finally have
SNR = PS/Pn, where Pu stands for the power of the signal u =
{S,x,n} and the SNR is linear (not in dB). The actual value of
the SNR should be SNR = PS/Pn – 1 = (Px + Pn)/Pn – 1 =
Px/Pn but the difference from the previous expression is very
small and true only when the signal and the noise are indeed not
correlated, which could be not the case in our measurements.
The experimental uncertainty of the Brillouin frequency in our
measurements, δf̃B , has been calculated applying the formula
(see Eq. (17) in Ref. [45])

δf̃B = 1

2π�t

√
6

N (N2 − 1)SNR
, (4)

where �t is the time step between the neighboring points in
the signal S(t) and N the number of points in the window
for which the Brillouin frequency f̃B was determined. Note,
Eq. (4) is an implementation of the fact that the larger SNR
and N, the smaller is the uncertainty δf̃B .

D. Influence of nonhydrostatic compression

Our high-resolution TDBS measurements showed strong
variations of sound velocity with the sample depth, ap-
proaching ±17% of VLmax(P ) (see below). Because our
polycrystalline H2O ice samples were compressed without
any pressure-transmitting medium the question could arise
whether the observed VL variations can be explained by
variation of differential stresses (but not by elastic anisotropy
of H2O ice) in ice grains or groups of grains differently
oriented with respect to the sound propagation direction. In
the literature, the stressed state of a sample in a DAC is
traditionally modeled, in the frame of continuum mechanics,
as a sum of hydrostatic pressure P0 and differential stress tav

acting along the sample axis coinciding with the direction
of compression of the diamond anvils [46,47]. The maximal
value of tav is limited by the yield stress σy(P ) of the
compressed material. In this model, the differential stress tav

and, accordingly, the total pressure P = P0 + tav/3 (measured
using the ruby fluorescence scale [39]) do not change along the
sample axis and thus do not change VL, density, and refractive
index. However, it was shown in the recent XRD measurements
combined with elastoplastic self-consistent modeling that
the continuum mechanics is not suitable for the description
of stressed states of individual grains in a polycrystalline
sample compressed in a DAC [48]. In that work, the authors
examined XRD peaks stemming from particular grains in a
polycrystalline sample of cobalt having hexagonal structure at
P = 46 GPa. The differential stress variations from grain to
grain were found to be comparable with tav = 1.9 GPa but the
pressure in the grains was found to be very uniform and to
vary by �0.1% of the measured value of P = 46 GPa. Similar
pressure uniformity by moving from one grain to another
was experimentally confirmed for the post-perovskite phase
of MgGeO3 compressed to 90 GPa [49,50]. In contrast to
the hexagonal structure of cobalt, solids having cubic crystal
structure (e.g., H2O ice) exhibit a larger number of symmetry-
equivalent plastic deformation mechanisms. If the strength
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of each mechanism does not change, this will lead to easier
differential stress relaxation and, accordingly, even smaller
variations of t and P in the sample grains [49]. For this reason,
the estimates we present below for the variations of t and P
in the cubic ice grains of a polycrystalline sample compressed
in a DAC should be considered as the upper limit. Taking
the highest reported tav value for H2O ice, reaching ∼10%
of the measured pressure value [24], we obtained tav ≈ 8 GPa
at P = 80 GPa and estimated pressure variations in the ice
grains along the sample axis to be �0.3 GPa. Such pressure
variations would result in VL variations along the sample axis
of <0.2% which are negligible when compared with other
experimental uncertainties and with the total VL variations
approaching 34%, as revealed in our TDBS measurements.
Furthermore, it was experimentally and theoretically verified
in our earlier work that the effect of optical anisotropy in the
ice grains and in the diamond anvils induced along the sample
depth by differential stresses is very weak, equivalent to less
than 2% of a potential variation of the measured Brillouin
frequency (or VL) [35]. Given these considerations and the
fact that elastic moduli and density of any solid depend on
pressure only (not on the deviatoric stress, equivalent to the
shear stress; e.g., [48,51]) the VL variations along the sample
depth recognized in our TDBS measurements were caused by
the elastic anisotropy of H2O ice exclusively.

For completeness, we also estimated influence of the lateral
(radial) pressure gradients in our ice samples on the measured
VL applying results of the continuum mechanics modeling of
the plastic deformation of a solid disk compressed between
diamond anvils (see Chap. 1.3 in [47]). Using our sample sizes
and the highest reported tav for H2O ice in the equation for
“nonflowing area,” we obtained pressure variations throughout
the entire optoacoustic generators of <3%, for the smaller
generator at 82 GPa, and <7%, for the larger generator at
57 GPa. Then, applying the measured pressure dependence of
VL (Fig. 1 or Fig. 3), we obtained the lateral VL variations
of <1.5%, for the smaller generator, and <2.5%, for the
larger one. Again, these values are significantly smaller than
the sound velocity variations in our TDBS measurements
approaching the total amplitude of 34%. In summary, neither
lateral pressure gradients nor variation of differential stresses
in the grains along the sample depth could cause the Brillouin
frequency variations revealed in the present work. They can
be explained by a large elastic anisotropy of H2O ice only.

E. Ab initio calculations

Calculations of elastic properties at high pressures from
first principles require knowledge of the crystal structure of the
examined material as an input. In this work, the calculations
were guided by the most accepted model of the H2O ice
structure at room temperature and pressures above ∼2.5 GPa
where oxygen anions form a body-centered cubic sublattice
and protons are located between the neighboring O anions;
see, e.g., [22].

Our calculations of elastic properties of the cubic phases of
H2O ice were performed using the first-principles plane-wave
pseudopotential method based on the density functional theory
(DFT) implemented in the Vienna ab initio simulation package
(VASP) [52–54]. The generalized gradient approximation

(GGA) parametrized by Perdew, Burke, and Ernzerhof (PBE)
was adopted to describe the electronic exchange-correlation
potential [55]. The projector augmented wave (PAW) method
[56,57] was employed to model interactions between nuclei
and electrons. The electron wave functions were expanded in
plane waves with cutoff energy of 870 eV. In the case of cubic
ice X we chose a k mesh of 8 × 8 × 8 to sample the irreducible
cubic Brillouin zone whereas for cubic ice VII represented
by a 2 × 2 × 2 supercell, we used a k mesh of 4 × 4 × 4.
The unit cell geometry including volume, shape, and atomic
positions was fully relaxed until the target external pressure,
approximated by the Pulay stress, was achieved. In fact, the
Pulay stress is the trace of the calculated external stress tensor.
The total energy tolerance for the electronic minimization was
set as 1 × 10−6 eV and the interatomic force tolerance for the
geometric optimization was set as 0.01 eV/Å.

By simulation of the ice VII structure, the proton-disordered
configurations at around zero pressure were obtained using
the following procedure: An ordered supercell containing
2 × 2 × 2 unit cells of ice X was set up with the volume
close to that of ice VII. Standard ab initio molecular dynamics
(MD) calculations [53] were performed then at 300 K with
fixed oxygen positions while the protons were able to move.
A Verlet algorithm [58] was used to integrate Newton’s
equations of motion with a time step of 1.5 fs. This procedure
resulted in a cubic supercell with quasirandom H2O molecule
orientations. Taking the generated supercell, its geometry
including volume, shape, and positions of protons and oxygen
anions was fully relaxed for different pressures from 10 to
100 GPa with an interval of 10 GPa by using the static DFT
calculations described above. Identical electronic structure
parameters were employed for the static DFT and ab initio
MD calculations.

For each pressure, single-crystal elastic moduli of the
cubic ice phases were calculated. The elastic tensor was
determined by performing six finite distortions of the lattice
and deriving the elastic constants from the strain-stress relation
as implemented in VASP internally.

III. RESULTS

A. Distribution of VL in ice VII and the phase transition to ice X

In order to further substantiate the contradictions discussed
in the Introduction, we first elucidated the observed in the
earlier FDBS studies convergence of VLav(P ) to VLmax(P ).
We have found that this convergence is a result of elastic
anisotropy of ice VII causing a strongly asymmetric shape of
the Brillouin peak collected from a polycrystalline texture-
free sample: In order to model the Brillouin peak shape we
calculated the distribution of VL in a single crystal of ice
VII. Using Cij (P ) of ice VII from FDBS at 40 GPa [30], we
calculated VL for 20 000 discrete uniformly spread directions
in a single crystal and counted the number of directions with
the same VL. The resulting velocity histogram with the bin
size of 10 m/s is shown in the inset of Fig. 1. The asymmetric
distribution of VL in the histogram implies that a FDBS peak
collected from a texture-free polycrystalline ice VII sample at
40 GPa should be similarly asymmetric. Both the distribution
maximum and its center of mass are strongly shifted to the
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upper limit value VL〈111〉. In the case of a weak signal from
a microscopic cubic ice sample in a DAC, the low-velocity
flank of the FDBS peak could become indistinguishable from
background. Similar analyses of the VL distribution for ice
X using Cij (P ), predicted theoretically by Journaux et al.
[3] and in this work (see below), led to the same results:
The dependence VLav(P ) in classical FDBS measurements on
polycrystalline texture-free samples of ice X should approach
the dependence VLmax(P ) = VL〈111〉(P ), provided the phase
exists.

Further, we performed first-principles calculations of
Cij (P ) for ice X at pressures between 10 and 100 GPa (see
below for a detailed description of the results) in order to
verify our linear extrapolation of the previous theoretical data,
obtained between 80 and 450 GPa [3], to pressures below
80 GPa. Our calculations confirmed that ice X is highly rigid
and both Cij (P ) and sound velocities only weakly change
with pressure (Fig. 1). These findings, combined with the
above discussed tendency of VLav(P ) to approach VLmax(P ),
suggest that the ice X did not appear in the earlier FDBS
experiments to 80 GPa [26,29], provided the polycrystalline
samples of H2O ice remained texture-free. This is because
the formation of ice X between 40 and 80 GPa would cause
a jump of VLav(P ) to significantly higher values instead
of a continuous increase reported in these classical FDBS
measurements. Such a jump should occur in texture-free
cubic H2O ice samples compressed in a DAC because (i)
the transition from ice VII to ice X must be hysteresisless,
(ii) pressure variations along the sample depth are negligibly
small, (iii) VLav(P ) of texture-free cubic ice VII and ice X
samples approaches VLmax(P ), and (iv) up to 80 GPa the
theoretical VLmax(P ) of ice X is much higher than the reported
experimental VLav(P ), corresponding to VLmax(P ) of ice VII
(Fig. 1). Obviously, the above considerations and conclusions
are obsolete if the earlier classical FDBS measurements were
performed using unfocused laser beams and/or the spectra
were not collected from one and the same sample region after
each pressure increase. Texture could not obscure the transition
in these experiments because no systematic difference in VLav
was recognized by the application of the backscattering and
forward-scattering geometries [29].

B. Sound velocities of H2O ice

At each chosen pressure, starting from 82 GPa or 57 GPa,
we collected up to 40 TDBS signals (see Fig. 2 for an
example) by lateral scanning over the samples of H2O ice.
Results of the data analysis (described above in Sec. II C)
are summarized in Fig. 3 where our experimental values of
VLmax(P ) and VLmin(P ) between 10 GPa and 82 GPa, obtained
for two temporal windows of 1 and 2.5 Brillouin oscillations,
are shown. At first glance, our experimental data appear to
scatter significantly (Fig. 3). However, the scattering is smaller
or much smaller (depending on pressure) than the width of
the Brillouin peaks reported in the earlier classical FDBS
measurements [29], the only FDBS study of H2O ice in a
DAC which presents experimental spectra. In other published
reports of classical FDBS measurements only results of the
spectra treatments were presented. This could explain, at least
partially, a much smoother change of the Brillouin frequencies

with pressure in these publications when compared with our
experimental data points (Fig. 3).

Experimental uncertainties for our VLmax(P ) and VLmin(P )
values, for both temporal windows, were determined using
Eq. (4) and only those for the narrower temporal window were
larger than the symbols in Fig. 3. We note that by calculation of
uncertainties of VL from the TDBS signals, we did not consider
uncertainties in the experimental values of n(P), reported to
be small [20]. The smaller uncertainties in VLmax(P ) and
VLmin(P ) as well as a smaller deviation of VLmax(P ) from
VLmin(P ) found for the wider temporal window are, obviously,
due to the fact that the TDBS signals were averaged over
larger depth distances and therefore over a larger number of
grains. Nevertheless, the difference between VLmax(P ) and
VLmin(P ) for the wider window is similar to that observed
in the classical FDBS measurements on polycrystalline H2O
ice samples where the envelope method was applied [30]. For
the narrower temporal window, we obtained VLmax(P ) and
VLmin(P ) (Fig. 3) following the same tendency as velocities in
the single-crystal ice VII measured to 8 GPa [28]. As already
elucidated above, the earlier reported dependencies VLav(P )
approach our VLmax(P ). All these observations legitimated
our use of VLmax(P ) and VLmin(P ) for the narrower temporal
window to determine Cij (P ) of H2O ice at pressures above
10 GPa.

In what follows we assumed, after the most accepted model,
that H2O ice has remained cubic over the entire pressure range
of our measurements. In this case, we could set VLmax(P ) =
VL〈111〉(P ) and VLmin(P ) = VL〈100〉(P ), the fastest and the
slowest sound propagation directions in a cubic crystal. In
order to obtain Cij (P ) we needed B(P) as an input parameter
from an independently determined equation of state, ρ(P ).
Unfortunately, the earlier published ρ(P ) [17,19,23,24,26]
scatter strongly and there was no convincing criterion to prefer
one over the other. For this reason, we applied a recursive
procedure to select the most reliable one: For each reported
pair of ρ(P ) and B(P ) = [C11(P ) + 2C12(P )]/3 we derived
the moduli Cij (P ) using our experimental VL〈111〉(P ) and
VL〈100〉(P ). Then, these Cij (P ) were tested with respect to
the mechanical stability criterion requiring (C11 − C12) > 0
[59,60]. Surprisingly, only one experimental ρ(P ) published
in Ref. [23] led to Cij (P ) satisfying this criterion over the
entire pressure range and, accordingly, was adopted. It should
be mentioned that this equation of state also gave the best
agreement with our and with the earlier first-principles calcu-
lations [17]. Our experimental moduli Cij (P ) and G(P) of the
cubic H2O ice are shown in Fig. 4. For error propagation, only
the uncertainties of our TDBS data were taken into account.
Subsequently, pressure dependencies of the maximal and
minimal transversal sound velocities, VT max(P ) = VT 〈100〉(P )
and VT min(P ) = VT 〈110〉(P ), were calculated (Fig. 5). Our
VT 〈100〉(P ) and VT 〈110〉(P ) agree reasonably well with those
reported in the earlier single-crystal measurements to 8 GPa
[28] and embrace VT max(P ) and VT min(P ), found in the
FDBS measurements on polycrystalline samples applying the
envelope method [30], as well as VT av(P ) from Ref. [29]. Last
but not least, a discontinuity in our VT 〈110〉(P ) dependence was
observed around 40 GPa and its possible nature is discussed
below. In summary, our experimental TDBS data provide
reasonable explanations for all earlier reported inconsistent
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FIG. 4. Pressure dependencies of the single-crystal elastic moduli
Cij (P ) of H2O ice derived under the assumption that the ice structure
is cubic in the entire pressure range. Only experimental TDBS data,
obtained for the narrower window (Fig. 3), were used to determine
the shown Cij (P ). Solid line represents B(P) reported in Ref. [23].
Solid triangles pointing up and down show C11(P ) and C44(P ),
respectively. Solid rhombuses and squares show our C12(P ) and
G(P), respectively, where the latter was calculated from Cij (P ) using
the Voigt approximation, G(P ) = [C11(P ) − C12(P ) + 3C44(P )]/5.
Open squares show G(P) calculated using the Voigt-Reuss-Hill
approximation (the experimental uncertainties, not shown for clarity,
are the same as for the Voigt approximation).

FDBS data on sound velocities and elastic moduli of the cubic
H2O ice obtained for single crystals and for polycrystalline
samples.

C. Results of the first-principles calculations

The above presented experimental findings were supported
by the first-principles calculations of Cij (P ) and ρ(P ) for
ice VII and ice X (Fig. 6) from which sound velocities
of the longitudinal and transversal waves propagating in
different directions in single crystals can be deduced. For
the both phases, we calculated first ρ(P ) [Fig. 6(a)] and
Cij (P ) [Figs. 6(b) and 6(c)] and then VL〈111〉(P ) and VL〈100〉(P )
(Fig. 3) as well as VT 〈100〉(P ) and VT 〈110〉(P ) (Fig. 5). As
already mentioned, our theoretical equation of state, ρ(P ),
and B(P) were found to fit best the corresponding experimental
curves reported in Ref. [23]. General tendencies in the pressure
dependencies of our experimental Cij (P ) and G(P), with
the exception of the data point at the highest pressure, are
reasonably well reproduced by our calculations. Namely, the
theoretical C11(P ) and C44(P ) do not differ strongly from
the corresponding experimental values, typically by <15%,
but deviate more from each other than the experimental
ones. The calculated dependencies C12(P ) and G(P) agree
well with the experimental data in most of the pressure
range. The similarly high values of these moduli are well
reproduced, except the last experimental data point at 82 GPa.
Sources of moderate discrepancies between the theoretical
and experimental data can be of different natures: First, even
for simple crystal structures of binary compounds (e.g., NaCl
type) with known fixed positions of both cations and anions,

FIG. 5. Experimental and theoretical VT (P) values for cubic
H2O ice. Symbols represent experimental data: Solid dark-red
triangles pointing up and down show, respectively, our VT 〈100〉(P ) and
VT 〈110〉(P ) between 10 and 82 GPa derived using the experimental
Cij (P ) depicted in Fig. 4. Open green triangles pointing left and right
show VT 〈100〉(P ) and VT 〈110〉(P ), respectively, measured for single
crystals of ice VII by Shimizu et al. [28]; open triangles pointing up
and down represent the same values calculated from Cij (P ) reported
by Zha et al. [30]; circles are VT av(P ) measured for polycrystalline
ice samples by Ahart et al. [29]. Lines represent theoretical values of
VT 〈100〉(P ) and VT 〈110〉(P ): Dotted lines, our calculations for ice VII;
dashed lines, our calculations for ice X; solid lines, earlier results of
Journaux et al. for ice X [3].

deviation of experimental bulk moduli from those calculated
using the GGA approximation can reach 15% [61]. The
crystal structure of H2O, especially of ice VII, is much more
complicated than that of a simple NaCl type structure and
is less well verified at pressures above ∼50 GPa because
the proton positions appear to change upon compression.
Second, temperature effects were not taken into account in
our ab initio calculations performed at T = 0 K. Third, our
model does not consider possible displacement of protons
to octahedral interstitials of the O sublattice proposed in
Ref. [22]. Displacement of protons within the lattice of H2O
ice can strongly influence its elastic moduli, as impressively
demonstrated by our calculations: A relatively small shift of
protons from an asymmetric position between the O atoms
in ice VII to a symmetric one in ice X causes a dramatic
moduli increase [Figs. 6(b) and 6(c)]. Similarly, we did not
consider a possibly significant deviation of the ice structure
from cubic symmetry as proposed in the recent XRD studies
[21]. Accordingly, a moderate disagreement of the calculated
and measured Cij (P ) could be a manifestation of subtle
changes in the ice crystal structure upon compression. Finally,
we would like to remind the reader that a reliable transferable
analytic functional describing the O-H interaction in H2O
ice is still not established [17]. This limits significantly all
ab initio calculations on H2O ice properties, including ours:
It impedes the demanding modeling of the local structure
of ice VII having orientationally and, maybe, positionally
disordered H2O molecules or protons alone. In addition to
elastic moduli of ice VII, we found in our calculations that
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FIG. 6. Results of present ab initio calculations for the cubic ice phases VII and X between 10 and 100 GPa. (a) Calculated densities of ice
VII and ice X are represented by the dotted and dashed red line, respectively, and compared with the experimental EOS (solid line) reported
in Ref. [23] which we used to derive Cij (P ) values from the measured VLmax(P ) and VLmin(P ). (b) Elastic moduli of ice VII calculated for
the 2 × 2 × 2 supercell model are represented by thick solid lines. The theoretical G(P) is derived from the Cij (P ) using the Voigt-Reuss-Hill
approximation. The calculated values are compared with our experimental results shown in Fig. 4 (symbols connected by thin solid lines).
(c) Calculated elastic moduli of ice X represented by thick solid lines. The theoretical G(P) is derived from the shown Cij (P ) using the
Voigt-Reuss-Hill approximation. The experimental data points at 82 GPa (see Fig. 4) are shown for comparison. (d) Calculated Gibbs free
energy difference between ice VII and ice X at T = 0 K, shown by connected solid squares.

between 10 GPa and 100 GPa the supercell of this phase
has a local minimum on the total energy scale and that the
H2O units are recognizable. However, the number of protons
located symmetrically between the adjacent O atoms grows
upon compression. We expect that the present experimental
results can be used in future theoretical studies aiming at the
improvement or optimization of the basic interaction potential
between H and O. Such optimization and development of a
more realistic structural model of ice VII, including positions
of protons, should be a subject of a separate work. We consider
our present calculations as a first step to the solution of this
demanding problem. Despite the shortages in our calculations
of Cij (P ) of cubic H2O ice, our theoretical limits for VL(P) of
ice VII agree reasonably well with those we obtained from the
TDBS measurements. There are minor differences in the slopes
of our calculated and experimental VL〈111〉(P ) and VL〈100〉(P )
which can probably be explained by the above listed limitations
of our theoretical approach. Finally, we calculated the Gibbs

free energies of ice VII and ice X at T = 0 K. Their comparison
[Fig. 6(d)] suggests that the ice VII remains stable up to 90 GPa
provided the temperature increase to 293 K does not shift the
phase equilibrium pressure significantly. Another confirmation
of this finding could be a significant discrepancy between the
elastic moduli we have derived from the TDBS measurements
and those predicted theoretically for ice X [Fig. 6(c)]. However,
at 82 GPa our experimental Cij (P ) do not agree well with the
theoretical values for the ice VII either and a transition to a
phase other than ice X could be the cause.

IV. DISCUSSION

Comparison of our experimental longitudinal sound veloc-
ities with the theoretical VL〈111〉(P ) and VL〈100〉(P ) for the two
cubic H2O ice phases (see Fig. 3) suggests that ice X does not
occur at P � 60 GPa, not even as a minor coexisting phase.
Our TDBS technique has sufficiently high spatial resolution to

134122-10



LONGITUDINAL SOUND VELOCITIES, ELASTIC . . . PHYSICAL REVIEW B 96, 134122 (2017)

reveal any regions within the samples where VLmax approaches
the theoretical VL〈111〉 of the ice X. At higher pressures our
VL(P) data (Fig. 3) do not permit unambiguous conclusion
about the existence of the ice X phase. However, the persistence
of ice VII to the highest pressure of 82 GPa follows from the
comparison of our experimental and theoretical VT (P) for both
phases (Fig. 5): Our theoretical VT min(P ) = VT 〈110〉(P ) of ice
X, agreeing well with the earlier predictions [3], decreases
with pressure but the experimental one increases. It should be
mentioned here that a significant scattering of our experimental
VT (P) values can be explained by accumulation of the
measurement uncertainties of VLmax(P ), VLmin(P ), and B(P)
needed to derive VT 〈100〉(P ) and VT 〈110〉(P ). Our ab initio cal-
culations [Fig. 6(d)] of the phase equilibrium also exclude the
transition from ice VII into ice X at P < 90 GPa, similarly to
an earlier prediction [16]. Finally, a discontinuity in the experi-
mental dependencies VLmin(P ) and VT 〈110〉(P ) at about 40 GPa
(Fig. 3 and Fig. 5) could be an indication of a subtle change
of the ice VII elasticity possibly related to a structural change
proposed in the recent XRD studies and/or to the kink in n(P)
at the same pressure (see Introduction). Another indication
of a phase transition could be an elevated elastic anisotropy
factor A between 8 and 14 we obtained from the experimental
Cij (P ) values between 40 and 55 GPa while at P < 40 GPa
and P > 60 GPa the elastic anisotropy factor was below 6.

Our experimental dependence of the shear modulus of
cubic H2O ice on pressure, G(P), (Fig. 4) implies a significant
increase of the ice hardness to values typical for hard ceramics
if a nearly linear correlation of these material properties
established in the literature [62] is adopted: At P = 24 GPa we
obtained for cubic H2O ice G ≈ 86 GPa, similar to that of TiC
at ambient conditions, while at P = 82 GPa we measured G ≈
330 GPa, not far from that of cubic BN, the second hardest
material after diamond at atmospheric pressure. Furthermore,
from our TDBS results it follows that at P > 10 GPa the
ratio B/G is close to unity, if the Voigt approximation is used
to calculate the shear modulus from Cij (P ). This suggests,
according to the Pugh criterion [63], a high brittleness of cubic
H2O ice. Another indication of brittleness of cubic H2O ice is
a large and growing negative value of Cauchy pressure defined
as (C12 – C44) [64]. Such properties combination, typical rather
for ceramics, should strongly influence internal structure and
seismic activity of the H2O ice rich planets, especially those
having weak or no intrinsic heat sources, e.g., Uranus [5].

The high hardness combined with a significant elastic
anisotropy, revealed in this work, could explain the consid-
erable systematic deviations of the interplanar distances for
different crystallographic orientations d(hkl) observed in the
earlier XRD studies on the cubic ice phases compressed in
a DAC [21,24]. In contrast to sound velocities, d(hkl) of ice
grains are strongly influenced by differential stresses, their
distribution and orientation in the sample volume. This is
valid for any solid compressed nonhydrostatically in a DAC
and limits accuracy of bulk modulus measurements using the
XRD technique. Because H2O ice does not permit the use of
any pressure medium, the recognized strong scattering of the
experimental dependencies ρ(P ) and B(P) cannot be avoided
in the high-pressure XRD measurements.

Our modeling of the peak shape in classical FDBS spectra of
texture-free polycrystalline samples of elastically anisotropic

solids (cubic H2O ice in this work) demonstrated a limited
usability of FDBS by determining average sound velocities: In
the case of cubic H2O ice neither the maximum of the Brillouin
peak (whose ideal shape was reproduced by the calculated VL

distribution in a single crystal) nor the most probable sound
velocity (center of mass of the distribution) agreed with the
sound velocity derived applying the isotropic elastic moduli
B and G calculated using the same Cij moduli via the Voigt
or Voigt-Reuss-Hill approximation (see caption of Fig. 1).
Moreover, the deviation is systematic and can vary if the elastic
anisotropy changes upon compression or heating. Ignoring of
this fact can lead to incorrect values of average sound velocities
in elastically anisotropic polycrystalline solids or erroneous
results and conclusions about phase transitions as could be
the case for cubic H2O ice. Apparently, such uncertainties
are not expected in the FDBS studies on sufficiently large
single crystals, both at atmospheric and at high pressures,
but the vast majority of such type of studies was already
completed in the past. The classical FDBS has also been
successfully applied for many decades to measure elastic
properties (also at high pressures and high temperatures) of
numerous isotropic systems such as organic samples, liquids,
polymers, nanostructured thin films, and glassy materials.
However, nowadays an increasing number of novel materials
are available only as polycrystalline bodies or coatings provid-
ing inherent limitations to the use of the traditional FDBS. This
is a motivation to develop new techniques providing deeper
insights into elastic behavior of such samples with μm or
sub-μm spatial resolution.

We have demonstrated in this work that the TDBS technique
is quite suitable for the measurement of sound velocities
and elastic anisotropy, as well as for revealing local inho-
mogeneities in any transparent solid, both at atmospheric
and at high pressures. Knowledge of the refractive index
is needed in order to derive the sound velocities from the
Brillouin frequencies obtained using the TDBS technique.
Knowledge of the density and/or EOS is needed in the next
step, to derive single-crystal elastic moduli Cij (P ). These
requirements are common to both FDBS and TDBS, though.
One of the advantages of the TDBS technique is the ability
to reveal elastic anisotropy of examined polycrystalline solids
which can be obscured in classical FDBS measurements. This
capability permits us to avoid hasty conclusions about the
elastic properties or phase transitions in an anisotropic sample
upon change of pressure or temperature.

In contrast to the classical FDBS, the high spatial resolution
of the TDBS, especially its high axial resolution, excludes data
compromising when differential stresses become significant
in compressed or deformed single crystals. The main cause
of the data compromising by use of the FDBS is the elastic
anisotropy: Nonhydrostatic compression/deformation causes
recrystallization, formation of domains, and cracking of
initially single crystal samples. The resulting smaller grains
differently oriented with respect to each other and to the initial
single crystal cause degradation of the classical FDBS spectra
manifesting itself in splitting and broadening of the Brillouin
peaks. The TDBS technique permits, in contrast, detection
and imaging of such sample states due to its capability of
3D mapping of the sound velocity distribution with a high
spatial resolution [41]. Previously, degradation of single
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crystals upon nonhydrostatic compression in a DAC and
their transformation in polycrystals has been reported in the
literature, especially in the XRD studies. However, none of
the earlier techniques provided the sufficiently high axial
resolution permitting the in-situ examination of such states
and their evolution upon compression.

The capabilities of TDBS promise a significant extension
of our knowledge about the state of strongly densified matter.
Its high spatial resolution permits quantitative measurements
of sound velocities, elastic anisotropy, and local inhomo-
geneities in any transparent solid compressed to pressures
in excess of 100 GPa where the classical FDBS encounters
its limits due to small sample volumes and lateral pressure
gradients [31,33]. Because the lateral resolution of the optical
methods (up to ∼1 μm) used to measure the refractive
index upon compression [20,38] is similar to that of the
TDBS technique, determination of sound velocities on severe
compression should be straightforward. Combined with the
synchrotron-based XRD, the TDBS technique could help in
establishing the primary pressure scale at pressures exceeding
100 GPa whose absence is considered a central problem
in solid state physics [65]. Presently, equations of state of
some metals (e.g., Au, Pt, or Re) derived from shock wave
compression are used for pressure measurement or for the
development of secondary pressure scales such as shift of
the R1 fluorescence line of ruby or of the high-frequency
edge of the diamond Raman band [33,39,66]. Reliability of
these equations of state, especially systematic deviations, are
difficult to evaluate due to the application of unsupported
(or basic) theoretical models of the P-T behavior of solids
by reduction of the high pressure–high temperature shock
compression data to the room temperature–static pressure
conditions [65]. Application of the TDBS technique (similarly
to the FDBS technique) makes unnecessary the preliminary
knowledge of the density of the examined crystalline samples
throughout the whole pressure range of intended experiments.
Starting from the pressure where this value is known, a
combination of the TDBS and XRD measurements permits
the extension of the EOS under strong compression in a
DAC applying the basic expression δP = B(P ) δρ(P )/ρ(P ).
Here, δρ(P ) and ρ(P ) can be determined from the XRD data,
provided the sample is crystalline and the pressure increment is
small. In order to derive B(P) from the TDBS measurements,
the elastic anisotropy A should be examined at the starting
pressure using the statistical approach described above. Then,
the constancy of A should be confirmed upon the pressure
increase, and the values VLmax and VLmin determined by
performing the 3D mapping of the VL distribution. In the final
step, the expressions describing elastic anisotropy A, density
increment, and VLmax and VLmin permit calculation of the bulk

modulus B(P). Summarizing, the TDBS technique combined
with the synchrotron-based XRD technique provides the best
opportunity to establish the primary pressure scale at pressures
exceeding 100 GPa.

V. CONCLUSION

In this work we have extended studies on sound velocities
and single-crystal elastic moduli of compressed H2O ice to
pressures of 82GPa. The pressure region where VL〈111〉(P ) and
VL〈100〉(P ) in a single crystal of cubic H2O ice are measured
was doubled. The sound velocities were extracted from the
Brillouin frequency distributions in polycrystalline H2O ice
samples compressed in a DAC. For this purpose, we applied
the TDBS technique having a sub-μm in-depth resolution. This
technique provided VLmax(P ) and VLmin(P ) much closer to
VL〈111〉(P ) and VL〈100〉(P ), respectively, than in the earlier clas-
sical FDBS experiments. Obtained sound velocities allowed
evaluation of reliability of the existing equations of state of cu-
bic H2O ice measured using x-ray diffraction. Only one of the
earlier reported EOSs [23] was found to satisfy the mechanical
stability criterion (C11 – C12) > 0 in the entire pressure range.
However, this statement as well as some other deductions
are valid only if the crystal structure of H2O ice remained
cubic in our measurements. Applying this EOS, we derived
Cij (P ) and G(P) and estimated the transversal sound velocities
VT 〈100〉(P ) and VT 〈110〉(P ) for cubic H2O ice to 82 GPa.
Our data indicated a significant elastic anisotropy and a high
hardness of the cubic H2O ice which could explain the discrep-
ancies in the earlier reported EOS and FDBS data. Our exper-
imental results were supported by ab initio calculations of
elastic moduli of ice VII and ice X between 10 GPa and
100 GPa. Taken together, our experimental and theoretical
results imply that ice X does not form at pressures below
80 GPa. A high spatial resolution of the TDBS technique
demonstrates its suitability for the measurement of the elastic
properties of transparent solids at pressures in excess of
100 GPa and for establishment of the primary pressure scale
if combined with high-resolution synchrotron-based x-ray
diffraction.
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