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Zero-Group Velocity (ZGV) Lamb waves are studied in a structure composed of two plates bonded

by an adhesive layer. The dispersion curves are calculated for a Duralumin/epoxy/Duralumin sam-

ple, where the adhesion is modeled by a normal and a tangential spring at both interfaces. Several

ZGV modes are identified and their frequency dependence on interfacial stiffnesses and on the

bonding layer thickness is numerically studied. Then, experiments achieved with laser ultrasonic

techniques are presented. Local resonances are measured using a superimposed source and probe.

Knowing the thicknesses and elastic constants of the Duralumin and epoxy layers, the comparison

between theoretical and experimental ZGV resonances leads to an evaluation of the interfacial

stiffnesses. A good agreement with theoretical dispersion curves confirms the identification of the

resonances and the parameter estimations. This non-contact technique is promising for the local

evaluation of bonded structures. VC 2015 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4934958]

[ANN] Pages: 3202–3209

I. INTRODUCTION

The characterization of the elastic coupling of two

plates by an adhesive layer is of primary importance in the

evaluation of bonded structures. Various acoustic methods

have been proposed to measure adhesion using reflection1

or transmission2 of bulk acoustic waves. These methods are

more suitable for disbond detection than for adhesion char-

acterization. Other techniques exploit guided waves, such

as Lamb modes or shear horizontal modes, propagating

along the structure.3–7 However, these non-local methods

are not very sensitive and provide an average estimation of

the bonding quality. A thorough review on ultrasound non-

destructive testing of adhesive bond was conducted by

Castaings.8

An alternative approach using Zero-Group Velocity

(ZGV) Lamb modes has been the object of recent studies.

The existence of backward waves, and consequently of ZGV

modes, was studied theoretically for solid/liquid/solid struc-

tures.9–11 Laser ultrasonic experiments confirmed the narrow

resonances observed at ZGV frequencies in the case of a thin

fluid layer between two solid plates.11 It was also shown

experimentally that ZGV modes exist in plates bonded by a

solid layer and are promising to evaluate the bonding qual-

ity.12–14 High sensitivity and local measurements provided

by ZGV modes are attractive for investigating the bonding

in a tri-layer structure without any contact. Using resonance

frequencies of ZGV Lamb modes, Cho et al. reported on the

evaluation of well- and weak-bonded adhesive plate sam-

ples.14,15 They observed a correlation between the first ZGV

frequency and the bonding quality measured by mechanical

tests.

In this article, we investigate the evolution of the main

ZGV modes in a tri-layer structure as a function of the longi-

tudinal and shear interfacial stiffnesses. In Sec. II, the disper-

sion equation of a symmetrical tri-layered structure with

interfacial stiffnesses is recalled and ZGV modes are dis-

cussed. Section III proposes a numerical study of the de-

pendence of ZGV modes on the bonding layer thickness and

on the interfacial stiffnesses. Experimental results obtained

with a laser ultrasonic setup and a comparison with theoreti-

cal expectations are presented in Sec. IV.

II. DISPERSION EQUATIONS AND ZGV MODES OF A
TRI-LAYER

The objective of this section is to establish the dispersion

equation of a tri-layered structure following the approach cho-

sen by Vlasie and Rousseau.4 Each layer is assumed to be iso-

tropic, homogeneous, and infinite, with mass density qi,

longitudinal and transversal velocities VLi and VTi, where i
indicates the layer number (i¼ 1, 2, 3). The first and third layer

thicknesses are denoted by h1 and h3, whereas the bonding

layer thickness is denoted d. The coupling between two suc-

cessive layers is modeled by longitudinal and transversal

springs of stiffnesses KLj and KTj, where j¼ 1, 2 indicates the

interface (Fig. 1). Spring stiffnesses can evolve from 0 (for

uncoupled plates) up to 1017N/m3. The upper limit corre-

sponds to an estimation, in an atomic chain model, of the ep-

oxy layer bulk stiffnesses per unit length (N/m3 or Pa/m).16

In order to establish the dispersion law between the

angular frequency x and the wave number k, the scalar

potential / and the vector potential w are used. The problem

is supposedly two-dimensional so that the vector potential

reduces to a scalar. The tangential and normal displacements

derive from these potentials as follows:a)Electronic mail: claire.prada@espci.fr
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and the stresses are given by:
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2@2/
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2w
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� @

2w
@z2

� �
; (2)

rzz ¼ k
@2/
@x2
þ @

2/
@z2

� �
þ 2l

@2/
@z2
þ @2w
@x@z

� �
; (3)

where k and l are the Lam�e coefficients.17 The potentials in

the three layers are written as:

/1 ¼ A1L cos p1 zþ d

2

� �� �
þ B1L sin p1 zþ d

2

� �� �� �
e| kx�xtð Þ;

w1 ¼ A1T cos q1 zþ d

2

� �� �
þ B1T sin q1 zþ d

2

� �� �� �
e| kx�xtð Þ;

/2 ¼ A2L cos p2z½ � þ B2L sin p2z½ �
� �

e| kx�xtð Þ;

w2 ¼ A2T cos q2z½ � þ B2T sin q2z½ �
� �

e| kx�xtð Þ;

/3 ¼ A3L cos p3 z� d

2

� �� �
þ B3L sin p3 z� d

2

� �� �� �
e| kx�xtð Þ;

w3 ¼ A3T cos q4 z� d

2

� �� �
þ B3T sin q3 z� d

2

� �� �� �
e| kx�xtð Þ;

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

(4)

where p and q are the z-component of the longitudinal and

transversal wave vectors, respectively. The wave numbers

kLi ¼ x=VLi and kTi ¼ x=VTi satisfy dispersion equations of

bulk waves kLi
2 ¼ k2 þ pi

2 and kTi
2 ¼ k2 þ qi

2. AiL and BiL

(AiT and BiT) are amplitudes of longitudinal (shear) compo-

nents. At the free boundary, tangential (rxz) and normal (rzz)

stresses vanish,

rzz1 ¼ rxz1 ¼ 0 for z ¼ �h1 � d=2;
rzz3 ¼ rxz3 ¼ 0 for z ¼ h3 þ d=2:

�
(5)

The spring boundary conditions at both epoxy interfaces18

are written as follows:

rzz1 ¼ rzz2 ¼ KL1ðuz2 � uz1Þ for z ¼ �d=2;

rxz1 ¼ rxz2 ¼ KT1ðux2 � ux1Þ for z ¼ �d=2;

rzz2 ¼ rzz3 ¼ KL2ðuz3 � uz2Þ for z ¼ d=2;

rxz2 ¼ rxz3 ¼ KT2ðux3 � ux2Þ for z ¼ d=2:

8>>><
>>>:

(6)

Assuming a symmetric structure, the first and third layer

properties, as well as the two longitudinal and normal

springs, are identical and are denoted as h, q1, VL1; VT1, KL,

and KT, respectively. Then, it can be demonstrated that the

system can be split into two sub-matrices, corresponding to

symmetrical and anti-symmetrical solutions. Symmetrical

modes fulfill the conditions

uxðzÞ ¼ uxð�zÞ;
uzðzÞ ¼ �uzð�zÞ;

�
(7)

whereas anti-symmetrical modes satisfy

uxðzÞ ¼ �uxðzÞ;
uzðzÞ ¼ uzð�zÞ:

�
(8)

Combining Eqs. (1), (4), (7), and (8) leads to: A1L ¼ A3L;
B1T ¼ B3T ; A1T ¼ �A3T ; B1L ¼ �B3L, and A2T ¼ B2L ¼ 0

for symmetrical modes and to: A1L ¼ �A3L; B1T ¼ �B3T ;
A1T¼A3T ;B1L¼B3L, and A2L¼B2T ¼ 0 for anti-symmetrical

modes. Introducing the matrix

FIG. 1. (Color online) Geometry of the tri-layer model.

FIG. 2. (Color online) Theoretical dispersion curves for a Duralumin/epoxy/

Duralumin sample, with KL ¼ KT ¼ 5� 1014 N/m3 and h¼ 50 lm. Arrows

indicate ZGV Lamb mode frequencies.
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MðaÞ ¼

2|kp1 sin½p1h� 2|kp1 cos½p1h� ðkt1
2 � 2k2Þ cos½q1h� �ðkt1

2 � 2k2Þ sin½q1h�
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|kKT 0 0 �q1KT
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2
666666664

0 0
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d

2
þ a

� �
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d

2
� a

� �

�p2KL sin p2

d

2
þ a

� �
|kKL sin q2

d

2
� a

� �

2|kp2l2 sin p2

d

2
þ a

� �
� |kKT cos p2

d

2
þ a

� �
� kt2

2 � 2k2ð Þl2 sin q2

d

2
� a

� �
� þ q2KT cos q2

d

2
� a

� �

� kt2
2 � 2k2ð Þl2 cos p2

d

2
þ a

� �
� p2KL sin p2

d

2
þ a

� �
2|kq2l2 cos q2

d

2
� a

� �
þ |kKL sin q2

d

2
� a

� �

3
77777777777777775

; (9)

the boundary conditions can be written in matrix form by

setting a¼ 0 for symmetrical modes and a ¼ p=2 for anti-

symmetrical modes. It comes

MSUS¼ 0 where US¼

A1L

B1L

A1T

B1T

A2L

B2T

2
666666664

3
777777775

and MS¼Mða¼ 0Þ;

MAUA¼ 0 where UA¼

A1L

B1L

A1T

B1T

B2L

A2T

2
666666664

3
777777775

and MA¼Mða¼ p=2Þ:

Non-trivial solutions are found when the determinant of mat-

rices MS or MA vanishes. For symmetrical modes, p1, q1, and

q2 can be factorized in the second, fourth, and sixth rows,

respectively, in matrix MS. Similarly, p1, q1, and p2 can be

factorized for the second, fourth, and fifth row in matrix MA.

These terms correspond to bulk waves propagating at veloc-

ities VLi (pi¼ 0) and VTi (qi¼ 0). Such factorization avoids

the unwanted bulk modes in the dispersion curves.

A numerical program was developed to calculate the dis-

persion curves of any isotropic tri-layer structures. Zeros of

the secular equations are determined and the different modes

are then distinguished. Once a mode is obtained, its phase ve-

locity (V/ ¼ x=k) and its group velocity (Vg ¼ @x=@k) are

calculated. A solution ðx; kÞ is a ZGV mode if Vg¼ 0 with

k 6¼ 0. Dispersion curves and ZGV Lamb waves are then

obtained for the tri-layer model using interfacial stiffnesses.

Furthermore, once the dispersion curves are calculated, nor-

mal and tangential displacements (uz and ux, respectively) can

also be obtained. For a given ðx; kÞ belonging to one branch

of the dispersion curves, by setting one component common

to US and UA (e.g., A1L ¼ 1), the other components are deter-

mined from the boundary equation ½M�½U� ¼ ½0�. In the gen-

eral case, i.e., if layers 1 and 3 are not identical, the resolution

of Eqs. (4) and (5) leads to a 12� 12 matrix which cannot be

separated into two submatrices. Symmetrical and anti-

symmetrical modes no longer exist. In the presented example,

the symmetrical tri-layer is composed of two Duralumin

plates (q1 ¼ 2795 kg/m3, VL1 ¼ 6398 m/s, VT1 ¼ 3122 m/s,

h¼ 1.5 mm) bonded with an epoxy layer (q2 ¼ 1170 kg/m3,

VL2 ¼ 2500 m/s, VT2 ¼ 1100 m/s, d¼ 50 lm). The chosen pa-

rameters correspond to measured values.

Figure 2 displays theoretical dispersion curves derived

from Eq. (9) for values KL ¼ KT ¼ 5� 1014 N/m3 corre-

sponding to a relatively weak coupling. The first three

branches correspond to A0, S0, and A1 Lamb modes and like

in a single plate do not present any ZGV mode. Five ZGV

modes are visible on higher order branches. They can be

ascribed to the repulsion of two modes.19 These interactions

only occur for modes of the same symmetry having close

enough cutoff frequencies.

The number of ZGV Lamb modes can then vary with

the different parameters. This phenomenon is discussed in

Sec. III [Figs. 4, 5(a), and 6]. The first ZGV Lamb mode at

frequency f¼ 0.744 MHz only exists in a tri-layer

plate. According to the displacement distribution, this mode

corresponds to the S1S2 ZGV mode of the whole structure

and is denoted as so hereafter [Fig. 3(a)]. Around 2, 6, and

10 MHz, ZGV Lamb modes can be associated in pairs (see

Fig. 2 for the pairs around 2 and 6 MHz). These pairs corre-

spond to symmetrical and anti-symmetrical coupling of the
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same ZGV modes of the single plate. Figure 3 displays the

normal and shear displacements of the first seven ZGV

Lamb modes for the same intermediate bonding

(KL ¼ KT ¼ 5� 1014 N/m3).

From Figs. 3(b) and 3(c), it appears that the two modes

around 2 MHz correspond to the ZGV Lamb mode S1S2 in a

single Duralumin plate where both plates are coupled by the

intermediate layer symmetrically and anti-symmetrically,

respectively. Their frequencies remain close: 2.022 and

2.032 MHz to be compared with 1.915 MHz for a single 1.5-

mm thick Duralumin plate. The corresponding modes are

denoted SðS1S2Þ and AðS1S2Þ hereafter. A similar observation

is possible for higher frequency modes display in Fig. 3: ZGV

Lamb modes around 6 MHz [Figs. 3(d) and 3(e)] and 10 MHz

[Figs. 3(f) and 3(g)] are associated to S3S6 (f¼ 6.219 MHz)

and S5S10 (f¼ 10.406 MHz) in a single Duralumin plate, and

are denoted SðS3S6Þ�; AðS3S6Þ�; AðS5S10Þ�, and SðS5S10Þ� in

the following. The asterisk index indicates that the two modes

interacting to create the repulsion differ from the two interact-

ing for lower bonding (see Sec. III A) but the displacements

are very similar in both cases.

III. PARAMETRIC STUDY

In order to understand the behavior of the ZGV mode

frequencies, a parametric study is conducted for the same

symmetric tri-layer. The Duralumin plate thicknesses and

the elastic parameters of all layers are maintained constant,

while the epoxy layer thickness and the interfacial stiffnesses

are varied successively.

A. Influence of the bonding layer thickness

The influence of the layer thickness is studied for a

strong coupling [KL ¼ KT ¼ 1017 N/m3, Fig. 4(a)] and for a

weak coupling [KL ¼ KT ¼ 1014 N/m3, Fig. 4(b)]. Several

ZGV modes appear in both cases. Their existence is limited

to a thickness range, except for the ZGV mode associated to

the lowest frequency (fS1S2
), that exists for all thicknesses.

For a layer thickness above �20 lm, modes SðS1S2Þ and

AðS1S2Þ are present at frequencies around 2 MHz. Modes

SðS3S6Þ and AðS3S6Þ around 6 MHz and modes SðS5S10Þ and

AðS5S10Þ around 10 MHz are also present although for some

values of d, one or two of these modes is absent. In Figs.

4(a) and 4(b), around 6 and 10 MHz, a ZGV branch is disap-

pearing and another branch is then appearing at a close fre-

quency. Simulations show that displacements associated to

those ZGV branches are similar. Thus, the same notation is

used for these modes and an asterisk indicates the branch

change. It could be noted that for a very thin intermediate

layer (h � 10 lm) and a strong bonding, four other modes

appear [Fig. 4(a)]; they are not observed for lower spring

stiffnesses [Fig. 4(b)]. These modes correspond to ZGV

FIG. 3. (Color online) Theoretical normal (dashed line) and in-plane (solid

line) displacements, in a Duralumin/epoxy/Duralumin structure with KL ¼ KT

¼ 5� 1014 N/m3 and h¼ 50lm, for ZGV Lamb modes (a) S1S2 (0.744 MHz),

(b) SðS1S2Þ (2.022 MHz), (c) AðS1S2Þ (2.032 MHz), (d) SðS3S6Þ� (6.173 MHz),

(e) AðS3S6Þ� (6.222 MHz), (f) AðS5S10Þ� (10.403 MHz), and (g) SðS5S10Þ�
(10.685 MHz).

FIG. 4. (Color online) Theoretical

ZGV Lamb mode frequencies as a

function of the bonding layer thickness

d, for a Duralumin/epoxy/Duralumin

tri-layer, with (a) KL ¼ KT ¼ 1017 N/

m3 and (b) KL ¼ KT ¼ 1014 N/m3.

Symmetrical modes are in solid lines

whereas anti-symmetrical modes are in

dashed lines.
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modes in a single plate having twice the thickness of the

duralumin plates. For example, frequencies and displace-

ments of the first two additional modes correspond to S3S6

and S5S10 ZGV modes of a 3 mm thick duralumin plate,

respectively.

As expected, all ZGV frequencies decrease with increas-

ing bonding layer thickness. However, frequency variations

differ from one mode to the other. The ZGV frequency fS1S2

decays by 26.5% for KL ¼ KT ¼ 1017 N/m3 [Fig. 4(a)]. This

highlights the necessity of an accurate knowledge of the

value of each layer thickness before considering the interfa-

cial stiffnesses. Other layer properties involved in the ZGV

calculation (q2, VL2; VT2) also influence the ZGV Lamb

mode frequencies. However, such properties can be meas-

ured before the bonding, and are assumed to be homogene-

ous. On the contrary, the glue layer thickness can locally

evolve and simulations demonstrate the need to precisely

determine the layer thickness.

B. Influence of longitudinal and shear stiffnesses

For a bi-layer structure, it was shown that symmetrical

modes only vary with the longitudinal interfacial stiffness,

while anti-symmetrical ones only vary with the shear interfa-

cial stiffness.11 The situation is more complex for a tri-layer

structure where symmetric and anti-symmetric modes

depend on both KL and KT [Eq. (9)]. To understand the de-

pendence of resonance frequencies with interfacial stiff-

nesses, we first set the bonding layer thickness to 50 lm and

assume KL¼KT. Figure 5 displays the evolution of ZGV fre-

quencies for symmetrical and anti-symmetrical modes, as a

function of the stiffnesses varying over 4 decades. It appears

that the frequencies of all ZGV modes increase with increas-

ing stiffnesses and that the lowest ZGV mode S1S2 is, again,

always present. As shown for a bi-layer structure, this low

frequency mode characterizes the presence of a longitudinal

coupling between the two plates.11 The ZGV frequency fS1S2

exists for any KL and KT positive values. Its normal

component of the displacement is significant [Fig. 3(a)] for

any KL, KT values, which allows its optical detection (Sec.

IV). ZGV resonances associated to modes in the intermedi-

ate layer also exist but their frequencies are much higher

because of the intermediate layer thickness (d¼ 50 lm): the

first one appears around 22 MHz. As the mechanical dis-

placement is mainly localized in the bonding layer, these

ZGV modes are not experimentally detected and then not

discussed.

The wavelength of ZGV modes should also be consid-

ered to optimize the excitation spot size. For a homogeneous

plate, the ratio of the wavelength to the plate thickness

depends only on the Poisson ratio,20 but in a three-layer

structure, it depends on several parameters. For example,

Fig. 5(b) shows that the wavelength depends on the ZGV

mode order and either increases or decreases with the spring

stiffnesses KL;T . The beginning of a ZGV branch is associ-

ated to a low wave number which increases with KL;T [e.g.,

AðS3S6Þ� in Fig. 5(b)]. Similarly, the wave number vanishes

at the end of a ZGV branch [e.g., AðS5S10Þ in Fig. 5(b)]. The

S1S2 ZGV mode wave number is close to zero for very low

stiffnesses and increases with KL;T . This behavior can be

ascribed to the existence of the S1S2 mode for any strictly

positive spring stiffnesses. At the opposite, the existence of

other modes in a single plate (i.e., for KL ¼ KT ¼ 0) explains

their non-zero wave number for low spring stiffnesses.

Figure 6 presents the evolution of the first five ZGV

mode frequencies as a function of KT with KL ¼ 1014 N/m3

(a) and of KL with KT ¼ 1014 N/m3 (b).

For a bi-layer structure, it was demonstrated that sym-

metrical (anti-symmetrical) ZGV modes only depends on KL

(KT).11 For a tri-layer structure, this is no longer true.

However, in our experiment the bonding layer thickness is

small compared to the plate one and similar behaviors are

observed. Therefore, each ZGV mode is mostly influenced

by one or the other interfacial stiffness. In particular fS1S2
and

fSðS1S2Þ mainly depend on KL [Fig. 6(b)], whereas fAðS1S2Þ pri-

marily depends on KT [Fig. 6(a)]. These observations will

FIG. 5. (Color online) Theoretical

ZGV mode frequencies (a) and associ-

ated wave numbers (b), for d¼ 50 lm,

as a function of stiffnesses KL¼KT

varying from 1013 to 1017 N/m3.

Symmetrical modes (solid line) and

anti-symmetrical modes (dashed line).
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guide the experimental procedure to determine the interfacial

stiffnesses.

IV. EXPERIMENTS

An all-optical setup is used to measure ZGV resonances.

Lamb waves are excited by a Q-switched Nd:YAG (yttrium

aluminum garnet) laser (Quantel Laser, France, Centurion,

1064 nm) which delivers 10-ns pulses of 8-mJ energy. The

normal surface displacement is detected on the opposite side

of the plate with an interferometer (Bossa Nova Tech.,

Venice, CA, Tempo1D, 532 nm). The structure is a

100� 100 mm2 tri-layer composed of two Duralumin plates

of thickness h¼ 1.50 mm bonded by a bi-component epoxy

adhesive (Loctite Hysol, France, 9466 A&B). Substrate surfa-

ces were cleaned with acetone. To control the adhesive joint

thickness, thin metallic spacers are disposed along the edges

prior to then spreading of the glue. The specimen was cured

at room temperature (22 �C) and then maintained under a

5-kN constant pressure during 12 h with an automatic me-

chanical testing machine (MTS, Eden Prairie, MN QTest/

25). The thickness spacers were 43-lm thick. However, in

the middle of the plate, where the experiment is achieved, the

layer thickness is smaller due to the hardening process of the

glue. The determined mass densities are q1 ¼ 2795 kg/m3

for Duralumin and q2 ¼ 1170 kg/m3 for the epoxy. The longi-

tudinal and shear velocities were measured on a single

Duralumin plate using ZGV Lamb modes:19 VL1 ¼ 6398 m/s

and VT1 ¼ 3122 m/s. The longitudinal and shear acoustic

wave velocities of epoxy are estimated using piezoelectric

contact transducers (Olympus, USA, V103 and V153)

VL2 ¼ 2500 m/s and VT2 ¼ 1100 m/s.

For an accurate knowledge of the bonding layer thick-

ness, the precursors in the transmitted signal are obtained

with a small laser beam diameter (�100 lm at 1/e) [Fig.

7(a)]. The first arrival, at t0, corresponds to the direct trans-

mission in the structure while the second arrival, at t1, is

associated with the wave twice reflected in the intermediate

layer. The measured times t0 ¼ 601:660:4 ns and

t1 ¼ 629:660:4 ns lead to a glue layer thickness d ¼ 3561

lm.

The local resonance spectrum is measured at the same

point with an enlarged spot. A �3-mm beam diameter (at

1=e) is chosen as a good compromise to excite the first ZGV

modes [Fig. 5(b) and Balogun et al.20]. The resulting signal

and its Fourier transform are displayed in Figs. 7(b) and

Fig. 8, respectively. Several ZGV resonances are observed

with a precision estimated to be 1 kHz [see Table I]. The first

one at f¼ 0.836 MHz corresponds to the S1S2 mode. The fol-

lowing two around 2.1 MHz correspond to SðS1S2Þ and

AðS1S2Þ, not yet discriminated. Similarly, two resonances

around 6.2 MHz can be attributed to SðS3S6Þ and AðS3S6Þ.
Around 10 MHz, only one resonance is detected. This is

probably due to the fact that the displacement associated to

the SðS5S10Þ ZGV mode is mainly localized in the epoxy

layer and not at the free surface [see Fig. 3(g)].

FIG. 6. (Color online) Theoretical

ZGV modes of the tri-layer structure

with d¼ 50 lm as a function of (a) the

stiffness KT evolving from 1013 to

1017 N/m3 with KL ¼ 1014 N/m3 and of

(b) the stiffness KL evolving from 1013

to 1017 N/m3 with KT ¼ 1014 N/m3.

Symmetrical modes (solid line) and

anti-symmetrical modes (dashed line).

FIG. 7. (Color online) Typical signal measured by transmission in the

Duralumin/epoxy/Duralumin structure: (a) at short arrival with a �100 lm

beam diameter to observe first reflections in the intermediate layer, (b) with

a beam diameter of �3 mm to enhance ZGV mode resonances.
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In order to determine the interfacial stiffnesses, the fre-

quency fS1S2
and fAðS1S2Þ are calculated as a function of both

spring stiffnesses in the range ½1013; 1017� N/m3. The result-

ing maps are displayed in Figs. 9(a) and 9(b). From the iso-

frequency curves, it clearly appears that fS1S2
mostly depends

on KL while fAðS1S2Þ mostly depends on KT. In the experiment,

it is necessary to figure out which one of the two resonances

measured around 2 MHz corresponds to the anti-symmetrical

mode AðS1S2Þ.
The discrimination can be done from the resonance width.

As shown in Fig. 3(c) for the anti-symmetrical mode, the glue

layer is mainly sheared, leading to a stronger attenuation than

for the symmetrical ones, where the layer is weakly sheared

[Fig. 3(b)]. Consequently, the broader peak at 2.055 MHz can

be ascribed to the anti-symmetrical mode AðS1S2Þ, and the

thinner one at 2.066 MHz to the SðS1S2Þ mode [Fig. 8]. A sim-

ilar observation can be done for SðS3S6Þ at 6.215 MHz and

AðS3S6Þ at 6.247 MHz. Moreover, if we consider the reverse

case where AðS1S2Þ resonance would be at f¼ 2.066 MHz, the

obtained set of KL and KT values increases the discrepancies

between theoretical and experimental ZGV frequencies. This

confirms the identification of the symmetrical and anti-

symmetrical ZGV modes. Consequently, the isofrequency

curves are plotted at f¼ 2.055 MHz for the anti-symmetrical

mode AðS1S2Þ [Fig. 9(b)] and at f¼ 0.836 MHz for the S1S2

mode [Fig. 9(a)].

The interfacial stiffnesses correspond to the intersection

of these two curves and are found to be KL ¼ 2:52� 1015

and KT ¼ 2:83� 1014 N/m3 for a thickness d¼ 35 lm. For

these values, the theoretical frequencies of the other ZGV

modes fit the measured peaks with a discrepancy below

0.3% [Table I]. For d varying in the range 34 to 36 lm,

which corresponds to the layer thickness uncertainty, KL

varies from 2.15 to 3:07� 1015 N/m3 and KT varies from

2.56 to 3:17� 1014 N/m3.

Similar values for the longitudinal stiffness are found in

the literature for aluminum/epoxy interface.21,22 The ratio

KT=KL equal to 0.11 is much lower that the values of 0.7 to 0.8

reported by Cantrell.23 However this ratio is close to the value

0.16 measured by Guo et al. in the case of a film deposited on

a steel substrate.24 It should be noted that parameters KT and

KL depend on many factors during the hardening process of the

bonding layer such as humidity or surface roughness.

Dispersion curves were measured by shifting the source

(diameter spot 0.1 mm) from the probe beam, along 40 mm

by 0.1 mm steps, and applying a two-dimensional Fourier

transform to the acquired signals. Experimental curves are

displayed in Fig. 10. Theoretical dispersion curves were

FIG. 8. (Color online) Experimental signal obtained by transmission in the

Duralumin/epoxy/Duralumin tri-layer structure.

TABLE I. Experimental and theoretical ZGV Lamb mode frequencies.

Experiment (MHz) Theory (MHz) Difference (kHz)

0.836 0.836 —

2.055 2.055 —

2.066 2.063 �3

6.215 6.204 �11

6.247 6.260 13

10.424 10.426 2

FIG. 9. (Color online) Theoretical evolution of the frequency of the modes

S1S2 (a) and AðS1S2Þ (b) as a function of both interfacial stiffnesses in the

range ½1013; 1017� N/m3. Dashed lines correspond to isofrequency curves. Solid

lines correspond to fS1S2
¼ 0:836 MHz (a) and fAðS1S2Þ ¼ 2:055 MHz (b).

FIG. 10. (Color online) Experimental (map) and theoretical (solid

and dashed lines) dispersion curves obtained with the measured stiffnesses

KL ¼ 2:52� 1015 N/m3 and KT ¼ 2:83� 1014 N/m3.
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calculated with the stiffnesses previously obtained and then

superposed to experimental data. A good agreement between

theoretical and experimental curves is observed for a large

range of ðx; kÞ. It confirms that, provided the elastic proper-

ties and thickness of the epoxy layer are known, ZGV fre-

quencies are sufficient to determine the local interfacial

stiffnesses of the structure.

V. CONCLUSION

A method using ZGV Lamb modes is developed to char-

acterize the bonding in a tri-layer structure. Theoretical and

experimental studies are carried out in the symmetrical case

of two Duralumin plates bonded by an epoxy layer. The cou-

pling at both epoxy/metal interfaces is modeled by normal

and tangential stiffnesses, KL and KT. The parametric study

demonstrates the sensitivity of ZGV Lamb modes to KL;T

and to the bonding layer thickness. In general, the first sym-

metrical and anti-symmetrical ZGV Lamb modes are mostly

sensitive to normal and shear stiffnesses, respectively.

Provided the bonding layer thickness is well known, the

interfacial stiffnesses can be evaluated from ZGV frequency

measurements. To this end, the low frequency ZGV Lamb

mode is used to estimate KL, and then the second ZGV Lamb

mode is used to estimate KT. The difference between theoret-

ical and the other experimental ZGV frequencies is found to

be less than 0.3%, which shows the potential interest of this

technique.

In the future, measurements with different glue thick-

nesses or adhesive layers could be investigated to compare

different bonding qualities. It would be insightful to couple

ZGV interfacial stiffness measurements with mechanical

tensile tests.
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