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Zero-group velocity (ZGV) Lamb modes are associated with sharp local acoustic resonances and

allow, among other features, local measurement of Poisson’s ratio. While the thermoelastic genera-

tion of Lamb waves in metal plates has been widely studied, the case of materials of low-optical

absorption remains unexplored. In materials such as glasses, the generation of bulk elastic waves

has been demonstrated to be sensitive to the refracted light distribution. In this paper, a detailed

analysis of the effect of light refraction on the laser-based generation of ZGV Lamb modes is pre-

sented. Experiments are performed on a bare glass plate without the need for an additional layer for

light absorption or reflection. Using an appropriate tilted volume source, it is shown that the laser-

ultrasonic technique allows non-contact measurement of the Poisson’s ratio.
VC 2015 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4936903]
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I. INTRODUCTION

Non-contact characterization of mechanical properties

using laser ultrasonic techniques is very attractive. For the

last decades, numerous studies have dealt with the thermo-

elastic generation of Rayleigh and Lamb waves in metal

plates.1–3 Laser ultrasonic techniques have been applied to

mechanical characterization, using broadband generation

methods, i.e., laser pulses focused to a point or to a line,4–11

or using narrowband generation methods relying on optical

interference techniques.12–17 Yet in materials of high-optical

absorption18 such as metals, the photoacoustic source lies on

the surface.

The effect of optical absorption on the generation of

Lamb waves with a laser source was first studied by Hurley

and Spicer for moderately absorbing plates (penetration

depth smaller than the plate thickness).19 They observed the

dependence of A0 and S0 Lamb mode amplitudes on the opti-

cal absorption coefficient. The effect of optical absorption

on the generation of ultrasonic bulk waves in optically mod-

erate- to low-absorbing materials was also intensively stud-

ied for the last decades20–24 but always considering the laser

beam to be normal to the surface of the sample. Recently the

generation of ultrasonic bulk waves in moderately absorbing

glass samples was investigated.25 The directivity of longitu-

dinal and transversal waves was analyzed as a function of

the laser beam angle of incidence.26 However, the effect of

refracted light distribution on the generation of Lamb waves

is still unexplored.

The propagation of symmetric (S) and antisymmetric

(A) Lamb modes, guided by the plate structure, can be repre-

sented by a set of dispersion curves giving the angular fre-

quency x versus the wave number k.27,28 The acoustic

energy resulting of the absorption of a laser beam of finite

lateral size rapidly flows out of the source area except for

nonpropagative Lamb modes. These exotic modes exist at a

specific frequency for which the group velocity Vg ¼ dx=dk
vanishes, while the phase velocity remains finite. The fre-

quencies of zero-group velocity (ZGV) Lamb modes are

slightly lower than cut-off frequencies corresponding to

extensional or shear thickness resonances. For example, the

first ZGV mode occurs for a specific value k0d of the wave

number by plate thickness (d) product corresponding to the

junction of S1 and S2b branches, where b stands for the back-

ward wave,29,30 and is denoted S1S2-ZGV mode.31 The fre-

quency of the S1S2-ZGV mode is indeed smaller than the

frequency of the first extensional thickness resonance, which

is equal to VL=2d, where VL is the compressional wave

velocity.

Experimental studies, performed in the thermoelastic

regime on materials with high-optical absorption such as

metals, have shown that ZGV modes are associated with

sharp local resonances of the plate.27,28 For a surface ther-

moelastic source, the in-plane dipole force efficiently cou-

ples to ZGV modes contrary to extensional thickness modes

that require out-of-plane force to be efficiently generated. As

a consequence, the spectrum of the normal displacement is

dominated by ZGV resonances. Except for the first three (S0,

A0 and A1) Lamb modes, the dispersion curves of all higher

order modes exhibit a minimum frequency for some

Poisson’s ratio.31

In material science, glasses are interesting as model

materials because they offer a good opportunity to vary the
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composition smoothly and thus to obtain a wide range of

Poisson’s ratio.33 Moreover, there is a growing interest in

measurements of phase transitions in transparent glassy

materials at high temperatures or under extreme pressure

conditions.34,35 For these reasons, a contactless technique to

probe locally Poisson’s ratio of transparent materials such as

glasses is needed. Numerous characterization methods

already allow measurement of the Poisson’s ratio.36 These

methods are typically based on mechanical probing of the

sample, vibrations, ultrasound, or x rays. Some of these tech-

niques have in common the necessity of a mechanical con-

tact with the probed material, which can affect the

measurement and mainly be an issue under extreme tempera-

ture/pressure conditions. To overcome this limitation, laser

ultrasonic techniques is a very attractive solution.8,37–43

For glass plates, Poisson’s ratio � usually ranges from

0.17 to 0.27, and both S1S2- and A2A3-ZGV modes exist.31 It

was shown that the Poisson’s ratio can be determined from

the ratio of the resonance frequencies of the symmetric S1S2-

and antisymmetric A2A3-ZGV modes.32 The generation of

ZGV Lamb mode resonances was first observed in fused

silica by adding a thin aluminum layer,32 allowing photoa-

coustic transduction to occur at the surface of the silica. In

this paper, we propose to study the thermoelastic generation

of ZGV Lamb modes in bare glass plates, i.e., without any

metallic coating. In such low-absorbing media, the optical

penetration depth is larger than the sample thickness, imply-

ing that the acoustic source is distributed along the light path

from the front to rear surface of the sample. According to

symmetry, the generation of antisymmetric Lamb modes at

normal incidence of the laser beam is thus reduced. To over-

come this feature limiting Poisson’s ratio measurement, we

propose to tilt the laser beam to break the source symmetry.

In the following, the model described in Ref. 25 is used

to compute the generation of elastic waves due to a tilted

volume thermoelastic source and to analyze the effect of

refracted light distribution on ZGV Lamb mode generation.

This model is based on a semi-analytical solution of

Maxwell’s equations together with the heat diffusion and

elastic wave equations in the spatiotemporal Fourier domain.

The generation of the first two ZGV Lamb modes (S1S2 and

A2A3) is studied in detail, thus providing the optimal angle of

light incidence to determine the Poisson’s ratio.

Measurements made on a window glass plate are then pre-

sented and illustrate the theoretical predictions.

II. THEORETICAL BACKGROUND

The thermoelastic generation of elastic waves due to

laser absorption in an optically low-absorbing plate is illus-

trated in Fig. 1. A pulsed laser source is focused to a line at

the front surface (z¼ 0) of a window glass plate. The plate

thickness d ¼ 2h is far smaller than the optical penetration

depth n of the glass. The partial absorption of the light pro-

duces local heating all along the light path. The thermal

expansion of the heated volume generates elastic waves

propagating in the plate: compressional and shear bulk

waves, Rayleigh and Lamb waves.

The z axis in Fig. 1 stands for the direction normal to the

plate surfaces. The laser line direction is parallel to the y axis,

and Lamb waves propagate along the x axis. The origin of

the x axis coincides with the position where the laser beam

emerges of the rear surface of the plate (z¼ d). Because the

thermoelastic source is distributed in the bulk of the plate, the

elastic wave generation depends on the angle of incidence ui

of the laser beam (Fig. 1). Equations modeling the elastic

wave propagation in a plate are now presented.

Because the laser beam is focused to a line, the problem

is considered as two dimensional in the (x, z) plane. The dis-

placement field generated by such a source is solution of the

acoustic wave equation

$ � C : $Su
� �

� q
@2u

@t2
¼ S; (1)

where q is the mass density, u is the displacement vector,

and C is the fourth-order stiffness tensor. The quantity rSu

is the second-order strain tensor. The source term S is the

divergence of the thermal stresses induced by the laser

absorption

Sðx; z; tÞ ¼ k$Tðx; z; tÞ; (2)

where k is the second-order thermal dilatation tensor and

T stands for the temperature rise resulting from the laser

absorption. The analytical expressions of optical absorption

bðurÞ and of temperature T can be calculated from

Maxwell’s equations and heat equation neglecting thermal

diffusion.25 Because the reflection coefficient of the laser

source at the glass/air interface is less than 4.2% for angles

of incidence smaller than 70�, the optical reflection at the

interface z¼ d can be neglected. The temperature rise T is

then given by the following expression:

T x; z; tð Þ ¼
b urð ÞI
qCp

exp �b urð Þz
� �

� G x cos ureal
r � z sin ureal

r

� �
F tð Þ; (3)

where Cp and I are the specific heat of the material and the

transmitted intensity of the laser beam, respectively. The

temperature rise decreases exponentially with respect to

the depth z, accordingly with the absorption bðurÞ.25 ur is

the complex angle satisfying Snell’s law in an optically

absorbing medium: sin ui ¼ n� sin ur with n� the complex

FIG. 1. (Color online) Geometry of the acoustic source resulting of the

absorption of a laser beam focused to a line on the surface of a low-

absorbing plate.
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index of refraction. As the heat diffusion was neglected,

function FðtÞ is the primitive function of the normalized

time distribution of laser intensity. The quantity ureal
r in

Eq. (3) is the angle of refraction of the laser beam: ureal
r

¼ sin�1ðsin ui=nÞ, where n is the real part of n�. Assuming

a Gaussian distribution, the normalized laser intensity

is expressed as GðxÞ ¼ ð2=aÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 2=p

p
exp½�4 ln 2ðx2=a2Þ�

where a is the full width at half maximum (FWHM).

The elastic wave propagation equation [Eq. (1)] can be

solved analytically in the frequency-wavenumber Fourier

domain. The spatiotemporal inverse Fourier transform can

then be calculated numerically. Hence elastic wave fields

generated either by a volume acoustic source or a surface

acoustic source, modelled by Eq. (2), are thus computed and

the ZGV Lamb mode generation by such sources can be

analyzed.

Figure 2 displays the theoretical dispersion curves of

Lamb waves propagating in the 2.085-mm-thick window

glass used in the experiment of which mechanical properties

are listed in Table I. In this plate, two ZGV modes (vertical

arrows) are found at frequencies fS1S2
¼ 1:32 MHz and fA2A3

¼ 2:439 MHz and wavenumbers kS1S2
¼ 0:864 mm�1 and

kA2A3
¼ 1:019 mm�1.

In Sec. III, it is proposed to compute and to analyze

elastic wave fields generated either by a tilted volume acous-

tic source or by a surface acoustic source. Because the light

reflection at z¼ d is not taken into account, the model is the

same as the one exposed in Ref. 25. The surface acoustic

source is obtained by setting a very large value for the opti-

cal absorption. Important differences in the wave fields for a

volume source or a surface source are demonstrated and dis-

cussed, leading to a better understanding of the generation of

ZGV Lamb modes by the tilted volume source.

III. EFFECTS OF A TILTED ACOUSTIC SOURCE ON
ZGV LAMB MODE GENERATION

In the following, the semi-analytical model presented in

Sec. II is used to compare the elastic wave fields generated

either by a surface or a volume acoustic source. Optical

divergence is neglected in the optically low-absorbing sam-

ple, and the width of the surface and volume acoustic sour-

ces are assumed to be equal to the experimental value:

a¼ 150 lm. The relevant physical properties of the window

glass are summarized in Table I.

Figure 3 displays the distribution of the normalized am-

plitude of the displacement calculated for a 2.085-mm-thick

window glass plate at time t¼ 0.4 ls after laser impact for

(a) a surface acoustic source and (b) a tilted volume acoustic

source (ui ¼ 50�). The wave fields generated in both cases

at early time after the laser impact are substantially different.

They satisfy different symmetries imposed by both the

source and the sample geometries. On the one hand, the elas-

tic wave field generated by the surface source is symmetrical

with respect to the plane parallel to the (x, y) plane and con-

taining the line source. This plane intersects the (x, z) plane

along the vertical line of abscissa x ¼ d tan ureal
r . On the

other hand, the wave field generated by the volume source is

symmetrical with respect to the line along y located at the

intersection of the median plane z¼ h with the plane

FIG. 2. (Color online) Dispersion curves of the symmetric (solid line) and

antisymmetric (dashed line) Lamb modes calculated in a 2.085-mm-thick

glass plate. Two ZGV modes (vertical arrows) are found at fS1S2
¼ 1:32 MHz

and fA2A3
¼ 2:439 MHz, and kS1S2

¼ 0:864 mm�1, and kA2A3
¼ 1:019 mm�1.

TABLE I. Mechanical, thermal, and optical (at 1064 nm) properties of the

window glass.

Value

Thickness d 2.085 mm

Compressional wave velocity VL 5800 m s�1

Shear wave velocity VT 3440 m s�1

Mass density q 2500 kg m�3

Specific heat Cp 840 J (kg K)�1

Thermal expansion a 6:6� 10�6 K�1

Refractive index n ¼ <ðn�Þ 1.51

Absorption coefficient j ¼ =ðn�Þ 4:4� 10�6

Optical penetration depth 1=bð0�Þ 19.2 mm

FIG. 3. (Color online) Distribution of the amplitude of the displacement in a

2.085-mm-thick window glass plate at 0.4 ls after laser impact for (a) a sur-

face source and (b) a tilted volume source (ui ¼ 50�).
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containing the source. This line intersects the (x, z) plane at

the symmetry point x ¼ h tan ureal
r , z¼ h.

For the surface acoustic source [Fig. 3(a)], standard cir-

cular wavefronts of compressional waves (L), shear waves

(T), and waves reflected at the rear surface of the plate, z¼ d,

with or without mode conversion (LT and 2 L, respectively),

are observed. The Rayleigh waves (R) are generated and

propagate at the surface z¼ 0 only. Conversely, for the vol-

ume source distributed along the direction of refracted light

propagation [dashed white line in Fig. 3(b)], the generated

bulk waves are mainly plane compressional waves L with a

propagation direction normal to the refracted light beam.

Indeed the volume expansion due to the temperature rise

occurs essentially in a direction normal to the direction of

refraction.26 The L waves are reflected and mode-converted

at the free surfaces, giving rise to shear plane waves LT
propagating in a direction defined by the Snell’s law.

Because the source energy is spread over the sample thick-

ness, the energy density remaining in the skin depth of the

Rayleigh wave is small. Thus Rayleigh waves (R) are gener-

ated with small amplitudes at both surfaces, z¼ 0 and z¼ d.

It is expected that in a low-absorbing plate, where the

acoustic source is distributed in the volume, the excitation of

ZGV Lamb modes occurs differently than for a metallic

plate. This effect can be illustrated by analyzing the distribu-

tion of the normal displacement a few microseconds after

the laser impact when the propagative elastic modes have

escaped the thermally stressed zone, while ZGV Lamb mode

resonances are established. The normal displacement can be

observed in Figs. 4(a) and 4(b) for the surface source and

4(c) and 4(d) for the tilted volume source (ui ¼ 50�) at time

t¼ 19.22 ls for Figs. 4(a) and 4(c) and at time t¼ 19.44 ls

for Figs. 4(b) and 4(d). From Fig. 2, at least two ZGV modes

are expected, one symmetric S1S2 and one antisymmetric

A2A3. The normal displacement associated with S1S2 is an

odd function of z with respect to z¼ h, whereas the normal

displacement associated with A2A3 is an even function of z.27

So, odd [Figs. 4(a) and 4(c)] and even [Figs. 4(b) and 4(d)]

parts of the normal displacement are separately displayed;

this is straightforward using the semi-analytical calculation

because this separation (odd/even) has been used to solve

the linear system of equations. Each map is normalized by

its maximum, the color-scale thus refers to normalized val-

ues from �1 to 1. In Figs. 4(a) and 4(b), the arrow indicates

the centre of the laser source. In Figs. 4(c) and 4(d), the

white line represents the direction of light refraction.

In Figs. 4(a) and 4(c), it appears that the S1S2-ZGV mode

is well established in both cases, at least for x 2 ½�10; 10�
mm. Note that the time t¼ 19.22 ls, at which the odd compo-

nent of the normal displacement is displayed, corresponds

to t ¼ 25:3 TS1S2
, where TS1S2

’ 0:76 ls is the period of

the S1S2 mode. For the surface source, the S1S2 symmetric

mode is centered on the source center abscissa x ¼ d tan ureal
r

[Fig. 4(a)]. However, for the tilted volume source, because

the in-depth distribution of the out-of-plane displacement of

the S1S2 mode is antisymmetrical with respect to z¼ h, the

S1S2 mode is shifted along the x axis so that the out-of-plane

displacement remains symmetrical with respect to the plane

of abscissa x ¼ h tan ureal
r [Fig. 4(c)].

Comparing Figs. 4(b) and 4(d) with Figs. 4(a) and 4(c),

it appears that the A2A3-ZGV mode is not as well established

as the S1S2 mode, i.e., three lobes along x are clearly visible

for the A2A3-ZGV mode, whereas five lobes covering 20 mm

along x are established for the S1S2-ZGV mode. Yet, the

even component of the displacement is displayed at

t¼ 19.43 ls, which corresponds to t ¼ 47:4 TA2A3
, where

TA2A3
’ 0:41 ls is the period of the A2A3 mode. Because the

S1S2 mode is better established after 25 periods than the

A2A3 mode after 47 periods, it seems that the fewer nodes in

the depth profile of the mode displacement distribution (one

node for S1S2 and two nodes for A2A3), the shorter the reso-

nance settling time. As expected, for the surface source, the

mode pattern is symmetrical with respect to the source ab-

scissa x ¼ d tan ureal
r [Fig. 4(b)]. However, for the tilted

FIG. 4. (Color online) Odd and even components of the normal displacement calculated in a window glass plate for (a) and (b) the surface source and (c) and

(d) the tilted volume source (ui ¼ 50�): the odd parts at time t¼ 19.22 ls [(a) and (c)] reveal the symmetric S1S2-ZGV mode, while the even parts at time

t¼ 19.44 ls [(b) and (d)] reveal the antisymmetric A2A3-ZGV mode. In (a)–(b), the arrow is pointed on the laser source centre. In (c)–(d), the white line repre-

sents the direction of light refraction.
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volume source, because the in-depth distribution of the out-

of-plane displacement of the A2A3 mode is symmetrical with

respect to z¼ h, the resulting A2A3 distribution is antisym-

metrical with respect to the plane of abscissa x ¼ h tan ureal
r

[Fig. 4(d)]. Furthermore, a slight asymmetry is observed due

to optical absorption.

The dependence on the angle of incidence of the ampli-

tude of the first two ZGV Lamb modes generated by a tilted

volume source is now investigated. Using analytic calculations

in the spatiotemporal Fourier domain, the amplitude of the

spectrum of the normal displacement, denoted j ~Uðf ; k;uiÞj, is

calculated for both couples: ðfS1S2
; kS1S2

Þ and ðfA2A3
; kA2A3

Þ.
Figure 5 displays the value of j ~Uðf ; k;uiÞj as a function of ui

for the S1S2 mode (solid line) and for the A2A3 mode (dashed

line) at a constant incident laser energy. The amplitude of the

S1S2-ZGV resonance decreases with increasing ui, while the

amplitude of the A2A3-ZGV mode first goes through a maxi-

mum for ui ¼ 55:5�. For a better understanding of these

dependences versus ui, the absorbed laser power PðuiÞ is plot-

ted in Fig. 5 (dashed-dotted line). The decay of PðuiÞ is

mainly due to the increase of the optical reflection coefficient.

Thus, the amplitude variation of the S1S2-ZGV mode is similar

to decay of PðuiÞ. The slight discrepancy can be ascribed to

the loss of symmetry of the volume source. Conversely, this

loss of symmetry is significantly beneficial for the generation

of the antisymmetric A2A3-ZGV mode. The competition

between the enhancement of the A2A3-ZGV mode and the

decrease in absorbed laser power with increasing ui explains

the existence of an optimum angle of incidence (Fig. 5).

As each curve is normalized, it is important to note that

the absolute amplitude of the A2A3-ZGV mode always

remains lower than the amplitude of the S1S2-ZGV mode.

Indeed even for the optimum angle uA2A3

i , the amplitude of

S1S2-ZGV resonance is one order of magnitude larger than

the amplitude of A2A3-ZGV resonance. For comparison, at

ui ¼ 0�, this ratio is about 150. At normal incidence, the

generation of the A2A3 resonance is very small but non-zero.

This is due to the exponential decay with z of the laser heat-

ing, leading to a slight asymmetry of the source.

To determine the Poisson’s ratio with a single measure-

ment, two ZGV resonances have to be simultaneously

detected. The previous observations suggest two practical

points for measurement in bare glass plates: the source laser

beam should be tilted to enhance the generation of the A2A3-

ZGV mode, and the detection point has to be chosen such

that the normal displacement is significant for both modes.

For a tilted volume source, this point is not located at x¼ 0

because the ZGV modes are not spatially in phase [Figs. 4(c)

and 4(d)]. This will be confirmed by the experimental pro-

files shown in Sec. IV.

IV. EXPERIMENTAL RESULTS AND COMPARISON
WITH THEORETICAL PREDICTIONS

The experimental setup (Fig. 6) was composed of a pulsed

Nd:YAG laser with a repetition rate of 100 Hz (Quantel

Centurion) focused with a cylindrical lens to a line of

width�150 lm and length�14 mm at the front surface (z¼ 0)

of a 2.085-mm-thick window glass plate. The laser delivers

pulses of 8.5 ns duration and up to 40 mJ energy (20 mJ in

these experiments). The angle of incidence was varied using a

motorized goniometer on which the laser source was fixed.

Measurements were performed for ten values of ui: 10�, 20�,
30�, 40�, 45�, 50�, 55�, 60�, 65�, and 70�. For each angle of

incidence, the distance between the cylindrical lens and the

sample was adjusted to ensure that the focusing occurs at the

front surface of the sample. Note that the ratio of the FWHM of

the laser beam at z¼ d to the FWHM at z¼ 0 was estimated to

be less than 1.3, which means that all along the light path, the

beam width was very small compared to the plate thickness.

A heterodyne interferometer (SH140, by BMI) was used

to measure the normal displacement of the rear surface of the

plate without any coating. This was possible because the inter-

ferometer beam was focused with a lens having a depth of field

(60.7 mm) smaller than the plate thickness. Thus the light

reflected by the rear surface only was collected by the optics

of the interferometer. The interferometer included a band-pass

filter operating between 320 kHz and 40 MHz. The interferom-

eter to laser source position was scanned along the x axis using

a motorized stage from x¼�10 to 10 mm with 0.1 mm steps.

The experimental signals for ui ¼ 50� are plotted with

respect to time t and to the interferometer position x (Fig. 7).

Signals are normalized to the maximum amplitude measured

FIG. 5. (Color online) Amplitude j ~Uðf ; k;uiÞj versus ui of S1S2 mode (solid

line) and A2A3 mode (dashed line), absorbed laser power PðuiÞ (dashed-

dotted line). Each curve is normalized with respect to its maximum. FIG. 6. (Color online) Experimental setup.
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at x¼ 0 and are displayed for t< 4 ls. As expected, Rayleigh

waves are detected on the rear surface of the window glass

plate. The dashed line R in Fig. 7 indicates the arrival time

of the Rayleigh waves estimated from the sound velocities in

Table I. The dashed lines, labeled iL with i 2 f1 to 5g, indi-

cate the arrival time of the plane compressional waves with

a propagation direction normal to the direction of refracted

light propagation. Besides these predicted waves, the white

arrow points out the shadow corresponding to the bulk com-

pressional wavefront due to the thermoelastic generation at

the front surface. The short time experimental results are in

good agreement with the predicted displacement in Fig. 3.

The experimental signals for ui ¼ 50� are now consid-

ered for longer times. Figure 8(a) displays the measured

normal displacement at position x¼ 2.2 mm for times up to

75 ls. As mentioned previously, to detect both ZGV

resonances with a single measurement, the detection point

has indeed to be chosen such that the normal displacement is

significant for both modes, which is the case for x¼ 2.2 mm.

The modulus of the time Fourier transform (FT) of

this signal is shown in Fig. 8(b) using a temporal window:

t 2 ½5; 190� ls. The spectrum is composed of three peaks at

1.32, 1.39, and 2.439 MHz. Referring to the dispersion curve

in Fig. 2, the first and third frequencies correspond to the

S1S2- and the A2A3-ZGV modes, respectively. The sharp

S1S2-ZGV resonance is followed by a smaller resonance cor-

responding to the first extensional thickness resonance of the

plate expected at f ¼ VL=2d ¼ 1:391 MHz.

For each position of the interferometer, a temporal FT is

applied using the temporal window t 2 ½5; 190� ls, and dis-

played around the frequencies of both ZGV Lamb modes:

fS1S2
¼ 1:32 MHz and fA2A3

¼ 2:439 MHz. Figure 9 shows

the FT modulus as a function of x and for (a) 1:1 MHz < f
< 1:6 MHz and for (b) 2:2 MHz < f < 2:7 MHz. Above

each map, the upper frame displays the spatial distribution of

the corresponding ZGV modes: experimental results (solid

line) and the theoretical distribution (dashed line) discussed

thereafter. In Fig. 9(a), the thickness resonance at 1.39 MHz

is quite uniform with respect to x, while the spatial distribu-

tion of the S1S2-ZGV mode at f¼ 1.32 MHz shows five dis-

tinct lobes that confirm the interference mechanism of the

ZGV resonance. As expected, the position of the main lobe

FIG. 7. (Color online) Normal displacement for ui ¼ 50� versus time t and

position x.

FIG. 8. (a) Normal displacement for ui ¼ 50� at position x¼ 2.2 mm as a

function of time. (b) Time Fourier transform of the signal displayed in (a)

using a temporal window: t 2 ½5; 190� ls.

FIG. 9. (Color online) Fourier transform of the experimental signals versus

position x and frequency: (a) f 2 ½1:1; 1:6� MHz, (b) f 2 ½2:2; 2:7� MHz.

Above (a) and (b), the upper frame displays the spatial distribution of the

corresponding ZGV modes: experimental results (solid line) and theoretical

distributions (dashed line).
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maximum for the S1S2-ZGV mode is shifted from x¼ 0, and

it corresponds to the predicted value h tan ureal
r ¼ 0:61 mm.

In Fig. 9(b), the spatial distribution of the A2A3-ZGV mode

at f¼ 2.439 MHz is clearly visible although the signal to

noise ratio at this frequency is one order of magnitude lower

than for the S1S2-ZGV mode. This confirms the prediction in

Sec. III concerning the relative amplitude of the A2A3-ZGV

mode. The A2A3-ZGV distribution exhibits six distinct lobes

with one node close to the x position of the axis of symmetry

of the tilted volume source at 0.61 mm.

With the laser beam focused to a line, the ZGV amplitude

distribution should be theoretically a sinusoidal function of x.

Yet the amplitude of lobes decreases with increasing the

distance from the main lobe. This could be a consequence of

mechanical damping or wave diffraction due to the finite

length of the laser line. We now propose to account for the

finite length of the source and to calculate the distribution

!ZGVðxÞ of ZGV modes. The integral formulation lies on the

decomposition of the tilted volume source onto a continuous

sum of point sources located along the laser line from

y ¼ �L=2 to y ¼ L=2, where L¼ 14 mm stands for the length

of the line. In this simplified formulation, only the contribu-

tions of two line sources at ðx ¼ d tan ureal
r ; z ¼ 0Þ and

ðx ¼ 0; z ¼ dÞ were considered, the distribution of the source

along z has not been taken into account. The mathematical

expression of !ZGVðxÞ that follows from the foregoing is

!ZGVðxÞ¼
ðL=2

�L=2

J0 kZGV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�d tanureal

r Þ
2þðy�ySÞ2

q� �
6expð�bdÞJ0 kZGV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þðy�ySÞ2

q� �( )
e�4ln2ðy2

S=L2Þ dyS : (4)

This expression was obtained in three steps. First, and because

a unique point source generates a ZGV mode with a Bessel dis-

tribution, the ZGV mode distribution due to a line of finite

length L is obtained by integrating the Bessel distribution along

the line direction. Each point source is weighted by

expð�4 ln 2 y2
S=L2Þ to account for the Gaussian distribution of

the laser intensity. Second, to account for the laser absorption,

the line source at ðx ¼ 0; z ¼ dÞ is weighted by expð�bdÞ.
Third, depending on the symmetry of the mode, the ZGV spa-

tial distributions are obtained by summing (S) or subtracting

(A) the distributions of the two line sources. !ZGVðxÞ is plotted

in Fig. 9 (dashed lines). Good agreements are shown in Figs.

9(a) and 9(b) between theoretical and measured distributions.

This demonstrates there is no need to take into account mechan-

ical damping to predict the spatial distribution of ZGV modes.

We now compare the experimental results with the theo-

retical prediction in Fig. 5. To do so, for each ui, the tempo-

ral FT modulus is calculated and the spatial distributions of

both ZGV modes are then obtained as previously explained.

Then a spatial FT is applied to obtain the experimental

values of j ~Uðf ; k;uiÞj. To avoid any issue coming from

changes in the laser power from experiment to experiment,

we have calculated the ratio of the amplitude of the S1S2- to

that of the A2A3-ZGV resonance amplitudes. The normalized

ratio is plotted with respect to ui in Fig. 10. As experimental

ui are limited to 70�, the theoretical ratio is plotted for ui 2
½0�; 70�� and normalized to its maximum value too. The

comparison is shown in Fig. 10. The good agreement

between experimental and theoretical results demonstrates

two major points: (i) the detection of both ZGV resonances

with a single measurement is possible with the right detec-

tion location and (ii) increasing the angle of incidence

increases the generation of the A2A3-ZGV mode in a glass

plate. Then it is straightforward to find an optimal distance

x0 between the laser source and the interferometer where

both S1S2- and A2A3-ZGV modes can be best detected: for

example, at ui ¼ 50�; x0 ¼ 2:2 mm. Thus Poisson’s ratio �
of the glass plate can be estimated knowing that � is a mono-

tonic function g of the ratio of two ZGV frequencies:

� ¼ gðfA2A3
=fS1S2

Þ.32 The value deduced from the two reso-

nance frequencies is � ¼ 0.226. The uncertainty D� depends

on the width of the ZGV resonances. At �3 dB, the width is

equal to 5 kHz for both ZGV modes. Fitting the ZGV peaks

reduces uncertainties on ZGV frequencies down to DfS1S2

¼ DfA2A3
¼ 0:6 kHz. For � ¼ 0:226, the absolute uncertainty

D� is equal to mDðfA2A3
=fS1S2

Þ, where m is the slope of g and

is equal to 0.79 at � ¼ 0:226. The absolute uncertainty on

the Poisson’s ratio is finally D� ¼ 0:001. The measured

value is in good agreement with the values 0.22–0.23

reported for float glass.44,45

V. CONCLUSION

The absolute magnitude of elastic waves generated by

laser in a low-absorbing material is lower than in a moder-

ate- or high-absorbing material because less laser energy is

deposited and the distribution of the acoustic energy of the

source is different. The thermoelastic generation of ZGV
FIG. 10. Ratio of S1S2 and A2A3 resonance amplitudes as a function of the

angle of incidence ui: theory (solid line) and experiments (dots).
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Lamb modes in optically low-absorbing plates was investi-

gated using a semi-analytical model. The analysis shows that

wave fields generated by a surface or a volume source are

very different.

In the case of a tilted volume thermoelastic source, it is

shown that the generation of ZGV Lamb modes significantly

depends on the angle of light incidence ui. The amplitude of

the first symmetric S1S2-ZGV mode decays with ui, while

the amplitude of the first antisymmetric A2A3-ZGV mode,

very small at normal incidence, goes through a maximum for

a large value of ui. At this angle, the amplitude of the S1S2-

ZGV resonance remains about five times larger than the am-

plitude of the A2A3-ZGV resonance; this allows precise

determination of both resonance frequencies. Contrary to the

case of a surface source, the antinodes of the normal dis-

placement are not localized at the same position for symmet-

ric and antisymmetric ZGV Lamb modes. In practice, the

detection point must be shifted from the source center.

These theoretical predictions have been experimentally

illustrated. Using a tilted volume thermoelastic source, the

enhancement of the first antisymmetric ZGV Lamb mode

while increasing the angle of light incidence was observed.

The spatial distributions of the first symmetric S1S2 and anti-

symmetric A2A3 modes were measured; as predicted, the

main lobe maxima for each mode are not at the same posi-

tion on the plate surface. To detect both ZGV resonances

with a single measurement, the detection point was chosen

such that the normal displacement is significant for both

modes. Using the property that the ratio of the first two ZGV

frequencies is a monotonic function of the Poisson’s ratio

�,32 we obtained the value � ¼ 0:22660:001 for a float glass

plate at room temperature and without any knowledge of the

sample thickness.

The technique we propose can be used to probe the

Poisson’s ratio in a wide range and with a good accuracy.

Unlike conventional mechanical test, this technique is espe-

cially suitable to control the mechanical property homogene-

ity of a very large glass plate. Furthermore, such contactless

measurements are possible under extreme conditions and are

potentially interesting to follow phase transition.
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