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The symmetry of a thermoelastic source resulting from laser absorption can be broken when the

direction of light propagation in an elastic half-space is inclined relatively to the surface. This

leads to an asymmetry of the directivity patterns of both compressional and shear acoustic

waves. In contrast to classical surface acoustic sources, the tunable volume source allows one to

take advantage of the mode conversion at the surface to control the directivity of specific

modes. Physical interpretations of the evolution of the directivity patterns with the increasing

light angle of incidence and of the relations between the preferential directions of compres-

sional- and shear-wave emission are proposed. In order to compare calculated directivity pat-

terns with measurements of normal displacement amplitudes performed on plates, a procedure is

proposed to transform the directivity patterns into pseudo-directivity patterns representative of

the experimental conditions. The comparison of the theoretical with measured pseudo-directivity

patterns demonstrates the ability to enhance bulk-wave amplitudes and to steer specific bulk

acoustic modes by adequately tuning light refraction. VC 2013 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4828825]

PACS number(s): 43.38.Zp, 43.20.Rz, 43.35.Cg, 43.35.Ud [ANN] Pages: 4381–4392

I. INTRODUCTION

Controlling the directivity of electromagnetic and

acoustic sources allows optimizing the design of resonant

antennas,1 spectral light multiplexing,2 or developing accu-

rate echolocation systems.3 The manipulation of directivity

also has crucial impacts on noise control applications4 and

oceanic and seismologic imaging.5,6 For this, it is of utmost

importance to understand and control the directivity. To this

end, one can use phased array transducers,7–12 move the

source across the surface of the sample at a controlled

speed,13,14 compute virtual wavefronts in selected directions

from measured acoustic surface displacements,15 or design

periodic surfaces2 or metasurfaces16,17 to create a network of

surface sources. Also, in the case of laser-generated ultra-

sound, the interference of multiple pulsed laser beams can cre-

ate a photoelastic phased array transducer to shape ultrasonic

beams,18 generate surface waves,19 or transverse waves.20

All of these developments rely on the manipulation of

surface sources. Here we present an alternative technique to

steer the directivity of acoustic sources using a laser-

generated sub-surface volume source. This approach takes

advantage of the mode conversion at the surface to control

the directivity of specific modes. To predict the directivity of

such a volume source, we develop an analytical calculation.

To calculate directivity patterns in half-spaces, two

main analytical approaches have been considered for several

years. With asymptotic calculation of a complex-valued inte-

gral,21 Miller and Pursey have studied several surface acous-

tic sources on a semi-infinite isotropic solid medium.22

Thereafter, Lord developed an alternative calculation

method based on the formalism of Green’s functions and on

a local formulation of the reciprocity theorem.23,24 The for-

mulation of the reciprocity theorem used by Lord23 offers

much simpler calculations of directivity functions compared

to the integral method. In configurations with more sophisti-

cated geometries or boundary conditions, such as in the case

of a coated half-cylinder,25 finite elements are commonly

used to compute directivity patterns.

Such calculations have been used to predict the behavior

of a variety of acoustic sources.26–30 The directivity calcu-

lated for harmonic sources has notably been proved to be

well suited to the description of pulsed acoustic sources,

such as laser-generated thermoelastic sources.31 On this

ground, it has been demonstrated that surface thermoelastic

sources could be modeled by a shear stress vector dipole.32

It has also been shown that the directivity patterns obtained

for a linear surface source or for a point surface source were

identical.32 The effects of thermal diffusion and of the lateral

dimension of the source have been added in the calculations

of directivity functions based on the method proposed by

Miller and Pursey as well.33 However, these works concern

exclusively surface sources, and only few studies have

included the effects of the optical penetration.34

To provide a deeper analysis of the effects of a distribu-

tion of acoustic sources within the bulk of the material and

to investigate the ability of this distribution to control the

generation of acoustic waves, a calculation method is devel-

oped to represent more complex in-depth source profiles. To

this end, we present an approach based on the reciprocity
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theorem and the superposition principle. For illustration, a

laser beam obliquely incident on the surface of a semi-

transparent material is used as a tilted thermoelastic volume

source.

After the description of the geometry and of the hypoth-

esis in Sec. II, we detail the calculation of the directivity

patterns of a sub-surface volume source resulting from the

absorption of an obliquely incident laser beam in Sec. III. In

contrast to the standard analysis of directivity patterns for

surface sources, we identify the new contributions to the

directivity originating from mode conversion at the free

surface in Sec. IV. This approach is first used to analyze the

directivity patterns for symmetrical volume source (Sec. V),

and it is then applied to analyze the effects of an asymmetri-

cal acoustic source (Sec. VI). Finally the directivity patterns

obtained by the present method are compared to experimen-

tal results obtained in a similar configuration35 in Sec. VII.

To do so, a transformation of the directivity patterns is

required, notably to model the measurement of the displace-

ment at a free surface of a plate.

II. DESCRIPTION OF THE OBLIQUE THERMOELASTIC
SOURCE

In the literature on directivity patterns, the acoustic

source is classically localized at the surface of the half-

space.22,23,31,32,36 Alternatively, we consider the acoustic

generation through the expansion of a volume source here.

The laser beam penetrates inside the material over a non-

negligible optical skin depth. A volume of the material is

heated and expands, which leads to the generation of acous-

tic waves. The acoustic source is thus distributed within the

volume of the solid medium. Moreover, we include the angle

of incidence of the laser beam. Note that in the remainder of

this paper, all directivity functions are expressed in terms of

the amplitude of displacements and not in intensity. The

term “in amplitude” will be omitted in the following.

The problem geometry is schematized in Fig. 1. An iso-

tropic half-space in x1� 0 is considered, with an incoming

normal given by the unit vector x1. In the following, vectors

are indicated by boldface. The origin O of the coordinate is

placed on the surface of the halfspace. The unit vectors x2 and

x3 complete the Cartesian system of reference coordinates (O,
x1, x2, x3). The case of a laser beam focused to a line along

the x3 direction is considered in order to simplify the geome-

try. Indeed as mentioned in the Introduction, under the

assumption of an infinitesimal lateral extension, it has been

demonstrated that the directivity patterns obtained for a linear

surface source and for a point surface source are exactly the

same, although the waveforms differ.32 The geometry can

then be considered as two-dimensional in a plane normal to

the x3 direction, the longest dimension of the source. We have

demonstrated in a previous paper35 that the volume thermo-

elastic source is distributed along the direction of refraction of

the laser beam, which forms an angle ur with x1. We also

introduce the polar system of coordinates (O, er, eh) for ease

of calculation: the acoustic field is calculated at the point of

observation M (R, h) (Fig. 1), where R is constant and large

enough for point M to be in the far field of the acoustic source.

The amplitude of the acoustic source is directly propor-

tional to the laser power density,37 which decreases expo-

nentially with depth. Its in-depth distribution is obtained by

solving Maxwell’s equation: b(ur) exp[�b(ur)x1]. The quan-

tity 1/b(ur) corresponds to the projection along x1 of the

optical penetration distance of the laser beam along the

direction of refraction.35 To simplify the analysis of directiv-

ity patterns, the lateral dimension of the source is neglected

in this paper. The spatial distribution s (x1, x2) of the acoustic

source is therefore

sðx1; x2Þ ¼ bðurÞexp½�bðurÞx1�dðx2 � x1 tan urÞ; (1)

where the delta function d describes the localization of the

source along the direction of refraction.

III. CALCULATION OF DIRECTIVITY FUNCTIONS

To calculate the directivity functions, according to the

superposition principle, we decompose the acoustic source

into a sum of line sources of expansion parallel to the inter-

face, buried and localized along the direction of refraction.

This is schematized in Fig. 1(a). In contrast to the elemen-

tary buried line source, we refer to the complete thermoelas-

tic source as the “buried source layer.” The directivity of the

tilted buried source layer is thus obtained from an integration

of the directivities of each buried line source of expansion

located at a varying distance from the surface.

A. Detailed methodology of calculation

Consider first the calculation of the radiation from a sin-

gle buried line source of expansion of unit amplitude inter-

secting plane (O, x1, x2) at the point SðxS
1; x

S
2Þ [Fig. 1(b)].

FIG. 1. (Color online) Decomposition of the problem for the calculation of

directivity patterns of a tilted buried source layer: from the tilted buried

source layer resulting of (a) a sum of line sources of expansion and (b) a sin-

gle line source of expansion is considered to calculate the directivity pattern.

(c) The superposition principle is used again to further simplify the

calculation.
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The infinite line source is oriented along x3. We thus

describe it as the sum of two dipoles oriented along x1 and

x2 directions,38 as schematized in Fig. 1(c). Since the solid

medium is isotropic and the geometry is two-dimensional,

only compressional (L) and in-plane shear (T) waves can

be generated by the buried line source of expansion.

Consequently, the calculation of four directivity functions

f q;dip
p is required, two for each dipole of forces in direction

q¼ {1, 2} corresponding to the two wave polarizations

p¼ {L, T}. To obtain f q;dip
p , we calculate the displacement

field uq,dip caused by a dipole of forces oriented along xq and

applied at the point S. Since u
q,dip(M) is related to the dis-

placement field uq,mono(M), caused by a single force of same

amplitude, orientation, and applied at the same point S, by

uq;dip ðMÞ ¼ @

@xq
uq;monoðMÞ; (2)

it is sufficient to calculate uq,mono(M) at the point of observa-

tion M. The expression f q;dip
p is eventually obtained by retain-

ing the part of the amplitude of u
q,dip(M) that depends on the

angle of observation, thus rejecting the part of the amplitude

that depends on the constant observation distance.

To summarize the methodology, the directivity func-

tions of a buried line source of expansion are calculated

by applying the following steps for each polarization

p¼ {L, T}:

(i) Calculation of the displacement field uq,mono at the point

of observation M caused by a single force of unit ampli-

tude applied at point S in the direction xq.

(ii) Calculation of the directivity function f q;dip
p of a dipole

of forces of unit amplitude applied at point S in the

direction xq from Eq. (2) [Fig. 1(c)].

(iii) Application of the superposition principle to obtain the

directivity function f S
p of a line source of expansion

located at point S [Fig. 1(b)],

f S
p ¼ f 1;dip

p þ f 2;dip
p : (3)

(iv) The directivity functions f OP
p (p¼ {L, T}) of a tilted bur-

ied source layer are obtained by integration [Fig. 1(a)]

of the directivity functions f S
p of a single buried line

source of expansion over the optical skin depth. f S
p are

multiplied by the spatial distribution s of the acoustic

source [Eq. (1)],

f OP
p ðhÞ ¼

ð
Rþ

ð
R

sðxS
1; x

S
2Þf S

p ðh; xS
1; x

S
2Þ dxS

2dxS
1: (4)

The particular form of the spatial distribution in our

case, Eq. (1), leads to simplifications in Eq. (4),

f OP
p ðhÞ ¼

ð
Rþ

exp½�bðurÞxS
1� f S

p ðh; xS
1; x

S
2 tan urÞdxS

1: (5)

The building blocks of these equations are the displace-

ment fields uq,mono caused by a single buried force of unit

amplitude applied in the direction xq. Their calculation is

now detailed.

B. Displacement field caused by a single buried force

The calculation of u
q,mono (M) consists in calculating

the displacement generated by a single force FS along xq

applied at the point S of the half-space. The reciprocity theo-

rem is very efficient to perform this calculation (see Sec. 5.8

in Ref. 36, for instance). It connects this initial problem to a

reciprocal problem by a simple scalar equality detailed in the

following. Choosing a reciprocal problem that is simple in

its resolution then allows one to obtain results for the initial

problem without complex calculations. We now express the

reciprocal problem adapted to the initial problem of interest

here.

Consider two harmonic forces FS and FM, applied at the

points S and M, respectively, of an elastic medium. The

forces FS and FM cause displacements u(M) at point M and

u(S) at point S, respectively. The reciprocity theorem can be

summarized by the scalar relation

FS � uðSÞ ¼ FM � uðMÞ: (6)

This is analogous to considering the equality between the

virtual work developed by FS over the displacement u(S) and

the virtual work developed by F
M over the displacement

u(M).24 Equation (6) is now used to choose a reciprocal

problem simpler to solve than the initial problem.

The initial problem to solve, in order to calculate the di-

rectivity for the compressional waves generated by a buried

single force FS applied at point S along x1, is to find the am-

plitude u1;mono
L of the displacement at the point M along er,

u1;mono
L ¼ u1;monoðMÞ � er: (7)

The reciprocal problem we have chosen consists in a force

F
M that generates a displacement u(S) at point S. According

to the reciprocity theorem [Eq. (6)], choosing FM such that

FM ¼ kFSker yields the amplitude of u(S) in the direction

of F
S,

u1;mono
L ¼ uðSÞ � F

S

FS
¼ uðSÞ � x1: (8)

Similarly, when the force F
S applied at the point S of the

half-space is oriented along x2, application of the reciprocity

theorem leads to the amplitude u2;mono
L of the displacement at

point M, along er, generated by F
S,

u2;mono
L ¼ uðSÞ � F

S

FS
¼ uðSÞ � x2: (9)

Equations (8) and (9) show that the application of the

reciprocity theorem allows one to switch the positions of the

acoustic source and the position of the point of observation

to form the simpler reciprocal problem. Since the point of

observation in the initial problem is assumed to be in the far

field of the source, the acoustic source in the reciprocal prob-

lem is far from the surface of the half-space. Therefore the

acoustic waves reaching the surface, generated by the force

at point M in the reciprocal problem, are acoustic plane

waves. Thus, the reciprocal problem comes down to merely

consider plane wave reflections at a free surface.
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In the case of the force FM of the reciprocal problem (a

force of unit amplitude oriented along er and applied at point

M), the displacement vector u (S) at point S caused by F
M is

given by

uðSÞ ¼ ULi

X
Li;Lr ;Tr

Rkme
�|km

1
xS

1 nme|ðxt�k2xS
2
Þ; (10)

where index m¼ {Li, Lr, Tr} is associated either to the inci-

dent plane compressional wave (Li), the reflected plane com-

pressional wave (Lr), and the reflected plane shear wave (Tr)

resulting from mode conversion at the free surface, respec-

tively. In Eq. (10), ULi
is the amplitude of the incident plane

compressional wave and does not depend on h. Therefore

the expression of ULi
is not important for directivity consid-

erations. The quantities km
1 and k2 are the projections of the

three wave vectors km along x1 and x2, respectively. Vectors

nm are the polarization vectors. The acoustic pulsation is

denoted x. Factors Rkm represent the reflection coefficients of

the plane waves reflected at a free surface.38 Thus, Eq. (10)

introduced in Eq. (8), respectively, Eq. (9), allows one to

obtain the amplitude u1;mono
L , respectively, u2;mono

L , of the dis-

placement along er at the point M caused by a single force of

unit amplitude oriented along x1, respectively, x2.

C. Directivity function of a buried dipole of forces

The derivatives of u1;mono
L with respect to x1 and of

u2;mono
L with respect to x2 lead to the analytical expressions of

the two directivity functions for compressional waves, i.e.,

f 1;dip
L and f 2;dip

L , associated with the dipoles of forces at the

point SðxS
1; x

S
2tanurÞ along x1 and x2, respectively,

f 1;dip
L ¼

X
Li;Lr ;Tr

|km
1 nm

1 Rkme�|ðk
m
1
þk2tanurÞxS

1 ; (11a)

f 2;dip
L ¼

X
Li;Lr ;Tr

|k2nm
2 Rkme�|ðk

m
1
þk2tanurÞxS

1 : (11b)

The two directivity functions for shear waves f 1;dip
T and

f 2;dip
T associated with the dipoles of forces in the initial problem

applied at point S along x1 and x2, respectively, are obtained

similarly. However, the single force applied at point M in the

reciprocal problem is oriented along eh instead of er, and the

plane acoustic wave incident on the free surface is now a shear

wave. The analytical expressions for f 1;dip
T and f 2;dip

T are

f 1;dip
T ¼

X
Ti;Lr ;Tr

|km
1 nm

1 R?me�|ðk
m
1
þk2tanurÞxS

1 ; (12a)

f 2;dip
T ¼

X
Ti;Lr ;Tr

|k2nm
2 R?me�|ðk

m
1
þk2tanurÞxS

1 ; (12b)

where factors R?m represent the reflection coefficients of the

incident shear wave at the free surface.38

D. Directivity function of a buried line source of
expansion

By applying the superposition principle [Eq. (3)], the

directivity functions f S
L and f S

T of a single buried line source

of expansion of unit amplitude in the half-space are obtained,

f S
L ðh; xS

1Þ ¼
X

Li;Lr ;Tr

RkmðhÞ|kmðhÞ � nmðhÞ

� � � e�|½km
1
ðhÞþk2ðhÞ tan ur �xS

1 ; (13a)

f S
T ðh; xS

1Þ ¼
X

Ti;Lr ;Tr

R?mðhÞ|kmðhÞ � nmðhÞ

� � � e�|½km
1
ðhÞþk2ðhÞ tan ur �xS

1 : (13b)

These expressions contain the scalar product between the

wave vectors and polarization vectors of each incident and

reflected waves. However, in an isotropic material and in

the case of a shear wave, this product is zero, kTi
� nTi

¼ kTr
� nTr

¼ 0, which leads to the simplification

f S
T ðh; xS

1Þ ¼R?Lr
ðhÞ|kLr

ðhÞ � nLr
ðhÞ

� � � e�|½k
Lr
1
ðhÞþk2ðhÞ tan ur �xS

1 :
(14)

This observation shows that only waves generating deforma-

tions associated with a change in volume contribute to the

directivity of a buried source of expansion.36 Thus in an iso-

tropic medium, a buried source of expansion can generate

shear waves only in the presence of an interface where mode

conversion of compressional to shear waves can occur.

E. Directivity function of a tilted buried source layer

As mentioned previously, the buried source layer has

been decomposed into a sum of buried line sources of expan-

sion. To complete the calculation of the directivity functions

for a buried source layer, the last step is to introduce f S
L (h, xS

1)

and f S
T (h, xS

1), Eqs. (13a) and (14), into Eq. (5), and to inte-

grate over the buried sources of expansion. The directivity

functions of a tilted buried source layer are thereby obtained,

f OP
L ðhÞ ¼

X
Li;Lr

bðurÞRkmðhÞ|kmðhÞ � nmðhÞ
bðurÞ þ |½km

1 ðhÞ þ k2ðhÞ tan ur�
; (15a)

f OP
T ðhÞ ¼

bðurÞR
k
Lr
ðhÞ|kLr

ðhÞ � nLr
ðhÞ

bðurÞ þ |½kLr
1 ðhÞ þ k2ðhÞ tan ur�

: (15b)

Note the expressions of f OP
L and f OP

T , Eq. (15), depend on the

angle of refraction ur of the laser beam.

To summarize this section, we have presented a method

for calculating the analytical expressions of the directivity

functions of compressional and shear waves generated by a

tilted buried source layer where optical penetration depth as

well as the angle of incidence of the laser beam are both

taken into account. Let us now analyze these results for a

simple illustrative case.

IV. CONTRIBUTION OF COMPRESSIONAL WAVES TO
THE DIRECTIVITY OF SHEAR WAVES IN THE CASE
OF A SINGLE BURIED LINE SOURCE OF EXPANSION

Before analyzing the directivity patterns of a tilted bur-

ied source layer, we propose to investigate first the case of a

single buried line source of expansion. This simpler source

allows one to examine the particular case of the shear-wave
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generation that is exclusively due to mode conversion of the

generated compressional waves at the free surface of

the half-space. We plot in Fig. 2(a) the directivity functions

f S
T (h, xS

1) [Eq. (14)] vs angle of observation h for a single line

source of expansion of unit amplitude buried at a distance

xS
1¼ 1/b below the surface of the half-space. The pulsation

used in the calculations is x¼bcT, with cT the shear-wave

celerity. This pulsation corresponds to a ratio kT/b¼ 1,

where kT is the wave number of shear waves. Two zones sep-

arated by the direction of maximum generation of shear

waves appear in Fig. 2(a): the central zone containing the

two primary lobes and side zones containing the lateral

lobes. The origin of these zones together with the particular

case of the direction of the maximum generation is now

discussed by considering mode conversion of compressional

waves. Mode conversions of three different types (skim-

ming, evanescent, or bulk) of compressional waves are

investigated.

To discuss mode conversions at a free surface, it is con-

venient to consider the phase slowness as shown in Fig. 2(b).

Since the medium is isotropic, the phase slowness of com-

pressional waves (respectively, shear waves), of celerity cL

(respectively, cT), define an arc of radius 1/cL (respectively,

1/cT) in the plane ðjReðk1=xÞj; jk2=xjÞ, where Re(�) repre-

sents the real part of a complex number. Owing to Snell’s

law, the projections along the free surface of the wave

vectors of incident and reflected waves are both equal to k2

[vertical dotted lines in Fig. 2(b)]. In the particular case

where k2/x¼ 1/cL, which defines the critical angle hcr,

hcr ¼ sin�1 cT

cL

� �
; (16)

compressional waves are skimming waves propagating along

the free surface without decay in amplitude with respect to

depth, case (2) in Fig. 2(b). In Fig. 2(a), cL and cT are in a

ratio such that the critical angle is about 35�. If k2/x< 1/cL,

i.e., h< hcr [case (1) in Fig. 2(b)], both compressional and

shear waves are bulk waves. On the contrary, if k2/x> 1/cL,

i.e., h> hcr [case (3) in Fig. 2(b)], compressional waves are

evanescent waves that propagate along the free surface and

decay exponentially with respect to depth.

Accordingly, it is clear that shear waves generated in

directions strictly between� hcr and hcr [case (1)], which

correspond to the two primary lobes in the central zone in

Fig. 2(a), originate from the mode conversion at the free sur-

face of bulk compressional waves generated by the source of

expansion. Since there is no mode conversion of compres-

sional waves at normal incidence, there is no contribution to

the directivity of shear wave at h¼ 0�. The shear waves gen-

erated in the directions �hcr and hcr [case (2)], which corre-

spond to the directions of maximum generation, originate

from the mode conversion of the skimming compressional

waves. These shear waves are called head waves in the

remainder. Finally the shear waves generated in directions

below �hcr or above hcr [case (3)], which correspond to the

lateral lobes in Fig. 2(a), are a result of mode conversion of

the evanescent compressional waves.

In contrast to the standard analysis of directivity patterns

for surface sources, we have identified an additional contri-

bution to the generation of shear waves that appears in the

case of a buried line source of expansion. This analysis, and

in particular the contribution of evanescent compressional

waves, plays a pivotal role in the understanding of the direc-

tivity of a buried source layer.

V. DIRECTIVITY PATTERNS OF A NORMAL BURIED
SOURCE LAYER

The method described in Sec. III. to calculate the direc-

tivity functions is now used to analyze the radiation of a

normal buried source layer. The case of semi-transparent

materials is considered. The patterns obtained with the pres-

ent method are analyzed and compared to those found in the

literature for an acoustic source resulting from the absorption

of an electromagnetic wave at normal incidence.

To analyze the influence of the optical penetration on

directivity patterns, we model a neutral glass with values of

the ratio kL/b identical to those found in the literature, where

kL is the wave number of compressional waves.34 Figure 3

shows directivity patterns for compressional waves plotted

for a ratio kL/b equal to (a) 0.01, (b) 0.2, (c) 0.3, (d) 0.5,

(e) 1, (f) 2, (g) 3, (h) 5, and (i) 10. All diagrams are normal-

ized by the maximum of curve (a). We observe an excellent

agreement with the directivity patterns reported in the litera-

ture for all diagrams,34 thus confirming the validity of our

calculations.

When kL/b � 1, curve (a) in Fig. 3, the directivity of

compressional waves is identical to that of a thermoelastic

FIG. 2. (Color online) (a) Directivity pattern for shear waves of a buried

source of expansion at a distance xS
1¼ 1/b to the surface. The pulsation used

in the calculations is x¼bcT, corresponding to a ratio kT/b¼ 1. (b) Phase

slowness in an isotropic medium and representations of wave vectors of the

incident shear wave and the reflected compressional wave depending on the

values of the angle of incidence hi of the shear waves: (1) hi< hcr, (2)

hi¼ hcr, and (3) hi> hcr.
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surface dipole source.36 Thus, taking into account the optical

penetration has little influence on waves of very large wave-

length compared to the optical penetration depth. However,

as kL/b increases, an additional contribution appears for

h¼ 0� [curves (b)–(e) in Fig. 3]: increasing optical penetra-

tion increases the directivity of compressional waves.

Finally, when the ratio is greater than 1, the shape of the

directivity pattern remains the same and its amplitude

decreases with increasing kL/b due to a decrease in genera-

tion efficiency for waves of wavelengths smaller than the

optical penetration depth. The directivity of compressional

waves is thus increasingly influenced by the penetration of

the laser beam as their wavelength becomes increasingly

close to the optical penetration depth.

We plot in Fig. 4 the directivity patterns of shear waves

for the following three values of the ratio kT/b: (a) 0.01,

(b) 1, and (c) 2p. The directivities presented in Ref. 34 can

be reproduced perfectly by our calculations with an angular

step of 1�. Each curve is normalized by its maximum in this

case. However, with such a rough angular step, the directions

associated to the head waves are not calculated precisely,

and the maximum value for the normalization changes from

one curve to another. The patterns therefore seem not to vary

much.34 This analysis can be misleading, and a more precise

angular step is necessary to resolve the sharp head wave

pattern.

For a more detailed analysis, the calculations are now

carried out with an angular step of 1/6�, for kT/b¼ 0.01

(solid line in Fig. 5) and kT/b¼ 1 (dashed line in Fig. 5). In

this case, both diagrams are normalized by the maximum of

the solid curve. We observe that the amplitude of shear

waves propagating in directions contained in the cone of half

top angle hcr decrease with increasing wavelength. As dem-

onstrated in Sec. IV, these waves are associated with the

mode conversion of bulk compressional waves. The

observed changes in the directivity of the shear waves within

the cone must thus be discussed together with those in the di-

rectivity patterns of the bulk compressional waves (Fig. 3)

considered for the whole angular sector. For a given ratio

kT/b, the equivalent ratio kL/b to consider for comparison is

obtained by the following equation:

kL

b
¼ cT

cL

kT

b
: (17)

From Eq. (17), values of kT/b¼ 0.01 and 1 considered here

correspond to kL/b � 0.01 and 0.5, respectively. We thus

FIG. 3. Directivity patterns for compressional waves for a sample of neutral

glass plotted for kL/b equal to (a) 0.01, (b) 0.2, (c) 0.3, (d) 0.5, (e) 1, (f) 2,

(g) 3, (h) 5, and (i) 10.

FIG. 4. Directivity patterns for shear waves for a sample of neutral glass

plotted for kT/b equal to (a) 0.01, (b) 1, and (c) 2p.

FIG. 5. Directivity patterns for shear waves for a sample of neutral glass for

kT/b equal to 0.01 (solid) and 1 (dashed).
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compare solid and dotted lines in Fig. 5 to the directivity pat-

terns of Figs. 3(a) and 3(d), respectively. For compressional

waves, Figs. 3(a)–3(d) shows that the area of the directivity

pattern increases as kL/b increases. Owing to energy conser-

vation, such an increase of compressional-wave amplitude

for all angles is balanced by a decrease in the amplitude of

shear waves observed for jhj< hcr, Fig. 5. Note that the am-

plitude of the head waves remains approximately the same

in this range of values for kT/b.

A more pronounced decrease of the shear-wave ampli-

tude with increasing penetration depth is visible on the lateral

lobes in Fig. 5. As previously mentioned, shear waves associ-

ated to these lobes originate from evanescent compressional

waves. Evanescent waves propagate along the free-surface,

and are characterized by an exponential decrease of their

in-depth amplitude. The increase in optical penetration 1/b
therefore spatially filters the evanescent waves with an in-

depth amplitude that decays faster than 1/b. This results in

the observed decrease of the amplitude of the lateral lobes.

By identifying the different contributions to shear wave

directivity, we have explained the effect of the optical pene-

tration depth on the directivity of a normal buried source

layer for both compressional and shear waves. Section VI is

now dedicated to the investigation of effects of the obliquity

of the volume acoustic source.

VI. DIRECTIVITY PATTERNS OF A TILTED BURIED
SOURCE LAYER

In strongly absorbing materials, such as metals, the

characteristic acoustic pulsation xc is imposed by the laser

duration s. In order to analyze the influence of the obliquity

both theoretically and experimentally, we choose an actual

sample with an optical penetration depth 1=b	 scL. In this

configuration, xc¼ bcL is imposed by the optical penetration

depth, and not by the laser pulse duration. The sample is

thus a plate made of Schott NG1 glass. The relevant physical

properties39 are summarized in Table I. The effects of the

obliquity of the acoustic source are first analyzed for

compressional-wave directivity patterns and then for shear-

wave directivity patterns.

In contrast to Sec. V, the buried source layer forms a

positive angle ur with the normal to the surface of the sam-

ple, owing to the refraction of the laser beam. Figures 6(a)

and 6(b) show the change in the directivity of compressional

waves for a ratio kL/b(ui)¼ 1 and 2p, respectively.

The directivities are plotted for two values of the angle of

incidence of the laser beam ui: (i) 0� and (ii) 45�. The corre-

sponding angles of refraction ur are (i) 0� and (ii) 28�,
respectively. Each curve is normalized to its maximum

amplitude. As expected, since xc is imposed by the optical

penetration depth, the effect of the obliquity of the acoustic

source is more pronounced for compressional waves of

wavelength equal to the optical penetration depth [kL/b¼ 2p,
Fig. 6(b)] than for compressional waves of larger wavelength

[kL/b¼ 1, Fig. 6(a)].

In Fig. 6(b), a striking feature of the directivity pattern

for the oblique buried source layer is that the generation of

the compressional waves is more intense in two particular

directions. For an angle of incidence of the laser beam of

45�, corresponding to an angle of refraction of 28�, the direc-

tion of the highest compressional-wave amplitude is �62�.
This direction corresponds exactly to the direction normal to

the direction of refraction. Another lobe oriented in the 62�

direction also appears, but with a much smaller amplitude.

Indeed, since the lateral dimension of the expansion source

is neglected in the present model, the compressional waves

are preferentially generated in the direction normal to the

source, i.e., in the direction normal to the direction of refrac-

tion. Yet, to explain why the generation is more intense for

h< 0, that is in the diagram area opposite to that of the

source, a more detailed analysis of mode conversion is

necessary.

The �62� lobe originates from compressional waves

propagating freely toward the bulk of the material.

Conversely, the 62� lobe results from compressional waves

propagating toward the surface of the half-space, that reflect

without mode conversion. However, shear waves are also

TABLE I. Mechanical and optical (at 1064 nm) properties of the Schott

NG1 glass. The density q and the thickness h are measured. The stiffness

coefficients C11¼qV2
C and C66¼qV2

S are calculated from the measured

compressional-wave and shear-wave velocities: VC and VS, respectively.

Value

Stiffness coefficient C11 (GPa) 66.91

Stiffness coefficient C66 (GPa) 23.4

Density q (g cm�3) 2.443

Optical penetration deptha 1/b (0�) [lm] 226

Refractive indexa n0 1.51

Absorption coefficienta n00 3.74
 10�4

aReference 39.

FIG. 6. Directivity patterns for compressional waves in the Schott NG1

glass for (b) kL/b(ui)¼ 1 and (b) 2p. In both cases the angle of incidence is

ui: (i) 0� and (ii) 45�.
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generated by mode conversion at this surface. A transfer of

mechanical energy from compressional to shear waves thus

explains why the amplitude of the 62� lobe is smaller.

To confirm this analysis, consider now the directivity of

shear waves. The same angles of incidence are considered

and the ratio kT/b (ui) is equal to 2p in Fig. 7. Again, each

curve is normalized by its maximum amplitude. Similarly to

compressional waves in Fig. 6(a), the ratio kT/b(ui)¼ 1

would have shown that the effects of the obliquity on the

directivity of shear waves are small where the wavelength is

larger than the optical penetration depth.

In Fig. 7, the directions of the two maxima of amplitude

on the shear-wave directivity patterns do not change with the

obliquity and remain symmetrical. As identified in Sec. IV,

these maxima directions correspond to head waves generated

at the critical angle hcr, determined solely by the mechanical

properties of the propagating medium. This indicates that the

directivity of head waves is not influenced by the loss of

symmetry of the source.

The small lateral lobes on the shear-wave directivity pat-

terns, originating from evanescent compressional waves, also

remain symmetrical when the angle of incidence is changed

(Fig. 7). However, their magnitude increases symmetrically

with increasing angle of incidence. Indeed, as shown in

Sec. II, the effective optical penetration depth decreases as

the angle of incidence increases.35 The electromagnetic

energy deposition is thus concentrated on a volume increas-

ingly close to the surface. The generation of evanescent

waves with small wavelengths is thus favored.

The most striking feature owing to mode conversion

of bulk compressional waves is that the obliquity leads to

the formation of a new central lobe indicated by a line in

Fig. 7(b). Consider the angle hT formed by the propagation

direction of the reflected shear waves with the normal to the

surface of the half-space,

hT ¼ sin�1 cT

cL
sin

p
2
� ur

� �� �
; (18)

given by Snell’s law. For ur¼ 28� (corresponding to

ui¼ 45�), Eq. (18) leads to an angle of hT¼ 31� correspond-

ing exactly to the position of the new lobe. This shows that

when the angle of refraction becomes smaller than the criti-

cal angle, a new favored direction for shear wave generation

appears. Equation (18) explicitly relates the favored direc-

tion for the generation of acoustic shear waves to the direc-

tion of light refraction.

We have seen that the amplitude of shear waves origi-

nating from evanescent compressional wave increases with

increasing angle of incidence. Moreover, we have demon-

strated the existence of a favored direction hT for enhanced

shear-wave generation. This direction can be controlled

merely by tuning the incident laser angle, see, for instance,

the lobe at hT¼ 31� for ui¼ 45�. To confirm this ability to

steer shear wave generation, comparisons with experimental

results are now proposed.

VII. COMPARISONS OF CALCULATED DIRECTIVITY
PATTERNS WITH EXPERIMENTAL RESULTS

The experimental setup used to measure the amplitudes

of compressional and shear waves with respect to the angle

of observation is first introduced. The experimental results

are then analyzed and finally compared to calculated direc-

tivity patterns.

A. Measurement of pseudo-directivity patterns

A Q-switched Nd:YAG laser delivering 8 ns pulses is

focused to a line of width �100 lm and length �3 cm at the

front surface (x1¼ 0) of a NG1 Schott glass plate. The opti-

cal penetration depth of about 1/b¼ 230 lm dominates the

frequency content of the acoustic waves and the pulse dura-

tion has little influence, as explained previously. Owing to

the finite lateral dimension of the source, the thermoelastic

expansion generates a diffracted acoustic field in the plate.

Successive reflections with mode conversion at the plate

boundaries create compressional and shear echoes. A contin-

uous laser interferometer focused to a spot of radius

�100 lm is used to measure the normal component of the

displacement of the rear surface of the plate (x1¼ h). The

laser source to detector position is scanned along x2 using a

motorized stage with a step of angle of observation of 2� and

for both normal and ui¼ 45� laser incidences. Note that the

angular step does not allow measurement of the very narrow

peak of maximum amplitude associated to the head waves in

the critical angle hcr direction.

The amplitudes of the compressional and shear acoustic

echoes are plotted in polar coordinates vs h for both normal

and oblique configurations in Fig. 8. The case of normal inci-

dence is represented in Figs. 8(a) and 8(b) and the case of

ui¼ 45� is represented in Figs. 8(c) and 8(d). In both normal

and oblique cases, the amplitudes are normalized by the

FIG. 7. Directivity patterns for shear waves for the Schott NG1 glass for the

ratio kT/b(ui) equal to 2p with changes in the angle of incidence ui. The val-

ues of ui are (a) 0� and (b) 45�.
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compressional wave amplitude for h¼ 0�. The details of the

experiment are given in Ref. 35.

The experimental polar diagrams (Fig. 8), so-called

pseudo-directivity patterns, are reminiscent of the directivity

patterns presented in Secs. V and VI. However, there are

three major differences between the two types of patterns. (i)

The directivity patterns are calculated for a given frequency.

The pseudo-directivity diagrams are obtained from temporal

signals, i.e., the whole signal spectrum is taken into account

at each point. It will be shown in the remainder to have a

small influence on the difference between pseudo-directivity

and directivity patterns compared to the other transformations

discussed in this section. (ii) In the case of the directivity pat-

terns for compressional waves, the reported amplitudes corre-

spond to the amplitude of the displacement in the direction of

observation, and in the case of the directivity patterns for

shear waves, the reported amplitudes correspond to the am-

plitude of the displacement in the direction normal to the

direction of observation. The pseudo-directivity patterns give

access to the component of the displacement in a direction

normal to the surface of the plate. Moreover, the points of ob-

servation are distributed on a semi-circle for the directivity

patterns and along a plane surface for the pseudo-directivity

patterns, meaning that in the latter case the distance from the

source is not constant. (iii) The measurement of the ampli-

tudes for the pseudo-directivity is performed at a free surface,

whereas the amplitudes are measured in the bulk of a half-

space for the directivity. To compare both types of patterns,

we transform the directivity patterns calculated at a character-

istic frequency for equivalent measurement conditions to

compensate for (ii) and (iii).

B. Transformation of the directivity patterns

Consider Fig. 9 for discussion. The quarter-circle of

radius h, where h is the thickness of the plate, describes the

location of the points of observation in the case of the direc-

tivity patterns. Point C is the point of observation belonging

to the quarter-circle for the direction of observation h. The

points of observation in the case of the pseudo-directivity

patterns are distributed on the rear surface of the plate,

Fig. 9(a). Point P represents the point of observation belong-

ing to the rear surface of the plate for the same direction of

observation h. The transformations accounting for the differ-

ences in the direction of measured displacements and in the

distances covered by the waves at the time of their measure-

ment simply lead to a multiplication of the directivity

functions by a factor KL(h) [respectively, KT(h)] for com-

pressional waves (respectively, shear waves). The details of

their calculation are reported in the Appendix.

For the directivity patterns, the amplitudes are calcu-

lated at point C in the bulk of the half-space, and are

therefore only due to the incident wave. For the pseudo-

directivity, the amplitudes measured at a free surface at point

P are a combination of the incident wave and of the waves

reflected with and without mode conversion. To compensate

for this difference, it is necessary to introduce the reflection

coefficients at the rear surface.40 To do so, we introduce a

virtual secondary source located at the rear surface. We first

describe the transformation to apply in the case of the

FIG. 8. (Color online) Amplitudes of (a) the shear waves and (b) the com-

pressional waves for a normal buried source layer and amplitudes of (c) the

shear waves and (d) the compressional waves for a tilted buried source layer

(ui¼ 45�) plotted vs h for experimental results.

FIG. 9. (Color online) (a) Diagram of the difference in orientation and

attenuation of the measured displacements to plot the pattern of directivity

or that of pseudo-directivity of compressional waves. Directivity patterns

(dotted lines) and transformed directivity patterns (solid lines) for (b) the

shear waves and (c) the compressional waves for a tilted buried source layer

(ui¼ 45�).
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directivity function of compressional waves f OP
L [Eq. (15a)].

Shear waves will be analyzed later.

As explained previously, the normal displacement at

point P is caused by an incident compressional wave that is

reflected at the rear surface (x1¼ h) and that gives rise to a

compressional wave and to a shear wave owing to mode con-

version. To model these reflections, the solid medium can be

described as a half-space x1� h. The incident compressional

plane wave impinging on the rear surface at point P with an

angle h is considered to be generated by a single force buried

far from the surface and applied along direction h. In this

configuration, the calculation of the normal displacement at

point P caused by the incident and reflected waves corre-

sponds exactly to the reciprocal problem one would have to

solve in order to obtain the directivity function f sec
L for com-

pressional waves generated by a virtual secondary source

located at point P. Since we measure the normal displace-

ments at the rear surface, this secondary source is a monop-

ole oriented along x1 and located at the rear surface.

Function f sec
L can thus be obtained by solving a reciprocal

problem such as the one described in Sec. III.

The amplitude of the normal displacement at point P on

the rear surface generated by the incident compressional wave

of amplitude uC
r is then obtained by the product uC

r f sec
L (h) in

order to take into account the reflections occurring at the free

surface. In other words, to transform the directivity pattern in

order to take into account the measurement at a free surface,

the directivity function f OP
L , calculated in the bulk of the mate-

rial, has to be multiplied by the directivity function f sec
L of the

secondary source.

Finally, the directivity function f OP
L [Eq. (15a)] has to be

multiplied by KL(h) f sec
L (h), where KL(h) is expressed in the

Appendix, in order to transform the directivity and to compare

the pseudo-directivity with the transformed directivity of the

compressional waves. Similarly, it can be shown that to trans-

form the directivity of the shear waves, the directivity function

f OP
T [Eq. (15b)] has to be multiplied by KT(h) f sec

T (h), where

KT(h) is expressed in the Appendix and the function f sec
T is the

directivity function of the shear waves for a monopole oriented

along x1 and applied at the free surface.

In Figs. 9(b) and 9(c), the directivity patterns (dotted

lines) and the transformed directivity patterns (solid lines) of

a tilted buried source layer for ui¼ 45� are plotted for the

shear and the compressional waves, respectively. These pat-

terns are calculated at a characteristic frequency xc such that

the wavelength of each type of waves is equal to the optical

penetration depth, i.e., xc¼ 2pbcT for shear waves and

xc¼ 2pbcL for compressional waves.

In Fig. 9(b), the transformations made to the directivity

of the shear waves increase the magnitude of the new

favored generation direction in the area where the volume

acoustic source is located. The direction associated to the

sharp maximum of shear-wave generation remains that of

the critical angle associated to the head waves. Figure 9(c)

shows that even for the frequency where the obliquity effects

on the directivity patterns are theoretically important, the

asymmetry of the pattern for the compressional waves is

moderate once transformed. The measurement at the rear

surface of the plate masks the favored generation

enlightened by the directivity patterns calculated in the

bulk of the material. This observation is valid for all lower

frequencies since the obliquity effects become even less

noticeable.

C. Comparison of pseudo-directivity with transformed
directivity patterns

In Fig. 8 representing the measured pseudo-directivity

patterns, a loss of symmetry appears for both shear and com-

pressional waves where the incidence of the laser beam is

oblique. These experimental results are compared with the

transformed directivity patterns presented in Sec. VII B.

In the case of shear waves in Fig. 8(c), the increase of

the amplitude of the lobe in the area where the source is

located is well described by the new favored direction in the

direction of 31� [Eq. (18)], noteworthy in the transformed

directivity patterns in Fig. 9(b). The measured pseudo-

directivity pattern in Fig. 8(d) is also well reproduced by the

transformed directivity patterns in Fig. 9(c), thus underscor-

ing that the proposed transformation of directivity patterns

allows very good predictions of acoustic beam steering.

To summarize, a comparison of the measured pseudo-

directivity patterns with the calculated directivity patterns

has been proposed. For the first time, a virtual secondary

source has been introduced to model the detection at a free

plane surface. The rear surface is shown to mask the favored

direction of generation. Despite this filter, the acoustic beam

steering with light refraction for compressional and espe-

cially shear waves was demonstrated. In the future, it would

be interesting to use this ability for non-destructive laser-ul-

trasonic inspection with a tunable angle of incidence of the

laser.

VIII. CONCLUSIONS

We have presented a method for calculating the analyti-

cal expressions of the directivity functions of compressional

and shear waves generated by an acoustic source distributed

in the volume of the sample. These calculations have been

applied to the case of the thermoelastic generation by a vol-

ume absorption of an electromagnetic wave at oblique

incidence.

The origin of different lobes appearing on the directivity

patterns of compressional and shear waves has been identi-

fied. In contrast to the standard analysis of directivity

patterns for surface sources, we have revealed an additional

contribution of evanescent compressional waves to the gen-

eration of shear waves that appears in the case of a buried

source of expansion. This analysis plays a pivotal role in the

understanding of the directivity of volume sources.

We have shown that the contribution of evanescent

waves increases with increasing angle of incidence.

Moreover, we have demonstrated the existence of a favored

direction for enhanced shear-wave generation. This favored

direction is controlled by tuning the angle of incidence of

the laser beam. Since the direction of maximum generation

has been shown to be normal to the direction of refraction,

the amplitude of bulk compressional waves can be tuned

similarly by adjusting laser incidence.
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The ability to steer acoustic wave by light refraction

was then demonstrated with an experiment performed with a

plate. A prediction of the measured pseudo-directivity pat-

terns was proposed by introducing a virtual secondary source

to model the detection at a free plane surface.

Despite the fact that the rear free surface is shown to

mask part of the actual steering, a strong asymmetry of the

pseudo-directivity pattern of shear waves is demonstrated.

These results, together with the ability to modulate bulk-

wave amplitudes and to select the directivity of volume sour-

ces, suggest important applications in non-destructive testing

and imaging.

APPENDIX

The differences in the directions of measured displace-

ments and in the distances over which the waves have trav-

eled at the time of their measurement are considered in this

appendix. The transformation factors to apply to the directiv-

ity patterns in order to correct these differences are presented.

As an example, consider the directivity pattern and the

pseudo-directivity pattern of the compressional waves. In

Fig. 9(a), u
C is the displacement vector at the point C. The

projection uC
r of u

C on the direction er corresponds to the

amplitude reported on the directivity pattern of the compres-

sional waves in the direction of observation h. u
P is the dis-

placement vector at the point P. The projection uP
1 of u

P on

the direction x1 corresponds to the amplitude reported on the

pseudo-directivity pattern of the compressional waves in

the direction of observation h. By multiplying uC
r by cos h,

the amplitude of the compressional wave at point C are

transformed as if it was measured along x1 rather than

along er.

In addition, the variation in the distance traveled by the

wave between points P and C should be considered. Indeed,

the amplitude of the cylindrical waves measured far from the

source decays in 1/
ffiffi
r
p

, where r is the distance between the

source and the point of observation. Waves reaching points

of observation on the quarter-circle have the same attenua-

tion 1/
ffiffiffi
h
p

. This attenuation factor does not depend on the

angle of observation h, and consequently does not appear in

the directivity functions. On the contrary, for the pseudodir-

ectivity, the waves are detected after they have traveled a

longer distance h/cos h that depends on h. It is thus necessary

to multiply the amplitude uC
r by

ffiffiffiffiffiffiffiffiffiffi
cos h
p

to compensate for

this change in attenuation.

Finally, the transformation factor accounting for differ-

ences in the directions of measured displacements and in the

distances for wave propagation from the source to the point

of observation is KL(h)¼ (cos h)3/2. Similarly, it can be

shown that in the case of shear waves, the transformation

factor is KT(h)¼ j
ffiffiffiffiffiffiffiffiffiffi
cos h
p

sin hj.
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