
HAL Id: hal-01877645
https://univ-lemans.hal.science/hal-01877645

Submitted on 20 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experimental and theoretical study of density
fluctuations near the stack ends of a thermoacoustic

prime mover
Lijia Gong, Guillaume Penelet, Pascal Picart

To cite this version:
Lijia Gong, Guillaume Penelet, Pascal Picart. Experimental and theoretical study of density fluctua-
tions near the stack ends of a thermoacoustic prime mover. International Journal of Heat and Mass
Transfer, 2018, 126, Part A, pp.580-590. �10.1016/j.ijheatmasstransfer.2018.05.027�. �hal-01877645�

https://univ-lemans.hal.science/hal-01877645
https://hal.archives-ouvertes.fr


Experimental and theoretical study of density fluctuations near the stack
ends of a thermoacoustic prime mover

Lijia GONGa,∗, Guillaume PENELETb, Pascal PICARTa,b
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Abstract

This paper proposes the experimental and theoretical study of nonlinear heat transport processes generated
by large amplitude acoustic oscillations at the ends of a stack of plates in the presence of a temperature
gradient. These processes are notably involved in the operation of thermoacoustic engines. The measurement
method, a time-resolved and full-field digital holography interferometry technique, enables to measure the
density fluctuations from the optical phase difference between two laser beams. This technique is applied
to the analysis of density fluctuations in the vicinity of a stack submitted to a temperature gradient, firstly
for the case of (uncontrolled) self-sustained acoustic oscillations generated spontaneously in a standing wave
thermoacoustic prime mover, and secondly for the case of an assigned acoustic field whose amplitude is
controlled by an external sound source. A theoretical model describing the advective heat transport by
sound at the ends of the heated stack is also presented, and numerical simulations are then carried out. The
comparison between experimental data and numerical simulations is provided for several stack positions,
several sound pressure levels, and several amounts of heat supplied to the stack, and the results show good
agreement between the experiments and the model.

Keywords: Thermoacoustics, Nonlinear Heat Transport, Digital Holography.

1. Introduction

Thermoacoustic engines are heat engines which involve the interaction of resonant gas oscillations with
a porous medium (referred to as the ”stack”), leading either to sound amplification (thermoacoustic prime
mover) or to advective heat transport by sound (thermoacoustic heat pumps). This class of engines has
been developed for about three decades [1] and has nowadays proved good performance [2] and potentiality
for niche applications at moderate powers, notably for the recovery of waste heat [3]. The design of ther-
moacoustic engines is usually based on the linear theory derived by Rott [4] which does not account for
several nonlinear saturation processes such as acoustic streaming [5, 6], nonlinear propagation [7], as well
as fluid separation [8] and/or complex heat exchange processes occuring at the ends of the stack and of
the heat exchangers [9, 10, 11, 12].matveev2007analytical The latter effects are the ones investigated both
experimentally and numerically in this paper.

The full-field and time-resolved digital holography interferometry technique (see Fig.1) is chosen to
analyze the processes occuring near the stack ends in a thermoacoustic prime mover. This method allows
measuring the acoustic density fluctuations (averaged along the line-of-sight) from the optical phase diffe-
rence between a reference beam and an object beam passing through the acoustic resonator. Previous works
by some of the authors [13] has already shown that this experimental technique is adequate for measuring
harmonic and mean (time-averaged) components of density fluctuations in the vicinity of the stack, which
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Nomenclature

c∞ speed of sound at room temperature

Cp isobaric heat capacity of the fluid (Cp =
1003 J.kg−1.K−1)

d distance between the stack and the rigid
plug

ds length of the stack

Di inner diameter of the tube (Di = 0.052
m)

Do outer diameter of the tube (Do = 0.06 m)

f frequency of acoustic oscillations

kf thermal conductivity of the fluid
at room temperature (kf =
2.26 10−2 W.m−1.K−1)

ks effective thermal conductivity of the stack
(ks = 0.6 W.m−1.K−1)

L tube length (L = 0.49 m)

p′ acoustic pressure

P0 mean pressure of the fluid (P0 = 1.015 105

Pa )

Pc characteristic amplitude of acoustic pres-
sure

Pmic peak amplitude of acoustic pressure at
position x = d

Pe Péclet number (Pe = ωu2c/κ∞)

Qin heat power supplied to the stack

Qonset minimum of heat power to trigger self-
sustained oscillations

R dimensionless relaxation time (R = ωτR)

T ′ temperature fluctuations of the fluid

T0 mean temperature of the fluid

T∞ room temperature (T∞ = 293 K)

Tc characteristic amplitude of temperature
fluctuations

T ′ average temperature fluctuations of the
fluid over the cross-sectional area of a
stack channel

uc characteristic gas parcel displacement

v′ acoustic velocity

κ0 thermal diffusivity of the fluid (at room
temperature κ∞ = 2.2 10−5 m2.s−1)

λ acoustical wavelength

ω angular frequency, rad s−1

ρ′ density fluctuations of the fluid

〈ρ〉 average of density through the line-of-
sight

ρ0 mean density of the fluid

ρ∞ mean density of the fluid at room tempe-
rature

τ dimensionless time (τ = ωt)

τR thermal relaxation time

θ dimensionless temperature fluctuations
(θ = T ′/Tc)

θ0 dimensionless mean temperature (θ0 =
T0/Tc)

ξ dimensionless axial coordinate (ξ = x/uc)

are generated locally as a result of the abrupt transition experienced by gas parcels going back and forth
through the end of the stack. These previous works were related to the description of a single experiment
performed during the transient regime of wave amplitude growth in a standing wave prime mover. In this
paper, additional experimental data are provided, which are obtained on the same device but for two confi-
gurations. A first configuration is the same as the one used previously [13], which means that measurements
are performed during the spontaneous onset of self-sustained acoustic oscillations, while for the second
configuration the acoustic field is assigned by an external sound source (so that comparison with a model is
easier). Moreover, this paper presents a theoretical model describing the advective heat transport by sound
at the ends of the heated stack, which is compared to experimental data.

The paper is organized as follows. In section 2, the experimental set-up and the measurement technique
are briefly described. Experiments performed during the transient regime of wave amplitude growth in a
standing wave thermoacoustic prime mover are presented in section 3. A model describing the generation of
higher harmonics and time-averaged components of density fluctuations at the end of the stack is presented
in section 4. In section 5, additional experimental data obtained for steady-state oscillations are shown and
compared with numerical simulations, while conclusions are drawn in section 6.
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2. Experimental set-up

The digital holographic set-up and the thermoacoustic device are presented schematically in Fig.1(a).
The thermoacoustic engine has a very simple geometry : it includes a cylindrical glass tube (with length L
= 49 cm, inner diameter Di = 52 mm, outer diameter Do = 60 mm) opened at one end and closed by a
rigid plug at the other end. Inside the tube, a porous material made up of a ceramic catalyst (the ’stack’)
with a length ds = 48 mm is installed. It is structured with many square channels of semi-width rs =
0.45 mm and has the same diameter as the inner diameter of the resonator. The stack is the heart of the
thermoacoustic device : it has a large surface of thermal contact with the gas, and therefore promotes the
thermoacoustic amplification process which occurs within the acoustic thermal boundary layers[1]. The onset
of thermoacoustic oscillations is generated thanks to the existence of a temperature gradient along the stack :
this temperature gradient is obtained by means of a Nichrome wire (36 cm in length, 0.25 mm in diameter)
which is used as a heating element and is coiled through the stack end facing the rigid plug. The distribution
of the temperature produced is shown schematically in Fig.1(c) : thanks to the heat leaks through lateral
walls (absence of any cold heat exchanger) a temperature gradient is obtained which highest amplitude
is in the vicinity of the heating wire. The self-sustained oscillations are produced when the temperature
gradient reaches a critical value, which depends on the stack position along the glass tube (see ref. [14] for a
marginal stability curve as a function of the stack position). The frequency of acoustic oscillations roughly
corresponds to the quarter wavelength resonance, which can be calculated by f ≈ c∞/4L, where c∞ ≈ 343
m/s stands for the adiabatic sound speed evaluated at room temperature T∞ ≈ 293 K. A microphone is
flush-mounted through the plugged end of the resonator to measure the frequency and amplitude of acoustic
pressure oscillations.

Although the thermoacoustic device has a simple geometry, it can exhibit complicated dynamics (e.g
relaxation regime of spontaneous onset/damping) which are not reproduced by numerical simulations [15]
and therefore appeal for further investigations (this is one of the motivations for this study). To that
purpose, the measurement of density fluctuations is performed, with the aim of getting information about
local effects in heat transfer due to the abrupt transition experienced by gas parcels going back and forth
through the heated stack end. A schematic representation of the set-up used to measure density fluctuations
is presented in Fig 1(a) : it basically consists of an interferometer which gives a map of the optical phase
difference between a reference beam and a measurement beam passing through the acoustic resonator. In
the following, only the main principles of the measurement technique are described, and further information
(notably about signal processing) can be found in ref. [13]. The light source is a continuous red laser (optical
wavelength of 660 nm) which is separated into a reference beam and a probe beam by means of a polarizing
cube. Both beams are then expanded and bundled to parallel rays by a collimating lens. The probe beam
passes through the acoustic resonator next to the heated side of the stack, and the interference between
the reference beam and the probe beam are captured by a high speed camera which is used for recording
hologram sequences. The optical path length through the enlightened part of the tube may vary because of
heating and/or acoustic oscillations, and this variation is captured by substracting the instantaneous optical
phase difference between the two beams with the one obtained for a reference state (e.g without sound). As
a result, this measurement technique gives a map of refractive index variations which itself can be related
to the density map of the fluid using the Gladstone-Dale relation. Note that the measured density map is
actually a map of a density averaged through the line-of-sight, denoted as 〈ρ〉 (the notation 〈. . .〉 refers to
an average along the beam path through the waveguide). The size of the map, the spatial resolution and
the time resolution of measurements are determined by the performance and the settings of the high speed
camera. In this study, the typical size of the observation window is of about 11.25 × 7.6 mm2 with a pixel
size of about 14.65 µm and a sampling rate from 2000 up to 8000 images per second.

In the measurements described in sections 3 and 5, two different configurations were used. The first
configuration, presented in Fig. 1(a), is identical to the one used in previous works[13] : it provides mea-
surements of the density fluctuations during a transient regime of wave amplitude growth, where the data
acquisition is triggered simultaneously with the onset of the acoustic wave, during a few seconds. The results
obtained with this configuration are used to analyze the impact of the position of the stack along the tube
on the generation of time-averaged and higher harmonics of density fluctuations (this effect of the stack
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Fig. 1. Sketch of the thermoacoustic device and of the digital holographic set-up, (a) for self-sustained acoustic oscillations,
(b) for assigned acoustic field (PBS : polarizing beam splitter, s : sagittal polarization and p : parallel polarization of laser
beam.). (c) Sketch of thermoacoutic device in the vicinity of the stack where a temperature gradient is present. Note : the
acoustic resonator is placed perpendicular to the gravity field.
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Fig. 2. Acoustic pressure (a,a’) and density (b-e,b’-e’) as a function of time. Density (ρ = ρ0 + ρ′) are presented for several
distances di from the stack end. The data on the left side (b-e) are obtained next to the heated side of the stack, while data on
the right (b’-e’) are obtained next to the non-heated side of the stack. The distance d between the stack and the rigid plug is
fixed to d = 18 cm. Note : the red disc on the top of the figure corresponds to the optical beam, the pink rectangle corresponds
to the camera window.

position was not investigated in previous works). However, the drawback of the method employed in this
first configuration is that measurements are performed during a transient regime, so that the amplitude of
acoustic oscillations is not constant during measurements. Therefore, a second configuration has also been
used, which is described schematically in Fig 1(b). For this second configuration, a loudspeaker enclosure is
placed very close to the open end of the thermoacoustic engine. Because of the coupling and of the additional
losses caused by the presence of the loudspeaker, the onset of thermoacoustic instability does not occur (at
least for the range of heat power supply employed in this study). However, this external sound source enables
to generate stable acoustic oscillations (at resonance frequency) within the duct, and its amplitude is easily
controlled within a range of a few tens of Pa up to 1 kPa. Therefore, this second configuration is well-suited
for some comparisons with the model described in section 4.

3. Experiments with self-sustained acoustic oscillations

This section describes measurements performed when the thermoacoustic prime mover is switched on by
means of external heating with the Nichrome wire, using the set-up described in Fig. 1(a). The experimental
data presented in the following provide additional information to the ones presented in ref.[13] about en-
trance effects impacting density fluctuations next to the heated side of the stack. The measurement protocol
is chosen as follows : the heat power supplied by the Nichrome wire is fixed to some value Qin, which is higher
than the value Qonset corresponding to the minimum heat power required to trigger acoustic oscillations.
After a few seconds, when the sound pressure measured by the microphone reaches 20 Pa, data acquisition by
the high speed camera is triggered with a sampling rate of 2000 images per second and during 4.5 seconds.
Each image includes 768 × 512 pixels (respectively along x and z, see Fig. 1) and a corresponding total
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Fig. 3. Fundamental (�), second harmonic (�), and quasi-static module(◦) amplitudes of the density fluctuations (〈ρ′〉 =
〈ρ〉−〈ρ0〉) as a function of the axial position x (x = 0 refers to the hot stack end). The dashed horizontal black line corresponds to
the adiabatic amplitude of density fluctuation estimated from the peak amplitude of the pressure measured by the microphone.
Note : this quasi-static amplitude presented is without sign, it is actually negative.

length along x of 11 mm (note that density fluctuations are homogeneous along z, as shown in [13]). A first
image is captured at room temperature (before switching on electrical supply to the Nichrome wire) and this
image is used as the reference from which fluctuations in optical path length (and therefore in density) are
calculated. A first set of measurements is shown in Fig. 2 where the distance of the stack from the plugged
end of the resonator is fixed to d = 18 cm, while the heat power is fixed to Qin = 23.25 W. Two separate
experiments are performed for the configuration mentioned above, one with the probe beam crossing the
resonator next to the heated side of the stack (left-side of Fig. 2), and another one with the probe beam
crossing the non-heated side of the stack (right-side of Fig. 2). Figs 2 (a) and (a’) present the fluctuations of
acoustic pressure measured by the microphone during the two measurements, while Figs. 2(b-e) and (b’-e’)
present the measured (after post-processing of hologram sequences) fluctuations of density along the x-axis
at four different distances from the stack, namely at distances d1 = 0.14 mm (b,b’), d2 = 3.13 mm (c,c’),
d3 = 6.12 mm (d,d’), d4 = 9.11 mm (e,e’), respectively. The evolution of acoustic pressure is almost identical
for these two configurations (as expected, since both the heating and the stack position are kept the same)
and it shows an exponential increase followed by an overshoot (around t ≈ 1.8s) and a stabilization of the
acoustic pressure amplitude around 800 Pa (the measured frequency of acoustic oscillations is around 171
Hz). The density fluctuations measured next to the heated side of the stack are presented in Figs. 2(b-e).
Oscillations of density are very small before t ≈ 0.5 s (because acoustic oscillations are small) and the mean
value of density increases with the distance, from about 0.8 up to 1.2 kg.m−3 (because an axial temperature
gradient is generated by the Nichrome wire). Once acoustic pressure has reached a significant amplitude
(i.e. for t ≥ 0.5 s), the results clearly show large oscillations of density, and the amplitude strongly depends
on the observation point (as will be described with more details in Fig. 3). Moreover, the results also seem
to show that the mean density strongly decreases locally, as shown especially in Fig. 2(c) for t ≥ 1.5 s : this
indicates that acoustic oscillations induce a mass transport phenomenon localized in the vicinity of the stack
termination. The same measurements performed next to the cold side of the stack are presented in Figs.
2(b’-e’) : the results show that the amplitude of density fluctuations is much lower than in Figs. 2(b-e), and
that it (almost) does not depend on the distance from the stack : the amplitude of density fluctuations is
therefore just proportional to the one of acoustic pressure fluctuations (which is almost constant along the
short region of analysis, much shorter than the acoustic wavelength).

The data of Fig. 2 are analyzed further in the following, and the spectral content of density fluctuations is
presented in Fig. 3 as a function of the position relative to the stack termination. The blue dotted lines with
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Fig. 4. Acoustic pressure (a,a’) and density (b-e,b’-e’) as a function of time. Density (ρ = ρ0 + ρ′) are presented for several
distances di from the hot stack end. The data on the left side (b-e) are obtained when the distance between the stack and the
rigid plug equals d = 12 cm, while data on the right (b’-e’) are obtained when d = 27 cm.

diamonds and with squares represent the amplitudes of the fundamental and the second harmonic (both are
obtained from the Fourier transform of the total signal during 4.5 seconds), respectively. The red dotted line
with circles represent the quasi-static amplitude of the density fluctuations as a function of the position. This
amplitude is calculated from the difference between the time-average of the density during 4.5 seconds and
the initial mean density at time t = 0 s (actually a time average of ρ over the twenty first periods of acoustic
oscillations). Finally, the dashed horizontal black line in Fig. 3 represents another amplitude of interest,
referred to as the adiabatic amplitude, and it corresponds to the amplitude of density oscillations that one
can evaluate from the measured peak amplitude Pmic of the pressure measured by the microphone (averaged
along the total duration of the signal). If one consider that the portion of tube from the stack to the plugged
end is homogeneous at room temperature. This amplitude is defined as ρad = Pmic cos(2πfd/c∞)/c2∞. The
results depicted in Fig. 3 show that the fundamental component of density fluctuations reaches maximum
at a distance of about 1.8 mm from the stack end : this distance has the same order of magnitude than the
amplitude of a gas parcel displacement u ≈ Pmic sin(2πfd/c∞)/(2πfρ∞c∞) ≈ 1.1 mm evaluated next to the
stack end (where ρ∞ ≈ 1.2 kg.m−3 is the mean density of the fluid at room temperature). The results also
show that far from the stack end (namely at a distance of about 10u), the amplitude of density fluctuations
tends towards the adiabatic amplitude (which is more than ten times lower than the maximum value).
Moreover, the results of Fig. 3 clearly show that both the second harmonic and a quasi-static component
of density fluctuations are generated in the vicinity of the stack end : there is therefore a large distorsion
caused by entrance effects, which however disappears far from the stack (both the second harmonic and the
quasi-static component tend towards zero as x increases). All of these observations are consistent with the
ones presented in ref.[13], but an additional conclusion which comes from the comparative analysis of Figs.
2(b-e) and 2(b’-e’) is that the presence of a temperature gradient has a large impact on both the amplitude
and the spectral content of density fluctuations next to the stack.

In Fig. 4, the impact of the position of the stack along the tube is analyzed. The left-side of Fig. 4
corresponds to the results obtained when the stack is placed at a distance d = 12 cm from the rigid plug,
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while the right-side of Fig. 4 presents the results obtained when d = 27 cm. As mentioned earlier, it is
well-known that the position of the stack along the tube impacts the threshold of acoustic oscillations :
this is because the thermoacoustic amplification process is controlled by both the relative amplitude and
the phasing of pressure and velocity oscillations (which are not constant along the tube). Therefore, the
value of Qonset depends on d. Thus Qin is fixed to 29.24 W for the configuration with d = 27 cm, while
Qin is fixed to 23.25 W for d = 12 cm. From the comparative analysis of the dynamics of the acoustic
pressure evolution, which is presented for both configurations in Figs 4 (a) and (a’), we notably see that the
position of the stack impacts the peak amplitude amplitude of acoustic pressure oscillations which reaches
p ≈ 800 Pa for d = 12 cm, while it is significantly lower (around 500 Pa) for d = 27 cm. However, as
shown in Figs 4 (b-e) and (b’-e’), the amplitude of density fluctuations at several distances from the hot
stack end are significantly larger when d = 27 cm than when d = 12 cm. Therefore, although the acoustic
energy stored in the resonator is larger when the stack is placed closer to the plugged end, the distortion of
density fluctuations in the vicinity of the stack increases as the stack is moved away from the plug. It is also
worth pointing out that the overshoot process observed for both pressure and density fluctuations is more
pronounced when the stack is placed far from the plug than when d = 12 cm. These results indicate that
the ratio of velocity to pressure amplitudes at the position of the stack is an important parameter which
controls the local magnitude of density fluctuations. In the next section, a model is presented, which aims
at reproducing the processes observed in experiments.

4. Description of temperature distorsion close to the stack termination

As already pointed out in previous research works [16, 17, 8, 18, 9], the linear thermoacoustic theory fails
in describing heat and mass transport processes near the stack terminations, because the abrupt transition
experienced by gas parcels oscillating back and forth through the stack ends leads to significant local non-
linearities. These effects have two origins : one is related to the geometrical singularity at the end of the stack
which leads to flow separation and viscous dissipation [8, 18], while the other one is related to a singularity
in terms of heat transfer [16, 17] which leads to the distorsion of temperature fluctuations [9, 13]. In this
section, we provide a simplified description of the latter effect, which is mainly based on the assumptions,
(1) that the fluid is inviscid, (2) that the stack plates are infinitely thin and have an infinite thermal
conductivity, and (3) that the transverse heat conduction inside the stack is taken into account by means of
a relaxation time approximation. The model presented in the following is actually an extension of the one
proposed by Gusev et al. [17], and it includes some effects due to axial heat conduction and the presence
of a temperature gradient. This model will be used to predict the generation of higher harmonics and time-
averaged components of temperature fluctuations, which themselves will be related to the fluctuations of
density.

The geometry of the considered device is the one of Fig. 1 (c), and it is assumed that the gas experiences
acoustic oscillations along x (the origin x = 0 is fixed at the hot side of the stack). If the fluid is assumed
to be inviscid, and if the thermal conductivity of the fluid is assumed independant of the temperature, the
equation describing the temperature deviation T ′ of the temperature from its mean (non-oscillating) value
T0(x) is given by [17, 19]

∂tT
′ + v′∂x (T0 + T ′) =

∂tp
′ + v′∂xp

′

ρ0Cp
+ κ0

(
∂2xx +∇2

τ

)
T ′, (1)

where p′ denotes the pressure fluctuations around the static pressure P0, ρ0 stands for the mean density of
the fluid, Cp is the isobaric heat capacity of the fluid, κ0 is the thermal diffusivity of the fluid, and where ∇2

τ

denotes the transverse part of the Laplace operator (∂x and ∂t stand for x and time derivatives, respectively).
As far as the axial temperature gradient is large only in the vicinity of the stack end within a region which is
much smaller than the acoustic wavelength λ, the spatial distribution of pressure fluctuations in the region
extending from x = 0 to the rigid end x = d of the acoustic resonator is not strongly affected by the tempe-
rature gradient[20], and it can therefore be written as p′ ≈ Pmic cos [2π(x− d)/λ] cos (ωt), where Pmic is the
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peak amplitude of acoustic pressure at position x = d (the plugged end of the resonator). The same argu-
ment holds for the acoustic velocity which is approximated by v′ ≈ (2πPmic/ρ∞λω) sin [2π(x− d)/λ] sin (ωt),
where ρ∞ refers to the density of the fluid at room temperature T∞. Eq. (1) is simplified in the following to
describe local distorsion of the temperature fluctuations around x = 0, within a compact region extending
up to a few gas parcels displacements. Here the word compact means that this region is much smaller than
the acoustic wavelength, so that the pressure and axial velocity are almost independant on x within this
region, and therefore the two following approximations

p′ ≈ Pmic cos

(
2πd

λ

)
cos (ωt) = Pc cos (ωt) , (2)

and

v′ ≈ −2πPmic
λρ∞ω

sin

(
2πd

λ

)
sin (ωt) = ωuc sin (ωt) (3)

can be reported in Eq. (1). Moreover, the term v′∂xp
′ on the right hand side of Eq. (1) can be neglected in

comparison with ∂tp
′, because an estimate leads to v′∂xp

′ ∼ (v′/λ)p′ with (v′/λ) � 1. The simplifications
mentioned above are the same as those formulated by Gusev in ref. [17] but an additional term v′∂xT0 is
present in Eq. (1) which describes the effect of an axial temperature gradient on the acoustic temperature
fluctuations. The term κ0∂

2
xxT

′ representing the dynamic effect of axial heat diffusion was neglected in ref.
[17] as it was considered as small in comparison with the hydrodynamic temperature transport (described
by the term v′∂xT

′) but Berson et al. [9] have shown that it may play a role for large amplitude of acoustic
oscillations. Therefore we keep this term in Eq. (1), but for the sake of simplicity we neglect the dependance
on x of the thermal diffusivity κ0 (due to temperature variations) which is replaced by its value κ∞ evaluated
at room temperature T∞. We also neglect the dependance of ρ0 with the axial coordinate in the term
∂tp
′/(ρ0Cp), which is replaced by ∂tp

′/(ρ∞Cp), where ρ∞ is the mean density evaluated at room temperature.
Therefore, all approximations mentioned above lead to the equation :

∂tT
′ + v′∂x(T0 + T ′) =

∂tp
′

ρ∞Cp
+ κ∞

(
∂2xx +∇2

τ

)
T ′, (4)

Following Gusev et al. [17], this equation is integrated over a cross-section S of a pore in the stack, and
the relaxation-time approximation is formulated to simplify the last term on the right-hand side. This
approximation amounts to describe the lateral heat transport between the fluid and the stack walls by
means of a Newton’s law of cooling, i.e. to assume that this lateral heat flux is proportional to the difference
between the temperature of the solid, T0, and that of the fluid averaged along a cross-section of a pore,
T0 + T ′. As a result, Eq. (4) is re-written as

∂tT ′ + v′∂xT0 + v′∂xT ′ =
∂tp
′

ρ∞Cp
+ κ∞∂

2
xxT

′ − T ′

τR
, (5)

where the relaxation time τR has been introduced (see ref. [17] for more details). This parameter is a
phenomenological parameter which does not account for all the complexity of heat transfer processes occuring
at the stack ends, but it can be used to describe the abrupt transition experienced by gas parcels which
cross the stack ends : in the following, the parameter τR will have a finite value for gas parcels inside the
stack (x < 0) which exchange heat with lateral walls, while τR will tend towards infinity to describe the
adiabatic temperature oscillations of gas parcels outside the stack (x > 0).

Finally, the last step of this analytical development consists in re-writing Eq. (5) in a dimensionless
form. To that purpose, we introduce the characteristic amplitude of temperature fluctuations Tc defined as
Tc = −Pc/(ρ∞Cp), and we also define the dimensionless variables τ = ωt and ξ = x/uc (where the length
uc introduced in Eq. (3) denotes the amplitude of gas parcel displacement at position x = 0) so that Eq. (5)
is transformed into :

∂θ

∂τ
+ sin τ

(
∂θ0
∂ξ

+
∂θ

∂ξ

)
= sin τ − θ

R
+

1

Pe

∂2θ

∂ξ2
. (6)
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where R = ωτR, Pe = ωu2c/κ∞ and θ0 = T0

Tc
. This equation describes the fluctuation of temperature locally

at the stack-fluid interface and aims at reproducing, at least qualitatively, the generation of temperature
harmonics as well as the generation of a mean component on temperature, due to the non-linearity of the heat
exchanges at the end of the stack of plates. The key parameter of this equation results from the relaxation-
time approximation, and is represented by the phenomenological parameter R = ωτR, which is here used to
account for the abrupt transition in the thermal coupling between the oscillating gas and the stack walls,
without going into the detail of the stack geometry. In the following, we will consider that inside the stack
(ξ ≤ 0) one has R = 1 while outside the stack (ξ > 0) it tends towards infinity : this assumption amounts to
considering that the typical size of a stack pore is such that the thermoacoustic process is optimum (R ≈ 1)
while the process is purely adiabatic outside the stack (R � 1). In the following, Eq. (6) will be solved
numerically using a finite-difference scheme. This requires to know the mean temperature gradient T0(x),
which will be evaluated from the experimental data. The resulting solution for the temperature fluctuations
T ′ around the stack ends will be then transformed into density fluctuation ρ′ using the formula

ρ′(x, t)

ρ0(x)
=
Pc
P0

cos(ωt)− T ′(x, t)

T0(x)
, (7)

stating that the gas is an ideal gas experiencing small perturbations of temperature and pressure.

5. Experiments with an assigned acoustic field and comparison with theory

This section presents experimental data compared with numerical simulations. The experimental set-up is
the one described in Fig. 1(b) : contrarily to the results presented in section 3 the acoustic field is sustained
by means of an external sound source, which enables to control much more easily a stable amplitude of
acoustic oscillations during measurements. The measurements are performed at different acoustic pressure
levels (Pmic = 300, 600 and 870 Pa) with the frequency f = 171 Hz (the same as the one of spontaneous
oscillations), at different heat power levels (Qin = 15.4, 18.9 W) and at different positions of the stack along
the tube (d = 18, 23 and 27 cm).

The measurement results are compared with theoretical data,which are obtained by solving Eq. (6)
numerically. A finite-difference scheme is used for both time and space, and the computational domain
ranges from ξ = −10 (or x = −10u) up to ξ = 30, while the calculations are performed over a total
time of τ = 6000 π (i.e more than 3000 acoustic periods) to make sure that convergence and steady-state
solutions have been reached for all components of temperature fluctuations. Prior to numerical solving, some
unknown parameters have to be determined from experimental data. For each set of measurements, the
amplitude dependant parameters Pc = Pmic cos [(2πd)(λ)], uc = −(2πPmic)/(λρ∞ω

2) sin [(2πd)/(λ)], Pe =
ωu2c/κ∞, and Tc = −Pc/(ρ∞Cp) are estimated from the assigned amplitude Pmic of acoustic oscillations
and the distance d between the stack and the rigid plug. The temperature distribution T0(x), which notably
depends on Qin, also needs to be estimated from experiments. To that purpose, a first measurement of the
mean density ρ0(x) is performed once heat supply has been switched on and steady-state temperature is
reached, but before switching on the loudspeaker. This measurement of ρ0(x) enables to calculate the mean
temperature distribution T0(x) along the spatial domain outside the stack (i.e. for x ≥ 0) by making use
of the ideal gas law. The temperature distribution inside the stack (for x ≤ 0), however, cannot be directly
obtained from experiments and has to be evaluated indirectly. As the computational domain inside the stack
ranges up to 10 times the gas parcel displacement, it is assumed that the resulting length is sufficiently short
so that the temperature distribution is assumed locally linear inside the stack. For the set of measurements
described below, the maximum amplitude of gas parcel displacement (estimated for d=27 cm and Pmic = 870
Pa) is around |uc| ≈ 1.5 mm, so that for this most unfavorable situation, it is assumed that the temperature
distribution is linear along the stack over a length of about 15 mm. Thanks to this approximation, the slope
of the temperature distribution in the stack (x ≤ 0) is evaluated by the following formula :

ksS ∂xT0|x=0− = kfS ∂xT0|x=0+ +Qin (8)
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Fig. 5. (a), (b) and (c) : Comparison between the numerical and experimental results (amplitude of fundamental and second
harmonic components of density) as a function of x, under conditions d =18 cm, Qin = 15.4 W and for different amplitudes
of forcing, namely Pmic = 300 Pa (a), Pmic = 600 Pa (b), and Pmic = 870 Pa (c). (d), (e) and (f) : Comparison between the
numerical and experimental results for the quasi-static component of density fluctuations, under the same conditions, namely
Pmic = 300 Pa (d), Pmic = 600 Pa (e), and Pmic = 870 Pa (f). (g), (h), (i) and (j), (k), (l) : Phase of the fondamental (g-i)
and the second harmonic (j-k) components of the density fluctuations ρ′, under the same conditions. This phase is calculated
with reference to the phase of density fluctuations far from the stack.

where kf = 2.26× 10−2 W/m/K stands for the thermal conductivity of the fluid, ks stands for the effective
thermal conductivity of the stack, and S = π(Di/2)2 denotes the cross-sectional area of the duct. In accor-
dance with previous works[15], ks is evaluated to ks ≈ 0.6 W/m/K. Finally, the dimensionless relaxation
time R = ωτR also has to be fixed : the formulated choice is identical to the one made by Berson et al. [9],
and the values of R = 1 for x ≤ 0 and R = 104 for x > 0 are retained. This is obviously an arbitrary choice
as the value of R depends on the size and the shape of the stack channels, but the physical justification is
that the value of R = 1 corresponds to an optimal regime of thermoacoustic transport, while the large value
R = 104 has the meaning of an adiabatic regime.

The comparison of the simulation results and the experimental results for a stack position d = 18 cm, a
heat power supply Qin = 15.4 W and three levels of sound pressure are presented in Fig. 5. Comparison is
performed for the fundamental and the second harmonic components of density fluctuations as a function
of the position x (upper figures), but also for the quasi-static component of density fluctuations. The results
show good agreement between experiments and theory for both the fundamental and the second harmonic
components of density fluctuations, especially at low amplitudes. At larger amplitudes some differences are
observed, but the agreement can be considered as good when considering that the numerical model was
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derived from several aproximations. The comparison of experiments with theory concerning the latter com-
ponent, i.e. the quasi-static amplitude of density oscillations, appeals for further comments because this
comparison is actually not straightforward. The theoretical quasi-static component of density fluctuations
refers to the time-average (over 40 acoustic periods) of the steady-state numerical solution, while the expe-
rimental quasi-static component is obtained from the difference between the measured time-average of 〈ρ′〉
(with sound) and the mean density ρ0(x) measured before sound is switched on. Due to this, the quasi-static
component of density fluctuations obtained experimentally is not only generated by the non-linearities in
heat transfer considered by the model, but also by the mean thermoacoustic transport of heat inside the
stack (i.e. advective heat transport by sound described by the linear thermoacoustic theory (i.e. advective
heat transport by sound described by the linear thermoacoustic theory[1, 4]). This consideration may possi-
bly explain why the results presented in Fig 5 show a significant difference between experiments and theory
around the stack end (x ≈ 0). It is however worth noting that far from the stack end (where thermoacous-
tic streaming is absent), there is a good qualitative agreement between experiments and theory, especially
at high amplitudes of acoustic oscillations where both curves are very close. The associated phases of the
fundamental (g,h,i) and second harmonic (j,k,l) components of density fluctations obtained both from the
experiments and the model are also presented in Fig. 5. These phases are plotted as a function of the axial
position x, using as the reference phase the one of density oscillations far from the stack. From the compa-
rison of our experimental data with the results of the model, we can see that although the agreement is not
perfect, the main trends observed in experiments are reproduced by the model. In particular, a phase jump
is clearly observed for both experiments and theory in the fundamental components of 〈ρ′〉, see Fig. 5 (g,h,i)
around x ≈ 5 mm. This phase jump can be explained by the fact that, as described below, the density fluc-
tuations result from a linear combination of pressure and temperature fluctuations. The presence of a steep
axial temperature gradient leads to an increase of the amplitudes of temperature fluctuations (whose phase
remains close to the one of the acoustic pressure almost everywhere, according to our model) and therefore
, as stated in Eq (7), this leads to a competition between both contributors of density fluctuations, namely
Pc cos(ωt) and −T ′. That is the reason why the model predicts a change in sign of density fluctuations (or
equivalently a phase jump of π) once the contribution of T ′ counteracts the contribution of Pc cos(ωt). This
phase jump is also observed in experiments and at the same position as the one predicted by the model,
but its magnitude is lower (around 2 rad.) : this might be explained by the fact that we measure a density
averaged through the line of sight while the temperature distribution is not uniform through the duct cross
section. The Phase of the second harmonic components are very closed between experiment data and the
result of our mode when the axial position x < 6 mm (i,j,k). Actually, we did not plot the second harmonic
components from the experiments at x > 6 mm, because far from the stack, the amplitude of the second
harmonic exponent is so small that it’s phase is not significant. More generally, the information about the
phase between acoustic variables is an important information, because the advective heat transport induced
by acoustic oscillations through the stack ends involves the time-average between the temperature and the
velocity fluctuations.

The same kind of comparison between experiments and theory is presented in Fig. 6, where the heat power
supply has been increased up to Qin = 18.9 W. The conclusion drawn from the analysis of Fig. 6 are similar to
the ones drawn from Fig. 5 : the numerical model succeeds in reproducing the amplitudes of the fundamental
and second harmonic components of density fluctuations observed in experiments, especially at moderate
sound pressure levels, while some important discrepancies are observed for the quasi-static component. For
the latter component, the qualitative agreement is however good, and the order of magnitude of the generated
mean component of density is the same for both experiments and theory. From the comparative analysis of
Figs 5 and 6, it is concluded that increasing the heat power supply Qin while keeping the sound pressure
level constant leads to an increase of entrance effects observed in density fluctuations : this can be explained
by the fact that increasing Qin leads to an increase of the temperature gradient ∂xT0 which strongly impacts
temperature and density fluctuations next to the stack end.

In Fig. 7, the variations of different components of the density fluctuations are presented as a function
of x for different sound pressure levels, with a heat power input Qin = 15.4 W, and when the stack has
been moved from d = 18 up to d = 23 cm. Moving the stack towards the open end of the duct leads to a
decrease of the characteristic acoustic pressure amplitude Pc (Pmic being kept the same) and an increase of
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Fig. 6. (a), (b) and (c) : Comparison between the numerical and experimental results (amplitude of fundamental and second
harmonic components of density) as a function of x, under conditions d =18 cm, Qin = 18.9 W and for different amplitudes
of forcing, namely Pmic = 300 Pa (a), Pmic = 600 Pa (b), and Pmic = 870 Pa (c). (d), (e) and (f) : Comparison between the
numerical and experimental results for the quasi-static component of density fluctuations, under the same conditions.
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Fig. 8. (a), (b) and (c) : Comparison between the numerical and experimental results (amplitude of fundamental and second
harmonic components of density) as a function of x, under conditions d =27 cm, Qin = 15.4 W and for different amplitudes
of forcing, namely Pmic = 300 Pa (a), Pmic = 600 Pa (b), and Pmic = 870 Pa (c). (d), (e) and (f) : Comparison between the
numerical and experimental results for the quasi-static component of density fluctuations, under the same conditions.

the acoustic velocity, compared to the results presented in Fig. 5. From the comparative analysis of Figs. 7
and 5 we see that when the stack is moved away from the rigid plug (while both the heat supply and the
acoustic power stored in the resonator are kept constant) the amplitude of nonlinear density fluctuations
is increased, which is consistent with the observations made with spontaneous oscillations in section 3.
Moreover, the distance up to which entrance effects impact the density fluctuations is increased when d is
increased. It is also worth pointing out that the agreement between experiments and theory is very good at
large amplitudes concerning the quasi-static component of 〈ρ〉.

Finally, the effect of moving the stack further away from the plug is analyzed in Fig. 8, where d is fixed to
27 cm (still with Qin = 15.4 W). Both experimental and theoretical data show that increasing d leads to an
increase of the distorsion (the amplitude of each component increases) and also with an increase of the typical
distance from the stack up to which entrance effects are visible (the latter consideration is quite evident if
one considers that the gas parcel displacement amplitude increases as d increases). It is also interesting to
note that the agreement between experiments and theory concerning the quasi-static amplitude of density
is better for large values of d than for small values of d (in Fig 5) : this fact is somehow surprising when
considering that the model does not account for aerodynamical entrance effects due to viscosity which should
be more and more effective (and might impact more and more the time-averaged temperature) when the
gas parcel displacement is increasing.

6. Conclusion

The experimental and theoretical results presented in this paper confirm that the temperature and
density oscillations are highly nonlinear up to distances of the order of a gas parcel displacement from
the stack edge, as already pointed out in previous studies[17, 9, 13]. The main contribution of this study
is to investigate the impact of an axial temperature gradient due to the heating of the stack end, which
is a usual situation encountered in thermoacoustic engines. A model is introduced in this paper which
mainly relies on the relaxation-time approximation applied to the motion of an inviscid gas oscillating
through a temperature gradient. The model succeeds in reproducing qualitatively (and even quantitatively)
the experimental results obtained for different sound pressure levels, different stack positions and different
amplitudes of the temperature gradient. It is therefore possible to draw some conclusions about the physical
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mechanism responsible for the large distorsion of the density (and temperature) fluctuations. In the absence
of a temperature gradient and if any source of nonlinearity is discarded, the amplitude of temperature
fluctuations are proportional to the acoustic pressure amplitude, but if an axial temperature gradient is
applied, the advective term v′dxT0 of Eq. (1) provides an additional contribution which is proportional
to the acoustic velocity and to the temperature gradient. Due to this, the presence of a steep temperature
gradient just outside the stack leads to a large increase of temperature fluctuations, which is indeed observed
on the fundamental component of 〈ρ〉 in experiments, and confirmed by theory. As a result, and because the
stack end is an important source of nonlinearity, the large amplitude temperature oscillations are significantly
distorded, so that both higher harmonics and a time-averaged component are generated locally with a large
amplitude.

As mentioned earlier, the linear thermoacoustic theory derived by Rott [4] does not account for several
nonlinear effects, and especially for the one investigated in this paper. It would therefore be good to improve
available models of thermoacoustic engines (e.g. based on the model proposed here), because the generation of
a significant time-averaged component of temperature fluctuations next to the stack termination reveals that
some complex mechanisms of heat transport could have an important impact. For instance, the occurrence of
a relaxational regime of spontaneous onset/damping of acoustic oscillations has been reported in the present
thermoacoustic device [14] (and also in other ones [21]) and some attempts to reproduce such complicated
dynamics have failed up to now [15] : the mechanism of temperature distorsion causing nonlinear heat
transport next to the heated side of the stack would be (perhaps) a candidate (among others) to explain
such kind of experimental observations. More generally, the results presented in this paper are of interest for
a more accurate description of thermoacoustic heat transport between the stack/regenerator and the heat
exchangers in thermoacoustic (or even in Stirling) engines, a problem which remains an important topical
issue for practical applications.
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