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In this paper the scattering of acoustic waves by a moving vortex is studied in two
dimensions to bring further insight in the physical mechanisms responsible for the spectral
broadening caused by a region of turbulence. When propagating through turbulence,
a monochromatic sound wave will be scattered over a range of frequencies, resulting
in typical spectra with broadband sidelobes on either side of the tone. This spectral
broadening, also called ‘haystacking’, is of importance for noise radiation from jet
exhausts and for acoustic measurements in open-jet wind tunnels. A semi-analytical
model is formulated for a plane wave scattered by a vortex, including the influence of
the convection of the vortex. This allows to perform a detailed parametric study of the
properties and evolution of the scattered field. A time-domain numerical model for the
linearised Euler equations is also used to consider more general sound fields, such as that
radiated by a point source in a uniform flow. The spectral broadening stems from the
combination of the spatial scattering of sound due to the refraction of waves propagating
through the vortex, and two Doppler shifts induced by the motion of the vortex relative to
the source, and of the observer relative to the vortex. The fact that the spectrum exhibits
sidebands is directly explained by the directivity of the scattered field which is composed
of several beams radiating from the vortex. The evolution of the acoustic spectra with the
parameters considered in this paper are compared with the trends observed in previous
experimental work on acoustic scattering by a jet shear layer.

† Email address for correspondence: vincent.clair@ec-lyon.fr
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1. Introduction

When acoustic waves propagate through a volume of turbulence, the unsteady scat-
tering results in a spatial redistribution of the acoustic energy as well as an alteration of
the spectral content of the waves. Such scattering is observed, for example, when tones
generated by the turbine stages of a turbofan engine are radiated from the exhaust
through the turbulent shear layers developing downstream of the engine. The tonal
components of the acoustic spectra measured in the far-field tend to be attenuated, and
a broadband component is observed around the tones. Similar observations are made
when acoustic measurements are carried out in open-jet wind tunnels and microphones
are located outside of the jet flow. The scattering of sound also received attention in
the domain of atmospheric propagation. Sounding techniques using an emitter and a
receiver, associated with models of the scattering by a turbulent atmosphere have been
developed to deduce characteristics of the turbulence (intensity, length scales).

Spectral broadening occurs when the base flow is evolving in time, either because of
the convection of the turbulence (relative to the source of the observer) or because of the
loss of temporal correlation associated with non-frozen turbulence. This was observed
experimentally by Candel et al. (1975, 1976a,b) and Schlinker & Amiet (1980) in the
effect of the turbulent shear layer of an open-jet wind tunnel on acoustic measurements
performed outside the jet flow when a time-harmonic source was placed on the jet
centerline. The measured spectra displayed a number of characteristic features: the peak
at the source frequency is attenuated and surrounded by two sidebands, also called a
‘haystack’. These experiments, as well as more recent measurements by Kröber et al.
(2013) and Sijtsma et al. (2014), investigated the evolutions of the sidebands with the
source frequency and the jet velocity. Candel et al. (1975) suggested that the positions
of the maxima of the sidebands relative to the peak can be related to a macro-scale of
the turbulence by a Doppler effect.

Lighthill (1953) and Kraichnan (1953) developed the first theoretical models for
acoustic scattering by turbulent flows, both using Lighthill’s acoustic analogy. Assuming
that the scattering is weak, i.e. the proportion of scattered energy is small, Lighthill’s work
focused on the description of spatial scattering while Kraichnan also derived expressions
for the acoustic spectrum scattered by isotropic turbulence. Howe (1973) developed a
set of kinematic equations, in which the different terms can be related either to spatial
or spectral scattering. This model includes the effect of multiple scattering that can
appear if the turbulent volume is large enough so that acoustic waves are scattered
successively by numerous eddies, while previous models were restricted to the hypothesis
of single scattering (usually using the Born approximation). Brown (1974) and Brown
& Clifford (1973, 1976) developed an analytical model for the scattered intensity based
on an inhomogeneous Helmholtz equation with a source term involving velocity and
temperature fluctuations. The parabolic equation has been used to derive both analytical
Ostashev et al. (2001) and numerical Dallois et al. (2001) models for the evolution of the
sound pressure level with the propagation distance through turbulence. Most of the semi-
analytical and numerical models found in the literature rely on the use of a stochastic
method to describe the turbulent field. Goedecke et al. (2001) start from the calculation
of the scattering by a single eddy convected in a mean wind. It is then coupled to a
discretisation of the turbulent volume in a collection of cells, each containing an eddy.
Wilson et al. (2004) apply a similar method, but use a quasi-wavelet method to describe
a stationary turbulent velocity field over a barrier and estimate the sound field scattered
behind the barrier. Stochastic methods based on a sum of spatial Fourier modes have also
been used, for example by Karweit et al. (1991) with a ray tracing technique to study
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the phase variance of acoustic waves propagating through turbulence, or by Cheinet
et al. (2012) and Ehrhardt et al. (2013) combined with a finite-difference time-domain
method for the propagation of sound. The scattering by a region of turbulent temperature
fluctuations has been investigated by Hargreaves et al. (2014) using a k-space numerical
model. Campos (1978a,b) developed an analytical model and derived low- and high-
frequency approximations for the scattering by a shear layer. Applications of this model
to the data from Candel et al. (1975) showed good predictions of the overall trends
followed by the sidebands. Other models developed for similar configurations include the
work of Guédel (1985), based on Lighthill’s analogy with a low-frequency assumption,
and the work of Powles et al. (2011) and McAlpine et al. (2013) using high-frequency
asymptotics and a weak scattering assumption.

First attempts at numerical simulations were reported by Ewert et al. (2008, 2009) who
solved the Linearised Euler Equations together with a stochastic method to synthesise
the turbulence in a shear layer. Despite issues in the choice of parameters, the method
showed promising results in its ability to recover features of the spectral broadening.
Recently, a Large Eddy Simulation of the scattering by a mixing layer was carried out by
Bennaceur et al. (2016). The results were compared against available experimental data
with similar non-dimensional scattering parameters and good agreement was found for
the shape and position of the sidebands.

On the one hand, previous theoretical studies of spectral broadening had to apply a
number of simplifications, such as the Born approximation for the scattering. As a result,
the detailed properties of the scattered field were lost, and often not discussed in any
detail. On the other hand, numerical simulations of the scattering by a shear layer have
the advantage of providing a complete description of the physical problem and the results
are more directly comparable to experimental data. But these simulations combine a large
number of different physical processes (scattering by individual vortices of varying sizes,
convection and sweeping of these vortices, refraction by the mean shear layer, turbulence
noise, etc) that make it difficult to identify precisely the mechanisms responsible for the
spectral broadening.

The present work considers a simplified two-dimensional situation with a single vortex
scattering a given sound field to provide further details on scattering by turbulence. The
characteristic shape of the sidebands observed on the acoustic spectra as well as the
effects of various parameters can be explained by the directivity of the scattered field
combined with the different Doppler shifts due to the relative motions of the source,
vortex and observer.

Two different models are used for this purpose. First, a semi-analytical method is
presented in Section 2 to study the scattering of plane waves by a steady vortex. It is
based on the Linearised Euler Equations solved in the frequency domain for a plane wave
scattered by a steady vortex. No simplification is made regarding the sound frequency or
the size and strength of the vortex. This model is relatively fast and allows for a thorough
parametric study of the scattered field. For instance, the transition and radical changes
in the scattering between the low- and high-frequency domains are described in detail.

For a steady vortex, only spatial scattering is observed and spectral broadening is
only observed when the vortex is moving relative to the source or observer. The semi-
numerical method is therefore extended in Section 3 to account for the Doppler shifts
due to the relative motion between the vortex and the observer. The resulting acoustic
spectra display sidebands around a peak at the source frequency, presenting similarities
with the sidebands observed in experimental studies of the scattering by a turbulent shear
layer. The analysis of the model shows that the shape and position of the sidebands are
directly explained by the directivity of the scattered field from the vortex, associated to
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a Doppler effect due to the motion of the vortex. The dependence of the spectra on the
source frequency and convection velocity is also consistent with previous observations of
haystacking.

In addition, a fully numerical method is used to consider more general incident sound
fields, since the first model is limited to plane waves. It also relies on the Linearised Euler
Equations, but solved in the time domain with a finite-difference approach. It provides
verification results for the first model in Sections 2 and 3. Then in Section 4 it is used to
consider the scattering of the sound field radiated by a fixed point source. This test case
completes the description of the Doppler effects involved in the spectral broadening, in
particular due to the motion of the vortex relative to the source.
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2. Sound scattering by a steady vortex

Before discussing the spectral broadening induced by moving vortices (see Section 3)
it is necessary to describe in detail the sound scattering by a steady vortex. A number
of authors have treated this problem analytically under the low frequency limit, such
as Ferziger (1974), Howe (1975), O’Shea (1975), Colonius et al. (1994) or more recently
Ford & Llewellyn Smith (1999) and Llewellyn Smith & Ford (2001a,b) using matched
asymptotic expansions. For high frequencies, Georges (1972) suggested the use of a ray
tracing technique to determine the ray paths and Colonius et al. (1994) extended this
approach by calculating the amplitudes and phases of the waves. Candel (1979) used
a parabolic approximation to perform computations of the scattering of plane waves by
cylindrical inhomogeneities of the refraction index, such as a vortex core. Direct numerical
simulations were performed by Colonius et al. (1994) in two dimensions and later by
Hattori & Llewellyn Smith (2002) in three dimensions, again for relatively low frequencies
of the incident waves relative to the vortex core dimension. This section presents two
models and a parametric study to provide a thorough discussion of the scattering by a
steady vortex in two dimensions. These models do not rely on approximations for either
low or high frequencies, or for weak vortices (i.e. Mv small).

The propagation and refraction of small-amplitude acoustic waves through a vortex can
be described by the linearised Euler equations (LEE), written here in non-conservative
form for isentropic perturbations:

∂ρ′

∂t
+ u · ∇ρ′ + u′ · ∇ρ+ ρ∇ · u′ + ρ′∇ · u = 0 ,

∂u′

∂t
+ (u · ∇)u′ + (u′ · ∇)u +

∇p′

ρ
− ρ′∇p

ρ2
= 0 ,

∂p′

∂t
+ u · ∇p′ + u′ · ∇p+ γp∇ · u′ + γp′∇ · u = 0 ,

(2.1)

where ρ, u and p denote the base flow properties, and the acoustic fluctuations are ρ′,
u′ and p′.

In this paper, following Colonius et al. (1994), an inviscid vortex with zero circulation
is considered. The following expressions for the velocity, density and pressure in the base
flow are solutions of the Euler equations (using polar coordinates r and θ centered on
the vortex):

u(r) = Uv
r

L
exp

[
1
2

(
1− r2/L2

)]
eθ ,

p(r) = p∞

[
1− γ − 1

2
M2

v exp
(
1− r2/L2

)]γ/(γ−1)
,

ρ(r) = ρ∞ [p(r)/p∞]
1/γ

,

(2.2)

where ρ∞, p∞ and c∞ are the density, pressure and sound speed in the fluid at rest,
related by ρ∞c

2
∞ = γp∞ with γ the heat capacity ratio. The unit vectors of the cylindrical

coordinates are denoted by (er, eθ). The vortex is characterised by its maximum velocity
Uv and its core size L, so that uθ(r = L) = Uv. We also define the associated Mach
number of the vortex Mv = Uv/c∞.

2.1. Numerical model

The linearised Euler equations (2.1) are solved in the time domain using a high-order,
finite-difference method. Spatial derivatives are approximated using 7-point, 4th order
Dispersion Relation Preserving (DRP) stencils (Tam 2012). An explicit, 8th order filter
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is applied to damp high-frequency spurious oscillations. The time integration is performed
using the standard 4th-order Runge–Kutta scheme. Cartesian grids are used throughout
this work. Outgoing waves are absorbed by buffer zones with artificial damping around
the domain. One-dimensional characteristic boundary conditions are applied on the last
grid points (Thompson 1987). Tam & Dong (1996) radiation and outflow boundary
conditions are also available. The incident sound field (either a plane wave or the sound
generated by a mass source) is introduced in the simulation through a relaxation term
in the buffer zones. These numerical schemes are implemented in the PIANO solver
developed by DLR (Ewert et al. 2008, 2009) and used in this work.

2.2. Semi-analytical model

The starting point is the linearised Euler equations (2.1), written in cylindrical coor-
dinates using vector notation:

∂q′

∂t
+ Aq′ + B

∂q′

∂r
+ C

1

r

∂q′

∂θ
= 0 , (2.3)

where q′ = (ρ′,u′, p′)T and

A =


0 ρ

r + dρ
dr 0 0

−u2
θ

ρr 0 −2uθ
r 0

0 duθ
dr + uθ

r 0 0

0 γp
r + dp

dr 0 0

 , B =


0 ρ 0 0
0 0 0 1

ρ

0 0 0 0
0 γp 0 0

 , C =


uθ 0 ρ 0
0 uθ 0 0
0 0 uθ

1
ρ

0 0 γp uθ

 .

Note that the expressions for the coefficient matrices A, B and C have been simplified
assuming the base flow is independent of θ and has no radial velocity component.

The fluctuations q′ are written as the sum of a given incident field q′i = (ρ′i,u
′
i, p
′
i)
T

and a scattered field q′s = (ρ′s,u
′
s, p
′
s)
T . Both are assumed to be time harmonic with

angular frequency ω and are decomposed into azimuthal components using a Fourier
series in θ:

q′i(r, θ, t) =

+∞∑
m=−∞

q′i,m(r)eiωt−imθ , q′s(r, θ, t) =

+∞∑
m=−∞

q′s,m(r)eiωt−imθ . (2.4)

Since the base flow is axisymmetric, the equation for each azimuthal order m is decoupled
from the other orders. For the azimuthal order m the linearised Euler equations (2.1)
yield

iωq′s,m + Aq′s,m + B
dq′s,m

dr
− im

r
Cq′s,m = −iωq′i,m−Aq′i,m−B

dq′i,m
dr

+
im

r
Cq′i,m . (2.5)

These ordinary differential equations are readily solved using a finite-difference approx-
imation for the radial derivative. Here we use a 7 points, 4th order Dispersion-Relation-
Preserving scheme on a uniform grid. The grid points are denoted by rn with n = 1, ..., N
and the grid spacing by ∆r.

Parity conditions should be satisfied at r = 0 to ensure the regularity of the solution
formulated in cylindrical coordinates (Lewis & Bellan 1990; Boyd 2001). Here we use
a technique similar to that of Mohseni & Colonius (2000) where three ghost points are
defined with negative r coordinates. They are mirror images of the first three physical
points (r1−l = −rl with l = 1, 2 and 3). By setting r1 = −r0 = ∆r/2 the singularity in
the governing equations at r = 0 lies between two grid points. The equations used for
the ghost points are directly provided by the symmetry conditions for scalar fields of the
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form (2.4):

ρ′(−r) = ρ′(r)e−imπ , p′(−r) = p′(r)e−imπ , (2.6)

and for vector fields

u′r(−r) = −u′r(r)e−imπ , u′θ(−r) = −u′θ(r)e−imπ . (2.7)

This technique yields solutions satisfying the parity conditions specified in Lewis & Bellan
(1990).

Beyond some distance R away from the vortex, its induced velocity can be considered
negligible and one is left with sound waves propagating in a uniform medium at rest. It
follows that for r > R one can write the scattered field as a sum of progressive cylindrical
waves satisfying the Helmholtz equation. Since the scattered field satisfies the Sommerfeld
radiation condition, the solution for a given azimuthal order m reads

q′s,m(r) = Am


H

(2)
m (kr)/c2∞

iH
(2)′

m (kr)/(ρ∞c∞)

mH
(2)
m (kr)/(ρ∞ωr)

H
(2)
m (kr)

 , for r > R , (2.8)

where k = ω/c∞ is the free-field wavenumber and H
(2)
m is the mth order Hankel function

of the second kind. The grid is defined such that rN = R and three ghost points are
added: rN+l = R+ l∆r with l = 1, 2 and 3. The solution for these ghost points is given
by (2.8) and the remaining coefficient Am is written as a function of the solution at rN
by Am = p′(rN )/H

(2)
m (kR).

When the observer is in the acoustic far field (kr → ∞) the multipole expansion
(2.8) can be further simplified using the asymptotic expression for the Hankel function
(Abramowitz & Stegun 1964, Chapter 9). The scattered field can then be written

p′s(r, θ, t) =
D(θ)√
r

eiω(t−r/c∞) , with D(θ) =

√
2i

kπ

M∑
m=−M

imAme−imθ . (2.9)

Note that the sum over the azimuthal orders can be truncated because the coefficients
Am decay rapidly for large values of |m|. For all the results presented below, convergence
with respect to the grid resolution and the number of azimuthal orders included in (2.9)
has been verified.

When the incident field is an acoustic plane wave propagating along the x-direction,
the pressure can be written p′i(r, θ, t) = P eiωt−ikr cos θ. Its expansion (2.4) in terms of
Fourier components gives

q′i,m(r) = P i−m


Jm(kr)/c2∞

iJ′m(kr)/(ρ∞c∞)
mJm(kr)/(ρ∞ωr)

Jm(kr)

 , (2.10)

where Jm is the mth order Bessel function of the first kind.

2.3. Test case

The test case previously considered by Colonius et al. (1994) provides a benchmark
to verify the time-domain numerical model and the frequency-domain semi-analytical
model. It involves the scattering of a time-harmonic plane wave propagating in the
positive x direction by the steady vortex defined by equation (2.2). The parameters
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Figure 1. Amplitude of the scattered field (root-mean-squared pressure) at different distances
from the vortex and calculated by the time-domain numerical model (solid lines) and the
frequency domain model (dashed lines). Other parameters are Mv = 0.125 and kL = π/2,
corresponding to λ = 4L. The results are normalised by the cylindrical spreading 1/

√
r and the

angle θ is measured from the incident wave direction.

are made non-dimensional by setting c∞ = 1, ρ∞ = 1 and L = 1. The frequency is given
by the Helmholtz numbers kL = ωL/c∞ = π/2, corresponding to an acoustic wavelength
λ = c∞/f = 4L. The vortex velocity is Mv = 0.125 and the amplitude of the incident
wave is P = 1.

For the time-domain numerical model a uniform Cartesian grid is used with resolution
∆x = ∆y = L/8, providing 16 grid points across the core of the vortex. The physical
region of the computational domain extends between −15L 6 x 6 15L and −15L 6 y 6
15L and is surrounded by a buffer zone with 50 grid points. The time step corresponds
to a Courant number c∞∆t/∆x = 0.9. The simulations are run until the solutions reach
a periodic state.

For the semi-analytical model, the domain 0 6 r 6 15 (thus R = 15L) is discretised
with 150 grid points. The equations (2.5) are solved for every azimuthal order between
−30 6 m 6 30.

To validate the two models and compare with the results from Colonius et al. (1994)
the root-mean-square pressure of the scattered field is plotted in Figure 1 as a function of
direction for several distances from the vortex from r = λ0/2 to r = 2.5λ0. The scattered
pressure is scaled by

√
r to show that the cylindrical spreading is observed away from

the vortex. We can see that there is excellent agreement between the two models and the
results are also in good agreement with Figure 11 in Colonius et al. (1994) (note that the
θ coordinates is reversed since the vortex is spinning in the opposite direction). A similar
level of accuracy is observed for the phase of the scattered field. Very good agreement
has also been observed for a number of other test cases solved using the two models.

2.4. Spatial scattering

Figure 2 shows examples of the total and scattered fields. In this case the scattering of
the plane wave is relatively mild and there is only a slight alteration of the wave fronts
due to the mean flow refraction. As was already visible from Figure 1, the scattered field
is formed of two beams on either side of the incident wave direction. These beams differ
only slightly in direction and amplitude but they can be seen in Figure 2b to be out of
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Figure 2. Snapshots of (a) the total and (b) the scattered pressure fluctuations calculated
with the semi-analytical model for Mv = 0.125 and kL = π/2.

phase. Their presence can be explained easily by the refraction effect due to the mean
flow gradients inside the vortex (see Figure 17 in Colonius et al. (1994) for an illustration
of this effect in terms of acoustic rays). Figure 1 indicates that there is also a much weaker
beam radiated at an angle close to −100◦. But overall, for these parameters, there is very
little sound scattered back in the negative x direction.

We will see in Section 3 that the properties of haystacking are directly related to
the directions and strengths of the scattered beams radiated from a steady vortex. It
is therefore important to describe their properties in more detail. The two parameters
influencing the spatial scattering by a steady vortex are (i) the ratio between the acoustic
wavelength λ and the vortex radius L, characterised by the Helmholtz number kL =
2πL/λ and (ii) the strength of the vortex, characterised by the Mach number Mv. These
parameters are now studied using the semi-analytical model since its speed allows to
perform a detailed parametric study (the time-domain numerical model will be used for
the convected vortex and for more complex incident sound fields). All results are shown
for ρ∞ = 1, c∞ = 1, L = 1 and P = 1.

2.4.1. Influence of the Helmholtz number

To assess the influence of the Helmholtz number, it is varied between kL = π/5
and 8π, corresponding to an acoustic wavelength varying between 10L and L/4. For
each frequency, the discretization of the radial direction is chosen to obtain a converged
solution. The number of azimuthal orders m included in the solution is also adjusted for
each frequency and includes −120 6 m 6 120 for the highest frequency. The resulting
evolution of the directivity D(θ) of the scattered field is shown in figure 3 for a relatively
weak vortex with Mv = 0.05 and for a stronger vortex with Mv = 0.15. The influence of
the vortex strength is shown at four different frequencies in Figure 4 where the directivity
D(θ) of the scattered field defined in equation (2.9) is plotted for a range of values of Mv

varying from 0.05 to 0.25.
First consider low frequencies (kL < 1), corresponding to a small vortex relative to the

acoustic wavelength. Figure 4a shows the directivity D(θ) scaled by the Mach number
Mv for kL = π/5. The directivity is symmetric across the direction of the incident wave
and similar to that of a lateral quadrupole. The directivity of each scattered beam is well
described by a sine function. The magnitude of the scattered field scales like Mv and is
particularly weak compared to higher frequencies. These trends are consistent with the
results from analytical models based on low frequency and low Mach number assumptions
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Figure 3. Directivity D(θ) of the scattered pressure in the far field (plotting 20 log10(|D|))
as a function of the direction θ and the Helmholtz number kL with a vortex magnitude (a)
Mv = 0.05 or (b) Mv = 0.15. θ = 0◦ corresponds to the direction of the incident wave.

(O’Shea 1975; Colonius et al. 1994). These models predicts a symmetric scattered field
around θ = 0◦ and a linear growth of the scattered field with Mv.

The directivity is changing significantly for higher frequencies, as shown in Figure 3.
The amount of backscattering (|θ| > 90◦) decreases rapidly for higher frequencies and the
scattered field is progressively focused close to the direction of the incident wave. As the
frequency increases, there is also a loss of symmetry between the upper and lower parts
of the scattered field. The main beam below the x axis (θ < 0) becomes much stronger
than the one above and moves closer to θ = 0. In addition several smaller beams are
observed at high frequencies, with more beams developing for θ < 0 than for θ > 0, see
for instance figures 4c and 4d. The strength of the scattered field increases rapidly with
frequency, with nearly 3 orders of magnitude for the maximum value of the scattered
field between the lowest and highest frequencies (see figures 4a and 4d).

For moderate frequencies, kL ' 1 as in Figure 4b, there are two strong beams similar
to those observed in Figure 1. The magnitude of the scattered field appears to scale like
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Figure 4. Directivity D(θ) for four Helmholtz numbers (a) kL = π/5, (b) kL = π/2, (c)
kL = 2π and (d) kL = 8π and for different vortex strengths from Mv = 0.05 to 0.25. Note that
for the graphs (a) and (b) the directivity D(θ) is scaled by the vortex Mach number Mv.

Mv, at least qualitatively, but the details are slightly more complex and the asymmetry
between the two beams increases for stronger vortices. The difference in amplitude
between the two beams increases significantly with Mv, with the lower beam (θ < 0)
becoming stronger than the upper beam (θ > 0). In addition the direction of the lower
(resp. upper) beam moves closer to (resp. away from) the x axis. The presence of an
asymmetric scattering has already been noted by Colonius et al. (1994) in their numerical
study and has been attributed to the effects of terms with an order in Mv higher than
those retained in their analytical model. While the present model also indicates that the
two beams are almost symmetric for small Mv, it fully captures the effects of the vortex
strength on the scattered field for any Mv.

At higher frequencies, kL > 1, a number of secondary lobes are visible in the directivity
function, especially for θ < 0◦, see Figure 3. This trend becomes even more significant for
stronger vortices, as can be seen in figures 4c and 4d. This results in the scattered field
covering a wider angular range than for weak vortices (this is visible when comparing
figures 3a and 3b). A strong beam starts to dominate from the lower half (θ < 0◦) at
mid-frequencies and is moving towards θ = 0◦ as the frequency increases. On the θ > 0◦

side, there is a single beam for weak vortices. For high frequencies, the magnitude of the
directivity function D(θ) does not scale linearly with the vortex strength Mv, see figures
4c and 4d.

The evolutions of the directions and magnitudes of the maxima of the scattered
directivity are plotted in figure 5. For the weaker vortex with Mv = 0.05, it confirms
that the maxima of the directivity move closer to θ = 0◦ when the Helmholtz number
kL increases. The main beam is found in the lower half (θ < 0) and its amplitude grows
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Figure 5. Evolution of (a) the angular positions θ and (b) the amplitudes |D(θ)| of the maxima
of the scattered directivity with the incident wave Helmholtz number for ( ) θ > 0◦ and
( ) θ < 0◦ with a vortex magnitude Mv = 0.05 (solid lines) and Mv = 0.15 (dashed lines).

with kL. In contrast the beam in the upper half is weaker and its amplitude does not
seem to evolve much at high frequency.

For the stronger vortex we see that the main beam (found for θ < 0) moves more
rapidly towards θ = 0. However, the beam in the upper half (θ > 0) moves towards
the axis before moving away when kL > 7. The amplitude of the main beam increases
more rapidly for Helmholtz numbers up to kL = 10 compared to the case Mv = 0.05.
It then stops to grow between 10 < kL < 16 before growing again at higher Helmholtz
numbers. The amplitude of the main beam in the upper half is lower than that of the
case Mv = 0.05 and is almost constant for kL > 8.

2.4.2. Conservation of acoustic energy

Since the incident sound wave interacts with a non-uniform base flow with non-
zero mean vorticity, there is no guarantee that the acoustic energy is conserved by the
scattering. However, Lighthill (Lighthill 1953) shows, in the small wavelength limit, that
there is conservation of the acoustic energy and Howe’s model (Howe 1973) indicates that
the acoustic energy is conserved for frozen turbulence. The scattering process is therefore
assumed to redistribute spatially the acoustic energy but not to act as a source or sink
of energy. The validity of this assumption can be assessed using the solution from the
semi-analytical model developed in Section 2.2.

The acoustic power is calculated over a circle surrounding the vortex with a radius r
sufficiently large to be located where the mean flow is negligible:

Wt =

∫ 2π

0

1

2
Re(p′∗u′r)r dθ , (2.11)

where u′r is the radial acoustic velocity and ∗ is the complex conjugate. It is possible to
show that the total power is the sum of two terms Wt = Ws +Wsi where Ws is the power
associated with the scattered field in isolation and Wsi is the additional term due to the
interference between the incident plane wave and the scattered field (the details of the
derivation can be found in the Appendix A):

Ws =
2

ρ∞c∞k

+∞∑
m=−∞

|Am|2 , Wsi =
2

ρ∞c∞k

+∞∑
m=−∞

Re(imAmP
∗) . (2.12)

These quantities are plotted in Figure 6a over a range of Helmholtz numbers kL and
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Figure 6. Acoustic power of the scattered field in isolation (Ws) and of the interference between
the scattered and incident fields (Wsi) for Mv = 0.05 and 0.15, plotted against (a) kL or (b)
MvkL.

for two vortex Mach numbers Mv = 0.05 and 0.15. It is clear that we have Ws =
−Wsi which implies that the total power is zero and that the acoustic energy is indeed
conserved. The scattering by the vortex therefore appears not to transfer acoustic energy
to vortical disturbances. It is clear that the scattered power increases much more rapidly
with frequency in the case Mv = 0.15 compared to Mv = 0.05, at least for kL < 10. For
kL > 10, Ws oscillates for Mv = 0.15 but continues to increase for Mv = 0.05, until Ws is
similar for the two vortex Mach numbers. Finally, it is interesting to note from Figure 6b
that there is a good collapse of the results when plotted as functions of MvkL, at least
for low frequencies.
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Figure 7. Schematic of the scattering of an acoustic plane wave by a convected vortex.

3. Scattering of an harmonic plane wave by a convected vortex

We now consider the case of a single vortex convected by a uniform background flow,
as depicted in Figure 7. The uniform flow is along the x axis and has velocity Uc and
Mach number Mc = Uc/c∞. The position of the vortex is given by xv = Uct and yv = 0.
The incident sound field is a plane wave with direction α (measured from the positive x
axis) and angular frequency ωs. We are interested in the pressure signal measured by a
fixed observer located at (x, y).

In addition to the spatial scattering of sound discussed in the previous section the mo-
tion of the vortex relative to the observer leads to spectral broadening of the initial sound
spectrum (a pure tone in this case). This combined effect of the Doppler shift together
with the vortex scattering is described using the frequency-domain semi-analytical model
and the time-domain numerical model.

3.1. Semi-analytical model

In the case of an incident plane wave, the semi-analytical model presented in Section 2.2
can be generalised to include the vortex convection. This is achieved by changing from
the fixed frame of reference (x, y) used above to a frame of reference (x̃, ỹ) moving with
the vortex. These two coordinate systems are related by

x̃ = x− xv = x− Uct , ỹ = y − yv = y . (3.1)

When using the moving frame of reference (x̃, ỹ), we recover a situation with no mean
flow at infinity and a steady base flow, thus the model from Section 2.2 can be used. There
are however two important changes associated with this change of frame of reference.

Firstly, in the fixed frame of reference, the pressure field of the incident plane wave is

p(x, y, t) = exp(iωst− ikx cosα− iky sinα) ,

where the wavenumber k = ωs/(c∞ + Uc cosα) accounts for the fact that the wave is
propagating in a uniform mean flow. This definition of k is a direct consequence of the
dispersion relation for acoustic plane waves in a uniform flow:

k2 =

(
ωs

c∞ + Uc cosα

)2

.

See Morse & Ingard (1968, Section 11.1) or Goldstein (1976, Section 1.3.2) for more
details. In the frame of reference moving with the vortex the incident field remains a
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plane wave with a wavenumber k:

p(x̃, ỹ, t) = exp(iωvt− ikx̃ cosα− ikỹ sinα) .

Since the propagation velocity of the acoustic waves relative to the vortex is c∞, the
incident plane wave is perceived in the moving frame at a Doppler-shifted frequency ωv

given by

ωv = kc∞ =
ωs

1 +Mc cosα
. (3.2)

For any observer moving with the vortex, the incident and scattered sound fields are
both time-harmonic with frequency ωv. It is only in the special case of a plane wave that
the incident field remains tonal after changing the frame of reference. A more complex
sound field, such as that radiated by a time-harmonic point source, will not be perceived
as tonal noise in the moving frame of reference. This will be considered in Section 4.

Secondly, the scattered pressure signal measured by a fixed observer located at (x, y)
in the fixed frame of reference can be obtained using equation (2.8):

p′s(t) =

+∞∑
m=−∞

AmH(2)
m [kr̃(t)] exp{iωvt− im[θ̃(t)− α]} , (3.3)

where (r̃, θ̃) are the polar coordinates centered on the vortex:

r̃(t) =
√
x̃(t)2 + ỹ(t)2 , θ̃(t) = tan−1 [ỹ(t)/x̃(t)] . (3.4)

Note that in equation (3.3) the coefficients Am are calculated at the frequency ωv and
that the angular orientation of the scattered field is shifted by the angle of incidence α
of the plane wave. If the observer remains in the acoustic far field from the vortex we
can use the asymptotic expression (2.9) to write:

p′s(t) '
D[θ̃(t)− α]√

r̃(t)
exp{iωv[t− r̃(t)/c∞]} . (3.5)

In addition to the Doppler shift (3.2) there is also a Doppler shift associated with the
relative motion between the observer and the vortex. In equation (3.5) this is captured
by the time dependence of r̃ in the argument of the exponential. We can define the
instantaneous angular frequency ωo perceived by the observer as follows:

ωo(t) =
∂

∂t
{ωv[t− r̃(t)/c∞]} = ωv[1 +Mc cos θ̃(t)] = ωs

1 +Mc cos θ̃(t)

1 +Mc cosα
. (3.6)

Note that this second Doppler shift can also be understood in the frame of reference
moving with the vortex. In this frame of reference the vortex is emitting scattered waves
in a quiescent medium with wavenumber k. The observer being in motion, it is receiving
waves with a relative propagation velocity c∞ + Uc cos θ̃(t) at a frequency

ωo = k(c∞ + Uc cos θ̃(t)) = ωs
1 +Mc cos θ̃(t)

1 +Mc cosα
.

The ratio between two Doppler factors shows that the effective frequency perceived by
the observer is the result of two Doppler shifts, first due to the relative motion between
the source and vortex; and second between the vortex and the observer.
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3.2. Numerical model

The numerical method presented in Section 2.1 can also be used with an unsteady base
flow as the governing equations (2.1) remain valid when the base flow properties u, ρ
and p are varying in time. It is useful to separate the base flow into steady and unsteady
components by writing (ρ,u, p) = (ρ0,u0, p0) + (ρt,ut, pt) where the subscripts 0 and t
denote the steady and unsteady components, respectively. For the convected vortex these
are given by:

u0 = Ucex , p0 = p∞ , ρ0 = ρ∞ , (3.7)

and

ut(r̃) = Uv
r

L
exp

[
1
2

(
1− r̃2/L2

)]
eθ ,

pt(r̃) = p∞

[
1− γ − 1

2
M2

v exp
(
1− r̃2/L2

)]γ/(γ−1)
− p∞ ,

ρt(r̃) = ρ∞ [1 + pt(r̃)/p∞]
1/γ − ρ∞ ,

(3.8)

where the vector basis in Cartesian coordinates is denoted by (ex, ey).

In the present work, it is assumed that the unsteady density and pressure components
associated with the vortex in the base flow do not have a significant influence on the
scattering of the acoustic wave. Appendix B shows that pt and ρt can indeed be ignored
without any significant change in the solutions.

After splitting the base flow as explained above, noting that ∇ · ut = 0 from the
definition of ut in equation (3.8) and ignoring the terms in pt and ρt, the governing
equations (2.1) can be written:

∂ρ′

∂t
+ u0 · ∇ρ′ + u′ · ∇ρ0 + ρ0∇ · u′ + ρ′∇ · u0 = −ut · ∇ρ′ ,

∂u′

∂t
+ (u0 · ∇)u′ + (u′ · ∇)u0 +

∇p′

ρ0
− ρ′∇p0

ρ20
= −(ut · ∇)u′ − (u′ · ∇)ut ,

∂p′

∂t
+ u0 · ∇p′ + u′ · ∇p0 + γp0∇ · u′ + γp′∇ · u0 = −ut · ∇p′ ,

(3.9)

where the terms with ut have been gathered on the right-hand side. The wave operator
on the left-hand side only involves the steady component of the base flow while the right-
hand side is responsible for the unsteady scattering of sound. These equations are solved
using the time-domain, finite-difference method described in Section 2.1.

The rectangular computational domain is defined by −42.5L < x < 42.5L and −12L <
y < 18L and uses a constant grid resolution of ∆x = ∆y = L/10 for computations with
acoustic wavelengths λ > L. For computations with smaller acoustic wavelengths, the
grid resolution ensures 12 points per wavelength and the domain size in the y-direction
is reduced to −8L < y < 15L. The incoming sound field (plane wave or monopole) is
introduced in the domain through a 20-point wide sponge layer adjacent to the lower
boundary. An additional dissipative sponge layer with 50 grid points is added along the
upper boundary. The simulation is first performed without the vortex until the incident
sound field is well established throughout the computational domain. The unsteady base
flow ut including the vortex is then considered, with an initial position of the vortex
chosen upstream of the computational domain so that it enters the domain smoothly.
The pressure signals at a number of observer positions are then recorded during the
traversal of the vortex.
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Figure 8. Scattered pressure p′s for a plane wave with direction α = π/2 scattered by a vortex
of strength Mv = 0.05 convected at a velocity Mc = 0.176. The frequency is kL = π/2. (a)
Snapshot of the scattered field in the time-domain numerical simulation at t = 0 (the circle
shows the position of the vortex). (b) Pressure signal at x = 0, y = 10L.

3.3. Discussion of results

Figure 8 shows examples of results for the scattering of a plane wave by a convected
vortex. The time evolution of the pressure field during the passage of the vortex is
presented in Movie 1 as supplementary material. The scattered field is very similar to
that observed for a stationnary vortex in section 2.3 as it is composed of two beams
radiating on either side of the direction α. Due to the convection of the vortex, this
scattered field is also moving in the x-direction. Figure 8b shows the scattered pressure
recorded at a fixed position x = 0, y = 10L so that the vortex passes just below the
observer at t = 0. This signal is formed of two wavepackets associated with the two
scattered beams. Apart from the initial transient in the time-domain simulation, there is
excellent agreement between the two methods. The semi-analytical model will therefore
be used for the remainder of this section.

Figure 9 shows the amplitude and instantaneous frequency of the scattered pressure
recorded at x = 0, y = 10L for different plane wave directions. Note that these results
are plotted as functions of t− tc where tc = ym/(Uc tanα) is when the direction between
xv and x coincides with the plane wave direction, i.e. when θ̃(t) = α. This corresponds to
the time when the observer is located between the two scattered beams and the scattered
pressure amplitude is close to zero.

From equation (3.5) we can see that |p′s| is the combination of the directivity D(θ̃−α) of
the vortex scattering and the cylindrical spreading 1/

√
r̃. The amplitude of the scattered

field changes significantly as α is varied, especially the amplitude of the first wavepacket.
This can be explained by noting that for α < 90◦ the first beam is closer to the x-axis
and will therefore be received by the observer when the vortex is further away from the
microphone. Also important is the change in amplitude for large values of |t|, i.e. when
the vortex is far from the observer.

Figure 9b shows the evolution of the instantaneous frequency ωo defined by (3.6) as the
vortex is convected past the observer. As expected the frequency of the signal received
by the observer is originally higher than the source frequency ωs (for t < tc) but then
becomes smaller (for t > tc). The transition occurs when ωo = ωs, and, as seen from
equation (3.6), this corresponds indeed to t = tc and θ̃ = α. This implies that the
first wavepacket always contains higher frequencies (ω > ωs) and the second wavepacket
lower frequencies (ω < ωs). A subtle point to note is that whether the observer perceives
frequencies above or below ωs is not solely explained by the vortex relative moving



18 V. Clair and G. Gabard

200 100 0 100 200

t− tc

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
(a) |p ′ s|

α= 70 ◦

α= 80 ◦

α= 90 ◦

α= 100 ◦

α= 110 ◦

200 100 0 100 200

t− tc

0.7

0.8

0.9

1.0

1.1

1.2

1.3
(b) ωo/ωs

α= 70 ◦

α= 80 ◦

α= 90 ◦

α= 100 ◦

α= 110 ◦

Figure 9. Scattered pressure given by equation (3.3) at x = 0, y = 10L for different plane wave
directions α. Parameters are Mv = 0.05, Mc = 0.176 and k0L = π/2. (a) Pressure amplitude
|p′s|. (b) Instantaneous frequency ωo(t) given by (3.6) normalised by the source frequency ωs.

towards, or away from, the observer. Figure 7 corresponds to a situation where the
vortex is moving towards the observer but the second beam which is pointing towards
the observer at that particular instant will be perceived at frequencies below ωs. This is
because the effective frequency ωo also includes the Doppler shift 1/(1 +Mc cosα).

Even though the incident sound field is tonal, the signal recorded by the observer
contains a range of frequencies. This is described in equation (3.6) by the Doppler shift
1 +Mc cos θ̃(t) which accounts for the motion of the vortex relative to the observer. Note
that the Doppler shift 1 +Mc cosα expressing the frequency received by the vortex does
not represent spectral broadening since the incident wave remains time harmonic in the
frame of reference moving with the vortex. This shift remains constant during the passage
of the vortex. Its effect is visible in Figure 9b where ωo increases or decreases when the
direction of the plane wave is varied.

Figure 9b shows the range of frequencies received by the observer, and this is also
seen in the spectrum of the signals, shown in Figure 10a where decibels (dB) are defined
as 10 log10(p′2/p2ref ) with a reference pref = 1. It is clear from equation (3.6), and
in Figure 9b as well, that the perceived frequency ωo varies between ωs(1 −Mc)/(1 +
Mc cosα) and ωs(1 +Mc)/(1 +Mc cosα). This is also visible in the spectra in Figure 10a
which drops sharply outside of this frequency range. These spectra all show a typical
pattern† with two sidelobes located on either side of the source frequency, although the
amplitudes and widths of these sidelobes vary with the direction α of the plane wave.

It is possible to further understand the presence of these sidelobes in the spectrum of
the scattered field. The pressure signal for α = 90◦ is shown in Figure 8. It is composed of
two wavepackets (for t < 0 and t > 0) and the spectra corresponding to each wavepacket
taken individually are shown in Figure 10b. This confirms that the first wavepacket is
responsible for the high-frequency sidelobe (ω > ωs) whereas the second wavepacket
contains the low-frequency sidelobe (ω < ωs).

To summarise, although the incident sound field is tonal both in the fixed and moving

† The peaks in the spectra are only present when considering a plane wave in two dimensions.
As |t| → ∞ the instantaneous frequency ωo tends to ωs(1±Mc)/(1+Mc cosα) and |p′s| decreases

like 1/
√
r ∼ 1/|t|1/2. This rate of decay is not sufficient to ensure the Fourier transform of p′s

is finite and singularities are expected at these two frequencies in the spectra (Davies 2012). In
the case of the point source considered in Section 4 the signals will decay like 1/r ∼ 1/|t| when
|t| → ∞ (due to the cylindrical spreading of the waves from the source to the vortex and from
the vortex to the observer) and the Fourier transforms are regular.
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Figure 10. Sound pressure levels (in dB/Hz re. 1) at x = 0, y = 10L. Parameters are Mv = 0.05,
Mc = 0.176 and kL = π/2. (a) Comparison for different plane wave directions α. (b) Individual
spectra of the two wavepackets for α = 90◦.

reference frames (because it is a plane wave), the scattered field is only tonal in the
reference frame moving with the vortex. When observed in the fixed reference frame,
the scattered field contains a range of frequencies. It is the Doppler shift originating
from the motion of the vortex relative to the observer that is responsible for the spectral
broadening of the sound field. In addition, the spectrum of the scattered field for a fixed
observer is a direct consequence of the directivity of the scattering by a steady vortex.
The presence of a sidelobe on each side of the source frequency can be directly attributed
to the fact that the scattered field is formed of two beams at the frequency considered,
with each beam generating one sidelobe.
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Figure 11. Schematic of the scattering of the sound emitted by a fixed point source by a
convected vortex.

4. Scattering of more complex sound fields by a convected vortex

When the incident sound field is a time-harmonic plane wave, it is still perceived as
tonal noise by the vortex (although at a Doppler-shifted frequency ωv). This is not the
case when considering a more complex sound field, such as that generated by a point
mass source fixed relative to the observer, which is the configuration considered in this
section. While this sound field is tonal in the fixed frame of reference it is perceived in the
moving frame of reference as containing a range of frequencies. The frequency-domain
model presented in sections 2.2 and 3.1 is therefore not well adapted to this situation
and it is preferable to use the time-domain numerical model instead.

4.1. Doppler shifts

Before we use the numerical model, it is still useful to derive a simple expression for the
Doppler shifts involved in the change in frequency between the point source, the vortex
and the observer, as illustrated in Figure 11.

The observer is located at (x̃, ỹ) = (x− Uct, y) in the frame of reference moving with
the vortex. It receives at time t the scattered wave emitted at time tv by the vortex. The
time delay is related to the distance covered by the wave: t−tv = |x̃(t)−x̃v(tv)|/c∞ (note
that there is no background mean flow in the moving frame of reference so the acoustic
phase speed is simply c∞). By definition of the moving frame of reference x̃v = 0 and
we get

tv = t−
√

(x− Uct)2 + y2/c∞ . (4.1)

At time tv the vortex is scattering the incident wave emitted by the source at time
ts. The corresponding time delay can be written tv − ts = |x̃v(tv) − x̃s(ts)|/c∞. In the
moving frame of reference the source position is (x̃s, ỹs) = (xs − Uct, ys). The retarded
time equation can then be solved for ts:

ts =
1

1−M2
c

[
tv −

Mcxs
c∞

− 1

c∞

√
(xs − Uctv)2 + (1−M2

c )y2s

]
. (4.2)

Note that this result holds provided |Uc| < c∞.
If the angular frequency ωs of the tonal noise source is sufficiently large, the vortex

remains in the acoustic far field of the source. Therefore, at any given instant the incident
sound field reaching the vortex can be approximated as a plane wave with direction α.
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Figure 12. Evolution of the normalised frequency ωo/ωs for a source at xs = 0 and
ys = −20L, with an observer at y = 10L and (a) x = 0 or (b) x = −10L.

This is similar to what was presented in Section 3.1 but with the knowledge that the
direction and amplitude of this plane wave will vary slowly in comparison to the period
2π/ωs of the sound wave. Equation (3.6) can be modified accordingly to provide an
estimate for the frequency perceived by the observer

ωo(t) = ωs
1 +Mc cos θ(t)

1 +Mc cosα(ts)
. (4.3)

The key difference with equation (3.6) is that the Doppler shift associated with the
motion of the vortex relative to the source now varies in time and depends on the angle
α(t) = tan−1[ỹs(t)/x̃s(t)]. Note that this angle is defined in terms of the position of the
source at time ts when the incident wave is generated. Equation (4.3) illustrates that the
spectral broadening perceived by the observer is the combination of two Doppler shifts
due to the motion of the vortex relative to the source (given by 1/[1 +Mc cosα(ts)]) and
the observer (given by 1 +Mc cos θ(t)).

Figure 12 shows examples of the effective frequency ωo together with the two separate
Doppler shifts. Whereas for the plane wave the two Doppler shifts could cancel each
other, with a point source they effects are compounded, resulting in a stronger deviation
from the source frequency. From equation (4.3) we can see that the frequency shift will
remain within the range

−2Mcωs

1 +Mc
6 ωo − ωs 6

2Mcωs

1−Mc
, (4.4)

corresponding to when the vortex is far downstream or far upstream, respectively. The
sidelobes due to the spectral broadening will be constrained within this frequency range.

4.2. Time-domain numerical model

The difference with Section 3.2 is that the incoming sound field generated in the lower
buffer zone now corresponds to a mass source obtained by adding the source terms
S/c2∞ and S in equations (3.9a) and (3.9c), respectively. The source distribution is a
time-harmonic point source, S = δ(x)eiωst, with δ the Dirac delta function, and the
theoretical expression for the sound field generated by this source can be given in terms
of the velocity potential:

Φ =
i

4ρ∞c2∞
√

1−M2
c

H
(2)
0

[
k0

√
x2 + (1−M2

c )y2

1−M2
c

]
e
i Mc
1−M2

c
k0x+iωst

. (4.5)
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This is used to obtain the corresponding velocity u′ = ∇Φ, pressure p′ = −ρ∞(∂/∂t +
Uc∂/∂x)Φ and density ρ′ = p′/c2∞. Note that it is the exact expressions for the pressure,
velocity and density that are used in the buffer zone to impose the incoming sound field,
and the point source itself is not part of the numerical model.

It is important to note that changing the mean flow velocity Mc will also result in a
change of directivity for the incident sound field. For instance the variation in amplitude
of the incident pressure field will vary with direction as [1 − Mc cos(ϕ)/σ]/

√
σ with

σ = [cos2 ϕ + (1 −M2
c ) sin2 ϕ]1/2 where ϕ is the angle measured from the x direction.

This results in a significant increase (resp. decrease) of the sound field upstream (resp.
downstream) of the source, which in turn influences the scattering by the convected
vortex.

The same parameters as in Section 3.2 are used to define the computational domain
and the finite-difference grid.

4.3. The effects of the source frequency

The effect of the frequency, defined by the Helmholtz number kL, is now assessed by
considering a series of simulations for kL = π/4, π/2, π, 2π and 4π. The source is located
at (xs, ys) = (0,−20L). The mean flow velocity is Mc = 0.176 and the vortex strength is
Mv = 0.05.

Figure 13 shows three examples of instantaneous pressure fields in the time-domain
simulations for three different frequencies together with the pressure signals recorded
just above the source at (x, y) = (0, 10L). The corresponding spectra, also measured at
(x, y) = (0, 10L), are shown in Figure 14. The time evolution of the pressure field during
the passage of the vortex for the simulation with kL = π/2 is also presented in Movie 2
as supplementary material.

As already observed for the steady vortex in Section 2.4, the strength of the scattered
field increases with frequency. This increase of the scattering for shorter wavelengths is
consistent with observations made in previous studies on the scattering by a turbulent
shear layer (Candel et al. 1975; Kröber et al. 2013; Sijtsma et al. 2014; Ewert et al. 2008;
McAlpine et al. 2013).

Another trend clearly visible in Figure 13a-c is that the two beams of the scattered
field are more narrow at high frequencies. This was also observed for the steady vortex
in Section 2.4. For the convected vortex this translates into pressure signals in Figure 13
formed of shorter wavepackets at high frequencies.

In Figure 14a we can observe the evolution of the position of the sidebands, measured
in terms of ∆ω, the difference between the maximum of a sideband and the source
frequency ωs. The position of the main high-frequency sideband only varies slightly as
the source frequency increases (except for the lowest source frequency). In contrast, the
low-frequency sideband tends to move slightly away from the source frequency.

Based on the discussion in Section 4.1 in terms of Doppler shifts, in particular equations
(4.3–4.4), one would expect the position ∆ω of the sideband to scale linearly with the
source frequency. However, the results in Figure 14b, where the spectra are plotted against
(ω−ωs)/ωs, clearly show that this is not the case. This is explained by the change in the
scattered field as the frequency increases, as discussed above and in Section 2.4 for the
steady vortex. When the source frequency is increased, the scattered beams narrow, and
the wavepackets in Figure 13 shorten. This implies that most of the scattered energy is
received around θ̃ = α which, as shown by equation (4.3) and illustrated in Figure 12,
corresponds to small Doppler shifts. For the highest source frequencies, it can even be
seen in Section 2.4 that the main lobe of the scattered field overlaps the direction of the
incident wave. As a result, the corresponding sideband on the spectra (Figure 14a) is
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Figure 13. Scattered pressure for different frequencies: (a,d) kL = π/2, (b,e) kL = π and (c,f)
kL = 2π. (a,b,c) scattered field at t = 0; (d,e,f) scattered pressure recorded at x = 0, y = 10L.
Other parameters are Mc = 0.176, Mv = 0.05, xs = 0 and ys = −20L.
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Figure 14. Sound Pressure Level (in dB/Hz re. 1) of the total pressure fluctuation measured at
x = 0, y = 10L for different frequencies as a function of (a) the frequency shift from the source
frequency or (b) the relative frequency shift.

overlapping the peak at the source frequency. In conclusion, while increasing the source
frequency results in a wider range of frequencies induced by the Doppler shifts, the
scattered field is in fact perceived by the observer mostly at frequencies that are closer
to the source frequency. These two opposite trends result in a weak dependence of ∆ω
with ωs.

This illustrates that analysing the spectral broadening purely in terms of Doppler shift
is not sufficient and that it is crucial to understand the scattering by the vortex in detail.

The previous studies on the scattering by a turbulent shear layer mentioned above
observed that the source frequency mainly affects the levels and shapes of the sidebands
on the spectra, but no effect on the position of their maxima is observed for the source
frequencies considered. Since a shear layer is a continuous region of turbulence comprising
many length scales, further work is required to fully recover all the details of the scattering
in such a configuration.

4.4. Effects of the convection velocity

Finally, we consider the convection velocity which has an important effect on the
spectral broadening, since the Doppler shifts discussed in Sections 3.1 and 4.1 are directly
controlled by the convection velocity Uc.

Before we consider the case of the monopole it is useful to revisit the case of the plane
wave scattered by the vortex. In this situation it is possible to identify the effect of the
convection velocity more clearly. Starting from equation (3.5) for the signal measured by
a fixed observer, we can define its Fourier transform as

p̂s(ω) =
1

2π

∫
D[θ̃(t)− α]√

r̃(t)
exp{iωv[t− r̃(t)/c∞]− iωt} dt . (4.6)

The difficulty with this expression is that Uc is present in the definition of r̃ and θ̃. This
can be avoided by formulating the integral in terms of the vortex position xv rather than
the time t. This yields

p̂s(ω) =
1

2πUc

∫
D[θ̃(xv)− α]√

r̃(xv)
exp

[
−i
ωv

c∞
r̃(xv)− i

ω − ωv

Uc
xv

]
dxv . (4.7)

Since the expressions for r̃(xv) and θ̃(xv) are independent of Uc the influence of this
parameter is more apparent.
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Firstly, the factor 1/Uc indicates that the overall level of the scattered pressure will
decrease for increased convection velocities. This is explained easily by noting that if the
vortex is convected more rapidly past the observer, the latter will receive the scattered
field for a shorter period of time.

Secondly, the convection velocity influences the frequency perceived by the vortex
through the Doppler shift in equation (3.2). This will change the directivity and level of
the scattered field through the dependence of D on ωv.

In the special case when α = 90◦ this Doppler shift is inexistent and we have ωv = ωs.
In this case we can see that, when written as a function of (ω − ωs)/Uc and scaled by
Uc, the spectrum becomes independent of Uc. This has been verified using results from
the time-domain numerical simulations. Given that the parameters are non-dimensional
based on L = 1 and c∞ = 1, the quantity ω/Uc is proportional to the Strouhal number
fL/Uc. The fact that (ω − ωs)/Uc is a relevant parameter follows from the expression
ωo = ωv(1 + Mc cos θ) for the Doppler shift between the vortex and the observer, see
equation (3.6). If ωv = ωs it is clear that the frequency shift will scale linearly with Uc,
thus resulting in wider sidebands for a higher convection velocity.

In the case of the monopole the convection velocity influences several aspects of the
problem. Increasing Uc leads to a stronger Doppler shift between the source and the
vortex, which results in a wider range of frequencies ωv perceived by the vortex. As a
result, the directivity and strength of the scattered field radiated by the vortex will vary
more significantly as it moves past the observer. In addition the Doppler shift from the
vortex to the observer will also be more important.

Figure 15 shows a number of spectra for the scattered field for different convection
velocities. The pressure signals are recorded over the same duration for the 3 velocities
considered, corresponding to the time required for the vortex to travel through the
computational domain at the lowest convection velocity (here Mc = 0.088). When plotted
as a function of the frequency shift ω−ωs, the two trends discussed above are apparent:
when Uc is increased the overall levels of the sidebands decrease while their widths
increase. When the levels are scaled by Uc and the corresponding spectrum plotted as a
function of (ω − ωs)/Mc one obtains a good collapse of the data. The small differences
visible on figure 15 can be attributed to convection effects on the incident sound field. This
indicates that the simple scaling identified for the plane wave appears to be applicable,
at least qualitatively, to a more complex sound field. In fact, it has been observed in
several studies of the spectral broadening by turbulent shear layers that the width of the
sidebands scales linearly with the convection velocity (Candel et al. 1975; Kröber et al.
2013; Sijtsma et al. 2014; Ewert et al. 2008; McAlpine et al. 2013), which is consistent
with the present analysis. Note that in these previous studies, as the amplitude of the
turbulent fluctuations is scaling with the jet velocity, the levels of the sidebands on the
spectra are also increasing with the jet velocity. In the present work, the vortex Mach
number Mv is kept constant for all the convection velocities considered. An increase in
the vortex Mach number would lead to changes in the levels and shapes of scattered field
as discussed in Section 2.4, resulting in turn in changes on the levels and shapes of the
spectra.

While results in Figure 15 are for an observer just above the source, Figure 16
illustrates the differences seen for other observer positions. For a small convection
velocity Mc = 0.088 there is little variation between the three positions considered,
apart from a small increase of the levels upstream of the source. However the differences
increases significantly as the convection velocity is increased following the trend of larger
sidebands upstream of the source and weaker sidebands downstream. This is explained
by the change in the directivity of the incident sound field itself due to the convective
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Figure 15. Sound Pressure Levels (in dB/Hz re. 1) of (a) the total pressure fluctuation and
(b) the total pressure scaled by Mc measured at x = 0, y = 10L for different values of the
convection velocity Mc, plotted against (a) the frequency shift ω − ωs and (b) the Strouhal
number (ω − ωs)/Mc and scaled by Uc. Other parameters are Mv = 0.05 and kL = π/2.
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Figure 16. Sound Pressure Levels (in dB/Hz re. 1) of the total pressure fluctuation measured
at three different positions (all with y = 10L) and for different values of the convection velocity
Mc. Note that the pressure amplitude has been scaled by Mc. Other parameters are Mv = 0.05
and kL = π/2.

amplification which increases the amplitude of the sound upstream of the source (see
Section 4.2).
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5. Conclusion

The scattering of a harmonic, two-dimensional sound field by a single vortex has been
studied in this paper to provide further insight on the mechanisms involved in the spectral
broadening of the acoustic signal.

A semi-analytical model has been formulated in the frequency domain for the scattering
of a plane wave by a fixed vortex, and it was extended to the case where the vortex is
convected by a uniform background flow. This model has been compared against, and
supplemented by, a fully numerical approach in the time domain where the linearised
Euler equations are solved using an unsteady base flow. This approach is capable of
simulating cases with a moving vortex and more complex incident sound fields (the
sound generated by a point mass source). Compared to previous analytical work, these
two models are not restricted to asymptotic regimes (in terms of vortex strength or source
frequency) and have provided a detailed parametric study of the spectral broadening. The
results show the drastic changes in the shape and level of the scattered field between the
low- and high-frequency regimes. In addition, the two models are able to capture the
asymmetry in the scattered field which is not predicted by analytical methods based on
a low frequency approximation.

Overall the spectral broadening observed here stems from the combination of the
spatial scattering of sound due to the refraction of waves propagating through the vortex,
and two Doppler shifts induced by the motions of the vortex relative to the source, and
of the observer relative to the vortex.

The fact that the spectrum exhibits sidebands is directly explained by the directivity of
the scattered field which is composed of beams radiating from the vortex as it is convected
past the observer. Each of these beams is perceived at frequencies above, or below, that
of the sound source. Changes in the amplitude, width and shape of the sidebands can
be explained by the interplay between the Doppler shifts (primarily governed by the
convection velocity Mc and the source frequency ωs) and the amplitude and directivity
of the scattered field from the vortex (controlled by the Helmholtz number kL and the
vortex strength Mv).

For instance, it has been observed in measured data that the position of the sidebands
do not vary significantly with the source frequency. In the present results, a weak
dependence of the position of the sidebands with the source frequency is shown to be the
result of two competing effects: the Doppler shifts lead to an increase of the sideband
width when the source frequency is increased whereas the scattered beams radiated from
the vortex become more narrow, which results in a reduction of the sideband width.
Further work is required to explain the absence of such a dependence of the position of
the sidebands with the source frequency in existing experimental results of the scattering
by a shear layer.

Another trend also found in measurements and models for a region of turbulence is
that the sideband width scales linearly with the convection velocity. This is also observed
with a single vortex and can be explained in terms of the Doppler shifts.

Additionally, the scattering from the vortex studied here was found to conserve the
acoustic energy and it was confirmed that the inhomogeneities in pressure and density
in the base flow due to the vortex are not significant for the spectral broadening.

While the role of a Doppler shift has been considered in previous work to justify spectral
broadening, the present work shows that a better understanding of the scattering by a
single vortex (as described in Section 2) can provide further details into the underlying
mechanisms. It is also striking that a number of features and trends of haystacking from



28 V. Clair and G. Gabard

a region of turbulence are recovered when considering a single vortex, which allows for a
detailed analysis to explain some of the cause and properties of the spectral broadening.

Finally, it should be noted that in all the cases considered here the amplitude of the
original tone is not significantly modified by the scattering. This is because a single
vortex, even with a large induced velocity Mv, is only affecting a small portion of the
time signals recorded. Thus overall, the initial amplitude of the tone remains almost
unchanged if the time signals are long enough. It is necessary to consider a region of
turbulence, composed of a large number of vortices scattering at all time, to observe a
noticeable reduction of the tone.

The logical next step is indeed to perform a similar study with a region of turbulence.
This work is ongoing in two dimensions using a stochastic method to generate turbulent
velocity fields with different length scales, time scales and energy spectra. Preliminary
results indicate that the trends and physical processes discussed in the present paper
remain relevant when considering a region of turbulence (Clair & Gabard 2016). A
number of post-processing techniques can also be applied to isolate the physical mech-
anisms responsible for the spectral broadening. The final results will be reported in a
subsequent communication. Ultimately, three-dimensional effects should be investigated.
The directivity of the scattered field will be affected by the three-dimensional shape of
the vortex considered (e.g., a vortex filament or a compact vortex), which will in turn
affect the spectral broadening.
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Appendix A. Derivation of Equation (2.12)

Using the decomposition of the incident plane wave in terms of Bessel functions given
in equation (2.10), the total pressure can be written

p′ =

+∞∑
m=−∞

{
i−mPJm(kr) +AmH(2)

m (kr)
}

e−imθ . (A 1)

The corresponding expression for the radial acoustic velocity is

u′r =
i

ρ∞c∞

+∞∑
m=−∞

{
i−mPJ′m(kr) +AmH(2)′

m (kr)
}

e−imθ . (A 2)

Upon introducing these expressions in equation (2.11) the acoustic power can be
written as the sum of three terms Wt = Wi + Ws + Wsi. The first term Wi corresponds
to the acoustic power of the plane wave alone, which vanishes as expected:

Wi =
πr

ρ∞c∞
|P |2

+∞∑
m=−∞

Re {iJm(kr)J′m(kr)} = 0 . (A 3)

The second term Ws corresponds to the power of the scattered field taken in isolation:

Ws =
πr

ρ∞c∞

+∞∑
m=−∞

|Am|2Re
{

iH(2)
m (kr)∗H(2)′

m (kr)
}
. (A 4)

Using the definition H
(2)
m (z) = Jm(z)− iYm(z) we can write

Re
{

iH(2)
m (z)∗H(2)′

m (z)
}

= Jm(z)Y′m(z)− J′m(z)Ym(z) =
2

πz
, (A 5)

where the last equality is a result for the Wronskian between Jm(z) and Ym(z), see
equation 9.1.16 in Abramowitz & Stegun (1964). This last equation leads directly to the
first expression in (2.12).

The third term Wsi is a contribution to the total acoustic power from the interference
between the incident plane wave and the scattered field:

Wsi =
πr

ρ∞c∞

+∞∑
m=−∞

Re
{

i1+mP ∗AmJm(kr)H(2)′
m (kr) + i1−mPA∗mJ′m(kr)H(2)∗

m (kr)
}
.

(A 6)

We can use the following result for the Wronskian between Jm(z) and H
(2)
m (z):

Jm(z)H(2)′
m (z)− J′m(z)H(2)

m (z) =
−2i

πz
, (A 7)

to write

Wsi =
πr

ρ∞c∞

+∞∑
m=−∞

Re

{
i1+mP ∗AmJm(kr)H(2)′

m (kr)+

i1−mPA∗mJm(kr)H(2)′
m (kr)∗ + P ∗Am

2im

πkr

}
. (A 8)

The sum of the first two terms in the brackets is imaginary and it follows that only the
last term remains. The expression can then be simplified to yield the second expression
in equation (2.12).
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Figure 17. Change in directivity D(θ) due to the approximation ρ = ρ∞ and p = p∞ for the
base flow. Parameters are kL = 4π and Mv = 0.25.

Appendix B. Influence of pt and ρt
The hypothesis that pt and ρt have no significant influence can be assessed by using the

semi-analytical model presented in Section 2.2 where these terms are retained. Figure
17 shows the directivity of the scattered field for a steady vortex given by equations
(3.8) or by equation (3.8)a and ρ = ρ∞ and p = p∞. It can be seen that the influence
of the non-uniform pressure and density in the base flow has very little impact on the
scattered field. This has been verified for a range of frequencies (up to kL = 8π) and
vortex strengths (up to Mv = 0.25). Therefore the effect of pt and ρt will be ignored in
the numerical model.

Note that for a flow with significant turbulent temperature fluctuations (hot spots),
this assumptions does not hold as hot spots are known to contribute to scattering.

This simplification was used since the PIANO solver used here allows to consider an
unsteady base flow but only for the velocity field. Previous work (Ewert et al. 2008,
2009) considered that for a non-heated turbulent flow, such as a cold jet, the scattering
was mostly induced by the unsteady velocity fluctuations while the effect of density and
pressure fluctuations was deemed negligible.



Spectral broadening of acoustic waves by convected vortices 31

REFERENCES

Abramowitz, M. & Stegun, I.A. 1964 Handbook of mathematical functions. National Bureau
of Standards.

Bennaceur, I., Mincu, D.C., Mary, I., Terracol, M., Larchevêque, L. & Dupont, P.
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