

Mechanical properties estimation of functionally graded materials using surface waves recorded with a laser interferometer

Laiyu Lu, Mathieu Chekroun, Odile Abraham, Valerie Maupin, Géraldine

Villain

▶ To cite this version:

Laiyu Lu, Mathieu Chekroun, Odile Abraham, Valerie Maupin, Géraldine Villain. Mechanical properties estimation of functionally graded materials using surface waves recorded with a laser interferometer. NDT & E International, 2011, 44 (2), pp.169 - 177. 10.1016/j.ndteint.2010.11.007 . hal-01871824

HAL Id: hal-01871824 https://univ-lemans.hal.science/hal-01871824

Submitted on 11 Sep 2018 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Author's Accepted Manuscript

Mechanical properties estimation of functionally graded materials using surface waves recorded with a laser interferometer

Laiyu Lu, Mathieu Chekroun, Odile Abraham, Valérie Maupin, Géraldine Villain

 PII:
 \$0963-8695(10)00156-8

 DOI:
 doi:10.1016/j.ndteint.2010.11.007

 Reference:
 JNDT 1230

To appear in:

NDT and E International

Received date:30 December 2009Revised date:29 October 2010Accepted date:17 November 2010

www.elsevier.com/locate/ndteint

Cite this article as: Laiyu Lu, Mathieu Chekroun, Odile Abraham, Valérie Maupin and Géraldine Villain, Mechanical properties estimation of functionally graded materials using surface waves recorded with a laser interferometer, *NDT and E International*, doi:10.1016/j.ndteint.2010.11.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Mechanical properties estimation of functionally graded materials
 using surface waves recorded with a laser interferometer

3 Laiyu Lu^{a,b}, Mathieu Chekroun^{b,c}, Odile Abraham^b, Valérie Maupin^d, Géraldine Villain^b

^aInstitute of Geophysics, China Earthquake Administration, Beijing, 100081, China

^bLaboratoire Central des Ponts et Chaussées, Route de Bouaye BP4129 44341 Bouguenais Cedex, Nantes.France

^cLaboratoire de Caractérisation Non Destructive, Université de la Mediterrannée, 13625 Aix en Provence, France

^dDepartment of Geosciences, University of Oslo, P.O.Box 1047, Blindern, 0316 Oslo, Norway

10 Abstract

4

 $5 \\ 6 \\ 7$

8

9

11 An approach is presented here to invert surface wave dispersion and attenuation relative 12to the depth-dependence of the visco-elastic parameters of Functionally Graded Materials 13(FGMs). The particularity of this method lies in allowing visco-elastic parameters to vary continuously with depth and in properly incorporating the continuous nature of these vari-14ations into both the forward problem (the calculation of dispersion and attenuation) and 15the inverse problem (evaluation of visco-elastic parameters). The forward problem solves 16 17the equation of elastic motion using a Runge-Kutta integration scheme, while the inverse 18 problem is solved with the nonlinear solution for continuous inverse problems developed by Tarantola and Valette (1982). Viscoelasticity is treated as a first-order perturbation to 19the elastic structure. Testing on a synthetic example shows that the procedure is able to 2021closely reproduce the S-wave velocity and attenuation profiles. As expected, the variations 22in P-wave velocity are not resolved, yet they do not introduce any significant bias into the 23S-wave velocity profile. The Rayleigh wave phase velocity and attenuation, measured by 24laser ultrasonic experiments, are used to infer the depth-dependence of S-wave velocity and 25of attenuation on mortar samples. This depth-dependence compares well with the depthdependence derived from the sample density inferred from gamma-densitometry. 2627Key words: Surface waves, FGM, Inversion, Mortar

28 PACS: 43.20.Hq, 43.35.Cg, 43.35.Zc

29 1. INTRODUCTION

30 The interest in non-homogeneous material systems with gradually varying properties, of-31ten referred to as Functionally Graded Materials (FGMs), has recently received considerable 32 attention in several fields of research [1-4]. As opposed to the abrupt changes encountered in 33 media with piecewise homogeneous layers, the gradual variation in FGM material properties is known to improve failure performance while preserving the intended thermal, tribological 34and/or structural benefits from combining dissimilar materials[3]. Since certain performance 3536 requirements cannot be practically met with spatially uniform or multi-layered material com-37 positions, FGMs have been enjoying widespread use in the fields of aeronautics, astronautics, 38 etc[3, 4].

Another material that can be considered as an FGM is concrete. Concrete is character-39ized by its extremely heterogeneous nature since, as a common construction material, its 40composition includes cement or asphalt along with other materials, such as aggregates and 41 42water. The potential for a non-destructive evaluation of concrete is of major importance in 43monitoring the durability of civil engineering structures, especially as regards cover concrete, which is directly exposed to aggressive attack from external sources. Ultrasonic waves are 44 45often introduced to characterize such material properties; experiments have shown that wave 46dispersion and damping are influenced by both grain size variation and the water-to-cement ratio [5–7]. It is difficult however to generate a quantitative estimation for these properties 47based on measured ultrasonic signals, especially for attenuation. The main reason behind 4849this constraint is the multiple-scattering of waves within such a heterogeneous medium, as a result of the random distribution of pores, air bubbles and aggregates when the wave-5051length has the same order of magnitude as the dimension of heterogeneities. The general 52conventional method, i.e. homogenization, has been widely employed to estimate equivalent 53or effective material properties[8]. Even though such estimations provide a reasonable over-54all prediction of mechanical behavior, they are still insufficient to accurately predict local 55behavior, as experiments on damaged concrete have also revealed [9, 10]. The modulus of 56elasticity for pavement, composed mainly of bituminous concrete, is not constant and in 57fact varies with depth due to a number of factors including aging, moisture content and

58 temperature [10, 11].

59Given the growing interest in FGMs, the need for non-destructive techniques to mea-60 sure their mechanical properties has become more acute. Shear-wave (S-wave) velocity and 61attenuation are usually considered key parameters for characterizing the mechanical prop-62erties of materials. As a non-invasive method, surface wave analysis has proven efficient in 63 evaluating these parameters; it has been extensively used in many fields at various scales, 64ranging from earth imaging in geophysics [12-16] to the exploration of pavement structures 65in geotechnical engineering [17], as well as the estimation of material elastic properties in ultrasonic NDT (Non-Destructive Testing)[18–20]. At most scales, and particularly at the 66 geotechnical scale[21, 22], an analysis of velocity or attenuation constitutes the main tool 67 68for extracting useful information from data. Material parameters are generally obtained by 69 means of an inversion technique, which yields an optimal model minimizing the difference be-70tween the predicted and measured dispersion (and/or attenuation) curves of surface waves. In the geotechnical field, this method has been successfully applied in order to infer the 71properties of homogeneous or multi-layered media[21], although applications with continu-7273ous variations over the depth are still lacking. On the other hand, the inversion of surface wave dispersion for a continuous profile of the Earth's mantle parameters has been frequent 7475in seismology for many years [14–16]. Due to the typically small variations of parameters in 76the mantle (i.e. just a few percent), dispersion curves are inverted using linear methods. In 77this paper, we will demonstrate that such a method may be extended to shear-wave velocity 78and attenuation inversions in FGMs featuring much greater variations and contrasts. This 79demonstration will be conducted first with a synthetic experiment, then by application to 80 non-destructive concrete testing.

81 2. THEORETICAL FORMULATION AND METHODOLOGY

82 2.1. Forward Problem

To calculate the predicted dispersion and attenuation for a forward model, one important
step involves solving the eigenvalue problem of Rayleigh waves for the visco-elastic model. In

linear viscoelasticity, this solution can be obtained by employing the same governing equations as those found in the corresponding elastic problem with identical boundary conditions, by simply replacing real variables with corresponding complex variables. In this paper, the dual conditions of linear viscoelasticity and weak dissipation have been assumed; under such an assumption, the eigenvalue for a visco-elastic model can be derived from the eigenvalue of the pure elastic case through perturbation theory[23]. As a consequence, the software developed for elastic media can easily be modified to the visco-elastic case.

The eigenvalue problem for Rayleigh waves propagating in purely elastic, layered structures can be described by differential equations in matrix form[23], i.e.:

$$\frac{d\mathbf{f}(z)}{dz} = \mathbf{A}\mathbf{f}(z) \tag{1}$$

where z is the depth coordinate, and **A** a 4×4 matrix associated with the propagator matrix, which is a function of the depth-varying compressional wave velocity V_p , shear-wave velocity V_s and density ρ . $\mathbf{f}(\mathbf{z})$ is a column vector that comprises the displacement vector r_1, r_2 and two elements r_3, r_4 of the stress tensor. Combined with boundary conditions, the precondition for existence of a solution to Eq.(1) yields the eigenequation of Rayleigh waves, which offers the following general form:

$$f(c_0, \omega; V_p, V_s, \rho) = 0 \tag{2}$$

92where c_0 is the phase velocity of Rayleigh waves, and ω the angular frequency. The subscript 0 in this context denotes the elastic case. Both analytical and numerical methods have 9394been developed to treat seismic wave propagation in FGMs[1, 2]. A general treatment is 95 based on the transfer matrix approach, according to which the medium with continuously-96 varying inhomogeneity is regarded as a stack of many thin, piecewise homogeneous layers [23]. 97 An explicit formulation of the transfer matrix for layered media can then be obtained. 98Another approach to calculating the transfer matrix of FGMs is based on an exact solution 99 in the form of the Peano series of multiple integrals [24, 25]. In this manner, continuous 100inhomogeneity serves to replace the exponential solution to the wave equation by the Peano 101integral expression. We adopted a Runge-Kutta scheme herein to numerically integrate the

system of differential equations, derive the propagator matrices, and calculate dispersion andattenuation[23, 26].

After solving for eigenvalues, specifically the phase velocity for each frequency, the partial derivatives of phase velocity with respect to model parameters can then be obtained from the eigenfunctions by employing the variational principle[23]. The derivatives with respect to the three parameters ρ , V_p and V_s are given by the following expressions:

$$\frac{\partial c_0}{\partial \rho} = \frac{1}{2\rho} \left(\frac{\partial c_0}{\partial V_s} V_s + \frac{\partial c_0}{\partial V_p} V_p \right) - \frac{1}{2k^2 U I} \omega^2 (r_1^2 + r_2^2) \tag{3}$$

$$\frac{\partial c_0}{\partial V_p} = \frac{\rho V_p}{2k^2 U I} \left(k r_1 + \frac{d r_2}{d z} \right)^2 \tag{4}$$

$$\frac{\partial c_0}{\partial V_s} = \frac{\rho V_s}{2k^2 U I} \left[\left(k r_2 - \frac{dr_1}{dz} \right)^2 - 4k r_1 \frac{dr_2}{dz} \right] \tag{5}$$

where U and k are the group velocity and wave number, respectively. I is the energy integration of the Rayleigh wave and equals:

$$I = \int_{0}^{\infty} \rho \left(r_1^2 + r_2^2 \right) dz$$
 (6)

In this paper, the software package developed by Saito has been used to calculate the
Rayleigh wave eigenvalues and partial derivatives of phase velocity for the isotropic elastic
model[27].

For a visco-elastic material, the modulus M^* and, by extension, both the body wave and surface wave velocities can be represented by complex quantities:

$$M^*(\omega) = M_1(\omega) + iM_2(\omega) \tag{7}$$

The degree of dissipation is often characterized by the quality factor Q, which can be expressed as:

$$Q = \frac{M_1}{M_2} \tag{8}$$

107 The complex modulus and velocities depend on frequency ω since the relationship be-108 tween stress and strain depends on time, as a result of visco-elasticity. In addition, the

109 real and imaginary parts of the modulus are not independent. The relationship known as 110 Kramers-Kronig dispersions[28], which states that visco-elastic materials are inherently dis-111 persive, must be satisfied. In mathematical terms, this implies that M1 and M2 are Hilbert 112 transform pairs, and this relationship constitutes the necessary and sufficient condition for 113 M to satisfy the fundamental principle of causality[28].

Laboratory experiments show that over a broad bandwidth($10^{-2} - 10^{7}$ Hz), Q can be considered as independent of frequency at very low strain levels[29]. One commonly used form of the dispersion relation that is able to satisfy the Kramers-Kronig relationship with Q remaining nearly constant is the one developed by Liu et al.[30], which can be written as [23, 31]:

$$\frac{V(\omega)}{V(\omega_{ref})} \simeq 1 + \frac{1}{\pi Q} \ln \frac{\omega}{\omega_{ref}} \tag{9}$$

where ω_{ref} denotes a reference circular frequency and V the real part of the P-wave or Swave velocity. The dispersion relation is only applicable for weakly dissipative media, e.g. Q > 10, in which the dispersion caused by intrinsic dissipation remains small. Frequencydependent modifications to the velocities introduced by attenuation are then mapped onto Rayleigh wave phase velocity variations, yielding a first-order expression using the variational principle:

$$c = c_0 + \frac{1}{\pi} \ln\left(\frac{\omega}{\omega_{ref}}\right) \int \left(\frac{\partial c_0}{\partial V_s} V_s Q_s^{-1} + \frac{\partial c_0}{\partial V_p} V_p Q_p^{-1}\right) dz \tag{10}$$

where c_0 is the phase velocity in the corresponding purely elastic model. It would appear from this expression that phase velocity dependence on the quality factor of P- or S-waves is:

$$\frac{\partial c}{\partial Q_t^{-1}} = \frac{1}{\pi} \ln \left(\frac{\omega}{\omega_{ref}}\right) \frac{\partial c_0}{\partial V_t} V_t \tag{11}$$

114 where the subscript t = P, S denotes the compressional or shear wave, respectively.

The spatial damping of Rayleigh waves can be characterized by the dissipation factor Q_R^{-1} . For a plane Rayleigh wave propagating with an attenuation coefficient of α :

$$u = u_0 e^{-\alpha r} e^{-ikr} \tag{12}$$

 Q_R^{-1} is related to α by

$$Q_R^{-1} = \frac{\alpha c}{\pi f} \tag{13}$$

 Q_R^{-1} can be obtained by measuring and processing the Rayleigh wave amplitude at various distances. Q_R^{-1} depends, at the first order in attenuation, on the variations in quality factors with respect to depth via the following relation:

$$Q_R^{-1} = \frac{1}{c_0} \int \left(\frac{\partial c_0}{\partial V_s} V_s Q_s^{-1} + \frac{\partial c_0}{\partial V_p} V_p Q_p^{-1} \right) dz \tag{14}$$

This expression yields the partial derivatives of Rayleigh wave dissipation with respect to the quality factors:

$$\frac{\partial Q_R^{-1}}{\partial Q_t^{-1}} = \frac{1}{c_0} \frac{\partial c_0}{\partial V_t} V_t \tag{15}$$

115 2.2. Inverse Problem

For our problem, the relation between data and depth-dependent parameters can be summarized as:

$$\left[Q_R^{-1}(f), c(f)\right] = g(V_p, V_s, \rho, Q_s^{-1}, Q_p^{-1})$$
(16)

116 where $Q_R^{-1}(f)$ and c(f) are respectively the dissipation factor and phase velocity of the 117 Rayleigh wave at each frequency f. First-order variations in the data compared to variations 118 in model parameters are given in Equations 3, 5, 11 and 15. The inversion step consists of 119 identifying the model or class of models that predicts measured data as closely as possible. 120 In this paper, the generalized nonlinear inversion technique for continuous problems, as

developed by Tarantola and Valette [32], has been used to invert both the velocity and
attenuation profiles. This method was designed to minimize the square of the differences
between predicted and observed data on dispersion and/or attenuation.

In expressing Eq. (16) in the general form:

$$\mathbf{d} = \mathbf{g}(\mathbf{p}) \tag{17}$$

where **d** and **p** are the data and parameter sets respectively, then the inverted model at iteration k + 1 will be given according to the least square solution for discrete nonlinear inverse problems (as proposed by Tarantola and Valette [32]) by:

$$\mathbf{p}_{k+1} = \mathbf{p}_0 + C_{p0} \cdot G_k^T \cdot (C_{d0} + G_k \cdot C_{p0} \cdot G_k^T)^{-1} \cdot \{\mathbf{d}_0 - \mathbf{g}(\mathbf{p}_k) + G_k \cdot (\mathbf{p}_k - \mathbf{p}_0)\}$$
(18)

where G is the matrix of partial derivatives with respect to the model parameters, i.e.:

$$G^{i\alpha} = \partial g^i / \partial p^\alpha \tag{19}$$

124 For the problem treated herein, which can be calculated from the formulation described in

125 Section 2.1, G^T is the transpose of matrix G, p_0 the *a priori* model, d_0 the data vector, $g(p_k)$

126 the data predicted from the model p_k , C_{p0} and C_{d0} are the *a priori* covariance matrices of

127 the parameter and data, respectively.

The equivalent to Eq. (18) for problems with continuous variations in model parameters is expressed by:

$$p_{k+1}(z) = p_0(z) + \int dz_i \sum_{i} \sum_{j} C_{p_0}(z, z') \cdot G_k^i(z') \cdot (S^{-1})^{ij} \\ \cdot \left\{ d_0^j - g^j(\mathbf{p}_k) + \int dz'' \cdot G_k^j(z'') \cdot [p_k(z) - p_0(z)] \right\}$$
(20)

where the matrix S_k is given by

$$S_k^{ij} = (C_{d0})^{ij} + \int dz' \int dz'' G_k^i(z') \cdot C_{p0}(z,z') \cdot G_k^j(z'')$$
(21)

Theoretically speaking, for a property that varies continuously with depth, we need to perform an inversion for the property at an "infinite" number of depth points in the model. In practice however, we are obviously required to sample the functions at a finite number of depth points, yet we are also intent on maintaining inversion as independent of sampling, which means introducing certain *a priori* information to constrain the inversion process. As undertaken in Leveque et al. (1991) [14], Maupin and Cara (1992) [15] and Debayle and Sambridge (2004) [33], we introduced the Gaussian-shaped function as the *a priori* covariance function of the *a priori* model p_0 :

$$C_{p0}(z, z') = \sigma(z)\sigma(z')\exp(\frac{-(z-z')^2}{2L^2})$$
(22)

128 where z and z' are two depth points, L the correlation length and σ the variance at depth 129 z. This set-up acts as a spatial filter to smooth the model, thereby imposing a correlation 130 between points separated by a distance on the order of L, with $\sigma(z)$ controlling the amplitude 131 of allowable model perturbation at z. Since this approach insures that the inversion result

132 remains independent of discretization with depth, it is no longer necessary to sample the 133 model with equal spacing, but rather the spacing should be greater than the correlation 134 length.

If more than one parameter requires inversion (e.g. in this case, the shear-wave velocity V_s and P-wave velocity V_p), albeit with a certain relationship between the two being expected (perhaps through an expected Poisson's ratio), then the covariance matrix can be used to impose a correlation between the variations of the two parameters:

$$C_{p0}[Vs(z), Vp(z')] = \sigma_{V_s}(z)\sigma_{V_p}(z')\exp(\frac{-(z-z')^2}{2L^2})C_{sp}$$
(23)

135 where C_{sp} is the coupling coefficient between parameters V_s and V_p , which is capable of 136 varying between 1 and -1. The respective variation for each parameter is controlled by its 137 standard deviation.

In the applications that follow, we will only invert for V_s , Q_s^{-1} and/or V_p . Our software can also simultaneously invert for ρ or Q_p^{-1} , with V_s , V_p and Q_s^{-1} , although tradeoffs must be introduced whenever too many parameters are involved in the inversion process. Since Rayleigh waves are less sensitive to ρ and Q_p^{-1} , their variations are assumed to be negligible during an inversion.

143 **3. SYNTHETIC EXPERIMENTS**

144 The synthetic model shown in Figure 1 will be discussed in this section. We will begin 145 by calculating the velocity and attenuation of the Rayleigh wave propagating in this model. 146 Velocity and attenuation will then be adopted as the 'measured' data used for model prop-147 erty inversions. Since the model is known, it proves helpful to validate the algorithm and 148 investigate the effects of input parameters on inversion results, such as initial model and 149 correlation length. As is customary in the seismological literature , Q^{-1} , i.e. the inverse of 150 quality factor Q, will be used to characterize the material attenuation.

The V_s and Q_s^{-1} profiles of this model are defined by Eq.(24) below:

$$\begin{cases} \phi(z) = \phi(d) \left\{ 1 + \frac{1}{2} \frac{\phi(0) - \phi(d)}{\phi(d)} \left[\frac{\tanh[a(1 - 2z/d)]}{\tanh a} + 1 \right] \right\} & 0 \le z \le d \\ \phi(z) = \phi(d) & z > d \end{cases}$$
(24)

Figure 1: a) velocity profiles; b) profile of the inverse of quality factor Q_s ; c) phase and group velocity of the Rayleigh wave propagating in this model; and d) inverse of the Rayleigh wave Q-value

where z is the depth. The Poisson's ratio equals 0.22 and V_p is obtained by:

$$V_p = \sqrt{\frac{2(1-\sigma)}{1-2\sigma}} V_s \tag{25}$$

Next, let a = 2, d = 5 in Eq.(24), with the model being assumed homogeneous below 5*cm*. Baron et al. (2007)[24] adopted the function in Eq.(24) in order to model a transition layer, in which material properties vary continuously without any abrupt change at the edge points. These authors also discussed the forward problem for the elastic case by introducing the Peano series and went on to offer an analytical expression of the dispersion relation. This model has been extended here to the visco-elastic case in order to investigate the inverse problem. We set $V_s(0) = 1.8 km/s$, $V_s(d) = 2.3 km/s$. It is assumed that Q_s^{-1} exhibits the same variation as V_s and that $Q_s^{-1}(0) = 0.02$, $Q_s^{-1}(d) = 0.06$. Q_p^{-1} is also assumed to satisfy the equation in [34], i.e.:

$$Q_p^{-1}(z) = \frac{4}{3} \frac{V_s^2(z)}{V_P^2(z)} Q_s^{-1}(z)$$
(26)

Figures 1a and b show the velocity and Q_s^{-1} profiles of this model, while Figures 1c and d indicate the velocity and Q^{-1} of the Rayleigh wave. The velocity for the pure elastic case is

153 also given in Figure 1c.

154In civil engineering, the Poisson's ratio, instead of the V_p profile, of materials can some-155times be approximately estimated as a priori information. Figure 2 displays the inversion 156results with a known Poisson's ratio (0.22) as the *a priori* information. The initial model, inverted profiles and true model are all presented in this figure. The initial value of V_s con-157158sists of the profile $1.1c - 0.5\lambda$. In early geotechnical engineering practice, this profile was often used to approximate the V_s profile. The two coefficients (1.1 and 0.5) may at times be 159160modified depending on the expected Poisson's ratio of the medium. We performed a large 161number of calculations for various initial models, and this profile proves to be a better initial model than a constant profile. The initial values of Q_s^{-1} can be chosen depending on the 162 Q^{-1} of Rayleigh waves. A morderate value for Rayleigh wave Q^{-1} turns out to be a good 163 initial model for Q_s^{-1} . The initial V_p is generated from V_s by means of a known Poisson's 164ratio. Figure 2 reveals a set of good inversion results obtained for Q_s^{-1} , V_s and hence V_p . 165

Figure 2: Inversion results with a known Poisson's ratio. (a),(b),(c) and (d) are the profiles of Poisson's ratio, S-wave velocity, P-wave velocity and Q^{-1} , respectively.

166 In contrast, without any *a priori* information on the Poisson's ratio and V_p , inverting for 167 V_s and V_p as the independent parameters may be preferred. Figure 3 presents the inversion 168 results for this particular case. Compared to Figure 2, Figure 3 shows that larger differences 169 between the true and inverted velocity profiles are observed within the 4cm - 5cm range for

 V_s and Q_s^{-1} . This case features less a priori information and a higher number of inverted 170171parameters, which in turn increases the level of inversion uncertainty. For P-wave velocity 172 V_p , the difference between the inverted and true models is considerable. As a consequence of the low sensitivity of Rayleigh waves to V_p , the inverted V_p profile has in fact changed 173174very little compared to the initial model. Even though the inverted V_p is far from the true model, the inverted phase velocity and Q^{-1} of the Rayleigh wave display good agreement 175with the data, which implies that the inverted V_p is not reliable and moreover that the same 176dispersion curves and Q^{-1} can allow for multiple solutions of V_p . Numerical results for the 177other synthetic test also support this finding. In a practical application therefore, we should 178179seek a priori information on the Poisson's ratio or P-wave velocity of the materials using the 180other method, such as reflection and refraction method. It should be pointed out however that the incorrect V_p profile does not significantly bias the inverted V_s and Q_s^{-1} profiles and 181 that these profiles can be properly recovered even in the absence of accurate knowledge on 182183 V_p or Poisson's ratio.

Figure 3: Identical to Fig.2, yet without knowing the value of Poisson's ratio.

184 4. APPLICATION: DETERMINATION OF MORTAR PROPERTIES FROM 185 LASER MEASUREMENTS

In this section, the method described above will be applied to perform an inversion for the shear-wave velocity (correspondingly the Poisson's ratio) and for the attenuation of a mortar sample, based on surface wave data collected using a laser interferometer.

189 4.1. Experimental set-up and measurements

Experimental measurements have been carried out on mortar samples with a maximum 190grain size of $D_{max.} = 4 mm$. Two series of mortar slabs M1 and M2, differing in just 191192their water/cement ratio, were considered: the M1 series has a low water/cement ratio 193(w/c = 0.35), while the M2 ratio is higher (w/c = 0.65), thus inducing higher porosity. CEM 1941 52.5N CE CP2 NF cement has been used and the granulate are silico calcareous. The slabs 195were held underwater in between experiments to ensure remaining fully saturated at all times. 196Each series was composed of 5 identical slabs with dimensions $600 \, mm \times 600 \, mm \times 120 \, mm$. The $120 \, mm$ specimen thickness was considered sufficient to ensure that signals received 197198at the surface corresponded to Rayleigh waves, thus avoiding the generation of Lamb wave 199modes.

200A piezoelectric transducer equipped with a wedge was used as a source to generate 201 Rayleigh waves in the mortar slabs. The source function was a Ricker wavelet with a central 202frequency equal to 120 kHz. Reception was performed with a laser interferometer (Tempo 203from Bossa Nova Tech), which acquires the normal displacement at the slab surface according to a non-contact protocol. The laser beam position was controlled by a robot to allow for an 204205acquisition every 1 cm at a distance from the source ranging from 10 cm to 45 cm, to yield the equivalent of a common-shot gathers in seismology. The precision of the laser beam 206207position is better than 0.01mm and the data acquisition card has a sampling rate equal to 20810MHz and a 16 bits resolution[35].

To take into account the heterogeneous nature of the mortar (i.e. size and position of sand, presence of bubbles and other surface inhomogeneities[36]), a total of 36 similar common-shot gathers were collected at different positions on the 5 slabs for each series; a

Figure 4: Rayleigh wave phase velocity (a) and Q^{-1} (b) of both the experimental and inverted models for mortar M1

212 spatial average could then be established to obtain the coherent field.

Geometrical spreading was corrected from the measurements by multiplying all signals by 213 \sqrt{r} , where r is the distance from the source. We used a $p-\omega$ transform to extract the phase 214velocity dispersion curves [37], where p represents the slowness of the waves (p = 1/c) and 215216 ω the angular frequency. This method transform the multi-channel data wave field into the slowness-frequency domain. In $p-\omega$ domain, the maximum will be reached at the eigenvalues 217218of the Rayleigh wave. The algorithm proposed by Herrmann is used to extract the velocities for each frequency and also provides error bars[38]. The attenuation factor is estimated from 219220the decrease of the amplitude spectrum of the coherent field during propagation. Damping 221factor vs. frequency was evaluated by performing a linear fit of the natural logarithm of the 222spectral amplitude[39].

Figure 4 provides the experimental phase velocity and error bars. Due to limitation in the transducer frequency band as well as the signal-to-noise ratio, only data in the 60-180 kHz bandwidth could be introduced. This frequency range corresponds to wavelengths ranging from approximately 10mm to 40mm[36]. The spectrum modulus of the Rayleigh waves at this bandwidth is larger than -20dB. The interval between two adjacent frequencies is 2440Hz. Details about the experiment and extraction of the dispersion curves can be found in reference[39].

230Dispersion of Rayleigh waves may arise from two phenomena: the variation with depth of the properties of the media and the dispersion of P and S waves related to multiple scatter-231232ing in heterogeneous media. The scattering produces in addition attenuation. It is therefore 233in theory possible to distinguish between the two effects by a combined analysis of disper-234sion and attenuation. However, the frequency range used here corresponds to wavelength 235varying from 10 to 40 mm, while in the mortar series M1 and M2 the maximum grain size 236is $D_{max} = 4 \, mm$. Then the wavelength is much bigger than the heterogeneities of mortar, inducing negligible scattering effects. The scattering-related dispersion of P and S waves in 237the mortars used here and in associated concrete samples has been studied in reference[36]. 238239They find that for the concrete samples, which in essence contain bigger heterogeneities 240(coarse aggregates of $D_{max} = 20 \, mm$) than the mortar samples, scattering related to hetero-241generates a noticeable additional dispersion compared to the mortars, in the actual 242frequency range. In addition, the scattering by aggregates produces an attenuation about 243three times the one observed for mortars. We conclude that for the mortar used here, the 244major part of the dispersion is likely to originate from depth-dependence of the structure.

245 *4.2.* Inversion results

Figure 5: Inversion results for mortar M1 - two results are shown, one with an unknown Poisson's ratio and the other with a known estimated Poisson's ratio equal to 0.2

Figure 5 shows the inversion results for the M1 series. The correlation length has been

set at 0.5cm, and the *a priori* variance is 0.002km/s for V_s and V_p and 2×10^{-4} for Q^{-1} . In 247248comparison with synthetic models, a greater number of iterations was required here before 249obtaining convergence. We conducted a total of 100 iterations and typically reached conver-250gence after between the 50th and 60th iteration. In order to compare results for different a251priori information, the inversion procedure was carried out in two ways: first with an un-252known Poisson's ratio ν , where V_s , V_p and Q_s were inverted simultaneously; and second with 253a known Poisson's ratio given as a priori information, where only V_s and Q_s were inverted. No real significant differences are observed in Figure 5, except for the larger a posteriori 254255error obtained on the inversion with an unknown Poisson's ratio. This finding is not diffi-256cult to explain since the constraint imposed on the inversion procedure without an a priori 257Poisson's ratio was less stringent. Similar trends and orders of magnitude were observed for these series of results. Figure 4 indicates that these two inverted dispersion and Q^{-1} curves 258259fit the experimental data quite well. Based on this example and in recalling the discussion on 260numerical models in the previous section, it is considered an appropriate choice to perform 261the inversion with an *a priori* Poisson's ratio estimated from experience.

Figure 6: Inversion results for mortars M1 and M2.

Figure 6 presents the inversion results for M2 and M1, with a known and constant Poisson's ratio set equal to 0.2. As expected, it was observed that the shear-wave velocity of mortar M1 exceeded that of mortar M2, since M2 is more porous. Similarly, the quality

265factor Q_s of M1 was greater than that of M2 at all depths. For both mortars, a slight 266dispersion in the phase velocity dispersion curve is visible, hence indicating that material 267properties vary with depth. At low frequencies, phase velocity increases such that a higher 268body-wave shear velocity with depth can be expected. This observation is in accordance 269with common knowledge held on concrete properties. The first few millimeters contain 270fewer aggregates than lower depths due to a wall effect: the proportion of large aggregates 271becomes constant after a depth equal to the radius of the largest aggregate[40]. To be 272able to explain this increase of wave velocity, we performed density profile measurements by 273gammadensitometry[41]. In the slabs the density is increasing towards the surface (See Figure 2748 for the density variation). We suppose that this phenomenon is due to the use of a wood 275form that is coated with bakelite so that bleeding water is not absorbed by this formwork on 276the contrary to wooden formwork classically used for concrete structures. As a consequence, 277this higher quantity of water available near the surface, during setting, is increasing density 278by chemical reaction in this area compared to the depth. Furthermore, the grain size is 279surely modifying the density near the surface, and this phenomenon is competing with pore 280size and pore distribution near the surface together with water gradient that can extend to 281different depth[41].

Figure 7: Rayleigh wave phase velocity (a) and Q^{-1} (b) of both the experimental and inverted models for mortar M2

For the inversion step, a constant Poisson's ratio of 0.2, i.e. a classical value for mortar,

was chosen. It is apparent on the shear-wave velocity profiles that below 1.5 cm, the mortar can be considered homogeneous with a shear-wave velocity equal to $2,660 \text{ m.s}^{-1}$ for M1 and $2,330 \text{ m.s}^{-1}$ for M2. Figure 7 shows the experimental phase velocity and attenuation with error bars, together with the corresponding inverted one.

The depth limits for the two inverted profiles are slightly different because the higher 287288phase velocity in M1 yields slightly larger wavelengths, and therefore larger penetration 289depths, than in M2, for the same frequency range. The inverted V_s profiles for M1 and M2 tend to display a typical characteristic, namely increasing smoothly with depth over the 290first few millimeters near the surface, with an inflection point observed at 1.4 - 1.6cm, then 291292 tending to a constant value at greater depths. This finding is a result of aggregate size, 293the presence of air bubbles and a saturation rate capable of differing nearer the surface and 294deeper due to the wall effect and exposure to air. Consequently, the density may feature 295similar characteristics. To verify these inverted profiles, we measured the mortar sample density at various depths using gamma-densitometry. It should be pointed out this does 296297not mean we attribute the velocity variation only to the density variation. The shear wave 298velocity variation is related to several parameters such as density, Young's modulus and 299water content, often in competition.

Figure 8 shows the density profiles with errors measured by means of gamma-densitometry for mortars M1 and M2; average density equals $2,256\pm 5 \ kg/m^3$ for M1 and $2,151\pm 17kg/m^3$ for M2. A difference in density is noticed near the edges, as a result of the skin effect. For the sake of comparison, we used the function with exponential attenuation to fit measurements (counting from the surface):

$$f = f_0 + C e^{-x/a} (27)$$

300 where f and x denote density and depth, respectively. C and a are the constants to 301 be determined. The function and its graph are shown in Figure 8. For M1, the profile is 302 nearly symmetrical on both sides. At a depth of 1.5-2.0cm from the surface (as denoted by 303 two circles drawn in a dashed line), a similar inflection point can be observed. The density 304 tends to a constant between the two inflection points. The profile shape and inflection point 305 location closely match the V_s profile. For M2, the density profile is not symmetrical from

Figure 8: The density profiles for M1 and M2 measured by gamma-densitometry.

306 both sides of the surface. This outcome is likely due to the presence of air bubbles near one 307 side (where depth equals 120mm on Fig.8). Air bubbles are usually removed by hammer 308 blows for different samples on both sides of all slabs. For mortar M2 however, the protocol 309 perhaps differed on the side of the slab used for gamma-densitometry coring samples, which 310could explain the difference in density near the 120mm deep side. For mortar M2 near the 311 other side (i.e. 0mm depth), the same density variations as for mortar M1 can be observed, 312 which is why density measurements have, to some extent, confirmed our inverted Vs profile 313 and thereby offer a reliable verification for our method.

314 5. DISCUSSION AND CONCLUSION

We have presented herein a method for inverting surface wave dispersion and attenuation in terms of the depth-dependent visco-elastic parameters of Functionally Graded Materials (FGMs). The particularity of this method lies in the fact that the visco-elastic parameters are allowed to vary continuously with depth and that both the forward problem (involving

319 calculation of dispersion and attenuation) and the inverse problem (evaluation of visco-320 elastic parameters) effectively take into account the continuous nature of these variations. 321 The forward problem solves the equation of elastic motion using a Runge-Kutta integration 322 scheme. The viscous part is treated as a first-order perturbation to the elastic structure, 323 which limits method applicability to materials with weak attenuation.

324 The inverse problem is treated using the nonlinear solution to continuous inverse problems 325 developed by Tarantola and Valette (1982)[32]. This set-up allows for continuous variations, without having to define a set of functions over which the profile is to be decomposed. The 326 327 inversion step is dependent on a prescribed correlation length for the particular profile and 328 not on its sampling with depth. This protocol is very flexible and enables representing a 329 large set of models very easily. Our software introduces interfaces at prescribed depths, yet 330 this option has not been adopted in the present application. The starting model is defined 331 by a simple formula directly related to the dispersion curve. Problem non-linearity is taken 332 into consideration by iterating linear inversions; we have shown that convergence towards the correct profile is obtained after just a few iterations in the purely elastic case, but a 333 334 larger number of iterations is required in the case of attenuation.

Dispersion and attenuation have been inverted simultaneously for the S-wave velocity, attenuation and, in some cases, for P-wave velocity. The dispersion due to attenuation has also been incorporated, thus avoiding erroneous mapping as a result of depth-dependent, S-wave velocities. P-wave velocity variations can also be accounted for either by including them as a parameter to be inverted or by coupling their variations to those of the S-wave velocity through a fixed Poisson's ratio value. Partial coupling via a correlation coefficient between 0 and 1 is also possible.

The Rayleigh wave phase velocity and attenuation measured by means of laser ultrasonic experiments are used to infer the depth-dependence of S-wave velocity and attenuation on mortar samples. It has been found that mortar inhomogeneity is confined to the first 1.5*cm* of depth. This depth-dependence compares well with that of the sample density inferred from gamma-densitometry.

347 The procedure implemented has been designed to analyze the variations in elastic param-

348 eters with depth; moreover, we assumed herein that the material is homogeneous in the two 349 horizontal directions. This method however may still be combined with other techniques in 350 order to recover the depth-dependence and lateral variations of the elastic parameters. In 351the case of randomly distributed lateral heterogeneities, such as those in the mortar samples, stacking several recordings has yielded information on the average structure. In the case of 352353lateral variations that are consistent with respect to the length of analyzed surface waves, it can be shown that the dispersion measured between two points depends on the average 354355 structure between points[42]. Average structures along many paths can then be interpreted within a 3-D structure using various tomographic techniques [12-16, 33, 43]. As an alter-356 native, local measurements of dispersion and their inversion with depth can serve to map 357 358lateral variations more directly [44].

Finally the possibility of using surface wave to investigate variation of properties of the first centimeter of concrete (cover concrete) are underway. A major step will consist in dealing with the strong scattering on our measurements as the wavelength will be of the same order of grandeur as the aggregates (few centimeters).

363 ACKNOWLEDGMENTS

The authors would like to thank the Electricit de France (EDF) utility company for financing a portion of the research. This work effort was also partially supported by the European INTEREG IIB program MEDACHS and the French ANR project SENSO, as well as by the National Natural Science Foundation of China (40974032).

368 References

369 References

- [1] W.Q. Chen, H.M. Wang and R.H. Bao, On calculating dispersion curves of waves in
 functionally graded elastic plate, *Composite structures*, 81,233-242(2007)
- [2] K. Baganas, Wave propagation and profile reconstruction in inhomogeneous elastic media, *Wave Motion*, 42,261-273(2005)

- [3] A. Carpinteri and N. Pugno, Cracks and re-entrant corners in functionally graded ma terials, *Engineering Fracture Mechanics*, 73,1279-1291(2006)
- [4] F. Erdogan and B.H. Wu, Fracture mechanics of functionally graded materials, *Compos. Engng.*, 7,753-770(1995)
- T.P. Philippidis and D.G. Aggelis, Experimental study of waves dispersion and attenuation in concrete, *Ultrasonics*, 43,584-595 (2005).
- [6] L.J. Jacobs and J.O. Owino, Affect of Aggregate Size on Attenuation of Rayleigh Surface
 Waves in Cement-Based Materials, J. Eng. Mech. ASCE 126(11), 1124-1130 (2000)
- 382 [7] J.O. Owino and L.J. Jacobs, Attenuation Measurements In Cement-Based Materials
 383 Using Laser Ultrasonics, J. Eng. Mech. ASCE, 125 (6), 637-647 (1999)
- [8] D.G. Aggelis and S.V. Tsinopoulos and D. Polyzos, An iterative effective medium approximation (IEMA) for wave dispersion and attenuation predictions in particulate
 composites, suspensions and emulsions, J. Acoust. Soc. Am., 116,3443-3452(2004).
- 387 [9] D.G. Aggelis and T. Shiotani, Experimental study of surface wave propagation in
 388 strongly heterogeneous media, J. Acoust. Soc. Am. Express Letters, 122, EL151(2007).
- [10] E.V. Dave, W.G. Buttlar, Glaucio H. Paulino and Harry H. Hilton, Graded visco elastic approach for modeling asphalt concrete pavement, AIP Conference Proceedings,
- **973**,736-741(2008).
- 392 [11] P. Ullidtz, Pavement analysis, developments in civil engineering, (Elsevier, Amestr393 dam,1987)
- J.H. Woodhouse and A.M. Dziewonski, Mapping the upper-mantle 3-dimensional modeling of Earth structure by inversion of seismic waveforms, *J. Geophys. Res.*, 89, 59535986(1984).
- 397 [13] A. Curtis, R. Snieder, Probing the earth's interior with seismic tomography, in In398 ternational handbook of earthquake and engineering seismology, Eds. Lee, W.H.K.,

- H. Kanamori, P.C. Jennings, and C. Kisslinger, Academic Press, Amsterdam, 861874(2002).
- 401 [14] J.J. Leveque, M. Cara and D. Rouland, Waveform inversion of surface wave data:test of
 402 a new tool for systematic investigation of upper mantle structures, *Geophysics J. Int.*,
 403 104,565-581(1991).
- 404 [15] V. Maupin and M. Cara, Love-Rayleigh wave incompatibility and possible deep upper
 405 mantle anisotropy in the Iberian Peninsula, *Pure and Applied Geophysics*, 138,429406 444(1992).
- 407 [16] A.M. Dziewondki, A.L. Hales and E.R. Lapwood, Parametrically simple Earth models
 408 consistent with geophysical data, *Phys. Earth planet. Int.*, **10**, 12-48(1975).
- 409 [17] N. Ryden and M.J.S Lowe, Guided wave propagation in three-layer pavement structures, J.Acoust. Soc. Am., 116,2902-2913(2004).
- 410
- 411 [18] T.T. Wu and Y.H. Lui, Inverse determinations of thickness and elastic properties of a
 412 bonding layer using laser-generated surface waves, *Ultrasonics*, 37, 23-30(1999)
- 413 [19] Y.S. Cho, Non-destructive testing of high strength concrete using spectral analysis of
 414 surface waves, NDT & E Int., 36,229-235(2003).
- 415 [20] Y.S. Cho and F.B. Lin, Spectral analysis of surface wave response of multi-layer thin
 416 cement mortar slab structure with finite thickness, NDT & E Int., 34,115-122(2001).
- 417 [21] C.P. Park, R.D. Miller and J.H Xia, Multichannel analysis of surface waves, *Geophysics*.
 418 64,800-808(1999).
- 419 [22] M. Alam, J.H. McClellan and W.R. Scott, Spectrum analysis of seismic surface waves
 420 and its applications in seismic landmine detection, J. Acoust. Soc. Am., 121,1499421 1509(2007)

- 422 [23] K. Aki and P.G. Richards, Quantitative Seismology, (Freeman & Co., San Fran-423 ciso,1980)
- 424 [24] C. Baron, A.L. Shuvalov and O. Poncelet, Impact of localized inhomogeneity on the 425 surface-wave velocity and bulk-wave reflection in solids, *Ultrasonics*, **46**,1-12(2007)
- 426 [25] A.L. Shuvalov, O.Poncelet and M.Deschamps, General formalism for plane guided waves
 427 in transversely inhomogeneous anisotropic plates, *Wave Motion*, 40,413-426(2004)
- 428 [26] H. Takeuchi and M. Saito, "Seismic surface waves. In seismology: surface waves and
 429 earth oscillations" in *Methods in computational physics*, edited by B. A. Bolt, (Academic
 430 Press, New York, 1972), Vol. 11, pp. 217–295.
- 431 [27] M. Saito, "Disper80: a subroutine package for the calculation of seismic normal mode
 432 solutions", in Seismological algorithms:computational methods and computer prorams,
 433 edited by Durk J. Doornbos, (Academic Press, New York, 1988), pp. 293–319.
- 434 [28] J.M. Carcione, Wave fields in real media: wave propagation in anisotropic, anelastic
 435 and porous media, (Pergamon, UK, 2002)
- 436 [29] M.N. Toksoz, D.H. Johnston and A. Timur, Attenuation of seismic waves in dry and
 437 saturated rocks: I. Laboratory measurements, *Geophysics*, 44,681-690(1979).
- [30] H.P. Liu and D.L. Anderson and H. Kanamori, Velocity dispersion due to anelasticity:
 Implications for seismology and mantle composition, *Geophys. J. Roy. Astron. Soc.*,
 440 47,41-58(1976).
- 441 [31] E. Kjartansson, Constant Q-Wave propagation and attenuation, J. Geo. Res., 84,4737442 4748(1979)
- [32] A. Tarantola and B. Valette, Generalized nonlinear inverse problem solved using the
 least squares criterion, *Reviews of Geophysics and Space Physics*, 20,219-232(1982)

- 445 [33] E. Debayle and M. Sambridge, Inversion of massive surface wave data
 446 sets:Model construction and resolution assessment, *Journal of Geophysical Research*,
 447 109,B02316(2004)
- 448 [34] D.L. Anderson, "Theory of the Earth", (Blackwell Scientific Publications, 1989)
- 449 [35] F. Bretaudeau, D. Leparoux, O. Durand and O. Abraham, "Small-scale modeling of
 450 onshore seismic experiment: a tool to validate numerical modeling and seismic imaging
 451 methods", submitted to Geophysics (2010)
- 452 [36] M. Chekroun, Caractérisation mécanique des premiers centimètres du béton avec des
 453 ondes de surface, *Ph.d Thesis*, Ecole Doctoral SPIGA(498), Nantes, France(2008)
- 454 [37] T.A. Mokhtar, R.B. Herrmann and D.R. Russel, Seismic velocity and Q model for the
 455 shallow structure of the Arabian shield from short-period Rayleigh waves, *Geophysics*,
 456 53(11):1379-1387(1988).
- [38] R.B. Herrmann, Computer Program in Seismology, Department of Earth and Atmospheric Science, Saint Louis University, 2002, http://www.eas.slu.edu/People/ RBHerrmann/ComputerPrograms.html
- 460 [39] M. Chekroun, L. Le Marrec, O. Abraham, G. Villain, O. Durand , Analysis of coherent
 461 wave dispersion and attenuation for non-destructive testing of concrete, *Ultrasonics*,
 462 doi:10.1016/j.ultras.2009.05.006(2009).
- [40] J. J. Zheng, C. Q. Li, M. R. Jones. Aggregate distribution in concrete with wall effect,
 Magazine of Concrete Research, 55(3):257-2659(2003).
- 465 [41] G. Villain and M. Thiery, Gammadensimetry: A method to determine drying and
 466 carbonation profiles in concrete, NDT & E Int., 39(4):328-337(2006).
- 467 [42] J.H. Woodhouse, Surface waves in a laterally varying layered structure, *Geophys. J. R.*468 astro. Soc., **37**, 461-490(1974).

- 469[43] N.M. Shapiro and M.H. Ritzwoller, 2002. Monte-Carlo inversion for a global shear velocity model of the crust and upper mantle model, Geophys. J. Int., 151, 88-105. 470
- 471[44] F.C. Lin, M.H. Ritzwoller and R. Snieder, Eikonal tomography: surface wave tomog-
- 472 raphy by phase front tracking across a regional broad-band seismic array, Geophys. J.
- 473Int., 177, 1091-1110(2009).

Accepted manuscript