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We demonstrate both numerically and experimentally that geometric frustration in two-dimensional
periodic acoustic networks consisting of arrays of narrow air channels can be harnessed to form band gaps
(ranges of frequency in which the waves cannot propagate in any direction through the system). While
resonant standing wave modes and interferences are ubiquitous in all the analyzed network geometries, we
show that they give rise to band gaps only in the geometrically frustrated ones (i.e., those comprising of
triangles and pentagons). Our results not only reveal a new mechanism based on geometric frustration to
suppress the propagation of pressure waves in specific frequency ranges but also open avenues for the
design of a new generation of smart systems that control and manipulate sound and vibrations.

DOI: 10.1103/PhysRevLett.118.084302

Geometric frustration arises when interactions between
the degrees of freedom in a lattice are incompatible with the
underlying geometry [1,2]. This phenomenon plays an
important role in many natural and synthetic systems,
including water ice [3], spin ice [4–6], colloids [7–9],
liquid crystals [10], and proteins [11,12]. Surprisingly,
despite the fact that geometric frustration is scale-free, it
has been primarily studied at the microscale [2], and only
very recently has the rich behavior of macroscopic frus-
trated systems been explored [13,14]. Here, we investigate
both numerically and experimentally the effect of geo-
metric frustration on the propagation of sound waves in 2D
macroscopic acoustic networks.
We focus on periodic arrays of narrow air channels of

length L and note that a propagating mode with wavelength
λ ¼ 2L [see Fig. 1(a)] can be perfectly accommodated by a
rhombic lattice, independent of the angle θ between the
channels [see Figs. 1(b) and 1(c) for θ ¼ π=2—the well-
known square lattice—and θ ¼ π=3, respectively].
However, when we form a triangular lattice by adding
an additional channel to a rhombic network with θ ¼ π=3,
such a mode is no longer supported [see Fig. 1(d)], and the
system becomes frustrated. This leads us to investigate the
following question: How does geometric frustration affect
the dynamic response of a periodic acoustic network?
Our combined numerical and experimental results dem-

onstrate that, while a rhombic network transmits acoustic
waves of any frequency, a triangular network shows full
Bragg-type sonic band gaps. While sonic Bragg-type band
gaps have been previously demonstrated in ordered arrays

of solid inclusions in air [15–19], the necessary conditions
for destructive interferences leading to their opening are
usually unknown in 2D systems, and their prediction
always required detailed numerical simulations. Nonlocal
homogenization theories, e.g., [20], could, in principle, be
used to calculate the band gaps, but they would require
numerical calculations of a similar level of complexity.
Here, we identify a new strategy based on geometric
frustration to form full Bragg-type band gaps at the desired
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FIG. 1. Geometric frustration in acoustic networks: (a) A
propagating mode with a wavelength twice that of a single
channel length (i.e., λ ¼ 2L) can be supported by a rhombic
network with (b) θ ¼ π=2 and (c) θ ¼ π=3 but cannot be
supported by (d) the triangular network, causing the system to
become frustrated.

PRL 118, 084302 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

24 FEBRUARY 2017

0031-9007=17=118(8)=084302(5) 084302-1 © 2017 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.118.084302
http://dx.doi.org/10.1103/PhysRevLett.118.084302
http://dx.doi.org/10.1103/PhysRevLett.118.084302
http://dx.doi.org/10.1103/PhysRevLett.118.084302


frequencies. Remarkably, we derive robust and simple rules
to exactly predict the location of the band gaps solely as a
function of the arrangement of the propagating media. This
provides a powerful tool for the design of systems capable
of precisely controlling the propagation of sound.
In order to analyze the effect of geometric frustration on

the propagation of sound waves, we first calculate the
dispersion relations for periodic acoustic networks com-
posed of narrow air channels of length L and cross-
sectional width D, with D ≪ L. Assuming that in any
channel λ > 2D and the viscous and thermal boundary
layer thicknesses are small compared to D, we used the 1D
wave equation [21] to describe the free vibrations of the
enclosed air column. Furthermore, we determine the
dispersion relations of a periodic network both analytically
[22] and numerically (more details on the analysis are
provided in Supplemental Material [23], and the finite
element (FE) code implemented in MATLAB is available
online [24]).
In Fig. 2, we show the acoustic dispersion curves for the

square and triangular networks in terms of the normalized
frequency Ω ¼ ωL=ð2πcÞ ¼ L=λ, where ω denotes the
angular frequency of the propagating pressure wave and
c ¼ 343.2 m=s is the speed of sound in air. Both analytical

(continuous lines) and numerical (circular markers) results
are reported and show perfect agreement. First, we note that
both band structures are periodic in Ω and are characterized
by equally spaced flat bands located at Ω ¼ n=2 (n being
an integer, n ¼ 1; 2; 3;…). This is a clear signature of the
expected resonant modes with wavelengths λn ¼ 2L=n
localized in the individual air channels. These modes
(which are not captured by our analytical model, as we
considered only propagating waves in the calculations) are
characterized by zero pressure at both ends of each channel.
As such, they are geometrically compatible with both the
square and triangular networks (as well as any other
equilateral lattice geometry), since continuity conditions
at the junctions can always be satisfied.
Second, and more importantly, the dispersion curves

reported in Fig. 2 also indicate that, while the square lattice
transmits acoustic waves of any frequency, full band gaps
exist in the triangular network, as highlighted by the shaded
areas in Fig. 2(b). These band gaps open around the odd-
numbered resonant modes (i.e., n ¼ 1; 3; 5;…), the first
one (i.e., n ¼ 1) corresponding to λ ¼ 2L. Note that these
odd-numbered modes introduce a specific coupling con-
dition between the ends of each air channel: The pressure
field phasor is opposite for neighboring junctions.
Therefore, at these specific frequencies, the acoustic
triangular network behaves as the frustrated antiferromag-
netic triangle, where each spin cannot be antialigned with
all its neighbors [1,2]. More specifically, in the considered
acoustic lattice, the phasor of the pressure field plays the
role of the spin, while the opposite phasor between the two
ends of each individual channel occurring at Ω ¼ n=2
introduces conditions analogous to the antiferromagnetic
coupling. However, differently from the case of antiferro-
magnetic interactions, in our acoustic networks the cou-
pling between neighboring junctions depends on the wave
frequency, so that geometric frustration arises only at
specific values of Ω [25].
We find that all lattices showing geometric frustration

under antiferromagnetic spin coupling exhibit full acoustic
band gaps in their dispersion spectrum, while those that can
accommodate such coupling and are not frustrated do not
(see Fig. S6 in Ref. [23]). Furthermore, while the results
presented in Fig. 2 are for ideal acoustic networks made of
1D channels, we have also investigated the effect of the
finite width D of the tubes. The numerical results reported
in Fig. S7 [23] for networks formed by channels with
different L=D ratios indicate that the dynamic response of
the system is not significantly affected by the finite width of
the channels. In fact, the triangular network is still
characterized by full band gaps around the odd-numbered
resonant modes even for L=D ¼ 10.
Having demonstrated that geometric frustration can be

exploited to form band gaps in acoustic networks, we now
shed light on the mechanism leading to their opening. To
this extent, we consider a rhombic lattice with θ ¼ π=3 and
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FIG. 2. Dispersion relations of acoustic networks comprising a
periodic array of air channels: (a) square lattice and (b) triangular
lattice. Continuous lines and circular markers correspond to
analytical and numerical (finite element) results, respectively.
The shaded regions in (b) highlight the full band gaps induced
by geometric frustration. Lattice configurations, unit cells
(highlighted in red), and irreducible Brillouin zones are shown
on the left.
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L=D ¼ 100 and analyze numerically the effect of a channel
of width d added along its short diagonal (see the
schematics in Fig. 3). In Fig. 3, we report the dispersion
curves along the GM direction for different values of d=D
ranging from 0 (rhombic lattice) to 1 (triangular lattice).
Our results reveal that, as soon as the coupling induced by
the additional channel of width d ≪ D is present, a band
gap opens at point M. Moreover, as d=D increases, the
width of the band gap monotonically raises and approaches
that of the triangular lattice. Mode shapes at the cutoff
frequency are represented in Fig. 3 for d=D ¼ 0.0 (rhombic
network), d=D ¼ 0.2, and d=D ¼ 1.0 (triangular network).
They indicate that the additional diagonal channel com-
pletely changes the pressure distribution, as that of the
rhombic lattice (d=D ¼ 0) is no further compatible with the
underlying geometry when the diagonal channel is added.
The coupling introduced by the additional channel results
in new interferences (coupling) that modify the mode
shapes and frequencies of the periodic networks and
eventually lead to the opening of full band gaps.
The results shown in Fig. 3 indicate that the band gaps

are of the Bragg type, as they can be interpreted as the result
of the destructive interferences of waves propagating in the
individual channels and scattered at each junction of the
lattice with a specific amplitude and phase [26,27]. An
analysis of the dispersion curves also reveals that inside the
band gap ReðkÞ ¼ π and ImðkÞ is rounded and symmetric
[see Fig. S5(b) of Ref. [23]], two features that are consistent
with Bragg band gaps. As a consequence, and also due to
the fact that there is no local resonances in the studied
lattices, the band gaps are not due to hybridization or to the
coupling of local resonators (a coupling such as tunneling
or analogous to the tight binding in crystals) [28,29].

Finally, we characterize both numerically and experi-
mentally the dynamic response of acoustic networks of a
finite size. We start by conducting a numerical steady-state
analysis to calculate the transmission through finite-size
networks comprising 6 × 6 unit cells made of 2D channels
with L=D ¼ 20, in accordance with the tested sample
configurations. In these simulations, a harmonic input
pressure pin is applied at the end of the central channel
on the left edge of the model. In Fig. 4, we report the
steady-state pressure fields obtained for the square and
triangular networks at Ω ¼ 0.45 (in the gap induced
by geometric frustration in the triangular network) and
Ω ¼ 0.95 (in the vicinity of the second resonant frequency
of a single channel). The results show that in the triangular
network at Ω ¼ 0.45 the acoustic energy is completely
localized near the excitation site and no signal is trans-
mitted to the opposite end of the lattice [Fig. 4(c)]—a clear
indication of a full band gap. On the other hand, in all other
cases the acoustic waves are found to propagate across the
finite networks, even in the presence of partial band gaps
[Figs. 4(a), 4(b), and 4(d)].
To validate these predictions, we fabricated samples of

the square and triangular acoustic networks comprising
6 × 6 unit cells [Figs. 5(a) and 5(b)]. The individual air
channels have length L ¼ 40 mm and a square cross
section of 2 × 2 mm (so that L=D ¼ 20 and Ω ¼ 0.5
corresponds to a frequency of 4 kHz) and were engraved
into an acrylic plate of thickness 8 mm by milling with
computerized numerical control. A flat acrylic plate was
then glued on the top of the etched plate to cover the air
channels. During all the experiments, the sample was
surrounded with sound-absorbing foams to minimize the
effect of the ambient noise and the room reverberation.
Moreover, an open channel on one of the edges of the
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FIG. 3. Dynamic response of a rhombic lattice with an addi-
tional channel of width d along the short diagonal. Dispersion
curves along the GM direction are plotted for different values of
channel width ratios d=D. Mode shapes at theM point are shown
for three unit cells characterized by d=D ¼ 0 (rhombic lattice),
d=D ¼ 0.2, and d=D ¼ 1 (triangular lattice). Note that for
visualization purposes the channel width D is increased to
L=D ¼ 20 (while in the calculations we used L=D ¼ 100).
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FIG. 4. Pressure field distribution in finite-sized acoustic
networks comprising 6 × 6 unit cells: (a) square lattice at
Ω ¼ 0.45, (b) square lattice at Ω ¼ 0.95, (c) triangular lattice
at Ω ¼ 0.45, and (d) triangular lattice at Ω ¼ 0.95.
The color indicates the pressure amplitude normalized by the
input signal amplitude (pin).
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samples was connected to an input chamber containing an
earphone (352C22, PCB Piezotronics) to excite a broad-
band white noise signal between 1 and 8 kHz and a
microphone to measure the amplitude of the generated
sound waves pin. Another microphone was then placed at
an air channel opening on the opposite side of the sample to
detect the transmitted signal pout, and the acoustic trans-
mittance is calculated as the ratio pout=pin. Note that, since
the tested samples are of a finite size and the source excites
a single channel, the waves are generated in several
directions and then scattered in many others. As such,
in our experiments we test not only x-direction trans-
mission but multiple-direction transmission. This is con-
firmed by the fact that directional band gaps in the x
direction do not lead to a drop in the experimental trans-
mittance spectrum.
The continuous red lines in Figs. 5(c) and 5(d) show the

experimentally measured transmittance for the square and
triangular samples, respectively, while the blue dashed lines
correspond to the transmittance as predicted by steady-state
FE simulations. The latter are carried out on 2D models
with the exact geometries of the samples and with absorb-
ing conditions at the sample edges. However, we found that
transmittance gaps and their positions are robust features
and are not affected by either the boundary condition type
or the macroscopic shape of the samples. First, we note that

the transmittance for the square lattice does not show
regions of significant attenuation and fluctuates around
−30 dB for experimental data and around −20 dB for
numerical results. Such a low baseline value can be mainly
attributed to the radiation of acoustic energy through the
channel openings on the edges, while the 10 dB difference
between experimental and numerical results can be attrib-
uted to the dissipation in the viscous and thermal boundary
layers [30,31], an effect which is more pronounced at the
low frequencies and is not accounted for in the FE
simulations. In contrast, for the triangular network, a
significant drop (up to ∼ − 60 dB) in the transmittance
is observed between 2.5 and 6 kHz (i.e., for Ω between 0.3
and 0.7), confirming the existence of the full band gap
induced by geometric frustration. Note that our experi-
ments also capture the narrow transmission band at
Ω≃ 0.5, which is predicted by the dispersion relations
for a triangular lattice with L=D ¼ 20 (see Fig. S7 of
Ref. [23]).
In summary, we demonstrated both numerically and

experimentally that geometric frustration in networks of
channels can be exploited to control the propagation of
sound waves. Particularly, we found that in acoustic net-
works comprising frustrated units (such as triangles and
pentagons) full Bragg-type band gaps emerge in the
vicinity of the odd-numbered resonant frequencies of the
individual channels, as these introduce conditions analo-
gous to the antiferromagnetic coupling in spin lattices.
Therefore, our study points to an effective and powerful
rule to construct acoustic structures whose band gaps can
be predicted a priori, purely based on the arrangement of
the channels in the network. While the necessary conditions
for destructive interferences leading to the opening of a full
Bragg band gap are usually unknown in 2D systems, we
found that geometric frustration results in gaps at specific
and predictable frequencies, which depends only on the
length of the tubes.
Given the broad range of applications recently demon-

strated for systems with acoustic band gaps, including wave
guiding [32,33], frequency modulation [34,35], noise
reduction [36], and acoustic imaging [37–39], we expect
geometrically frustrated acoustic networks to play an
important role in the design of the next generation of
materials and devices that control the propagation of
sound. These systems could be made more compact by
coiling up space [40]. Furthermore, exotic functionalities
could be achieved with more elaborate designs which
incorporate local resonators, additional coupling channels,
and fractal structures. For instance, our strategy could
provide a tool for the design of acoustic media with an
effective zero index [41,42] or topologically protected edge
modes [43,44].
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FIG. 5. Transmittance of finite-sized networks: fabricated
samples with the (a) square and (b) triangular networks. The
input chamber is connected to the left edge of the samples, while
the microphone to measure the amplitude of the transmitted
sound waves is attached to the right edge. The frequency-
dependent transmittances for the samples are shown in (c) and
(d) for the square and triangular network, respectively. Both
experimental (continuous red line) and numerical (dashed blue
line) results are shown. The gray regions in (d) highlight the full
band gap as predicted for the corresponding infinite structure [see
Fig. 2(b)].
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